Scattering Transforms in astrophysics, application to component separation

Erwan Allys - ENS, Paris (Physics laboratory and Center for data science)

LPNHE Seminar Paris, May 15^{th} 2023

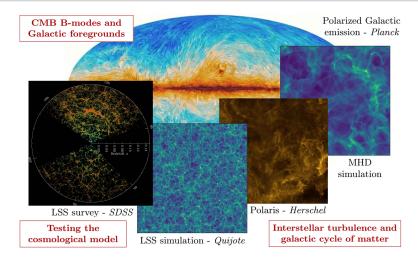
Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Outline

Introduction

- 2 Scattering Transforms and generative models
- **3** Statistical separation of components

Scattering Transforms and generative models Statistical separation of components Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data



Scattering Transforms and generative models Statistical separation of components Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Different scientific objectives

• Different methodological objectives

(with increasing subjective difficulty...)

- ▶ Estimate physical parameters
- Model an astrophysical process
- Separate different components
- Constraint a physical model

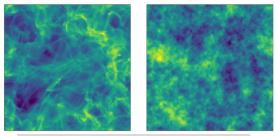
 \rightarrow Which statistics for non-Gaussian astrophysics? \rightarrow How to use non-Gaussian information for these tasks?

Scattering Transforms and generative models Statistical separation of components Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Beyond Power Spectrum statistics

• A generic tool: the Power Spectrum

- ▶ Square amplitude of Fourier modes
- ▶ Energy/Power in each Fourier mode
- Most usual statistical tool in astrophysics



Champs de même spectre de puissance

 \rightarrow Does not characterize interaction between scales \rightarrow Need beyond Power Spectrum statistics for NL fields

Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Specific challenges of astrophysics

• A limited amount of intricate observations

- ▶ A unique static multi-frequency sky
- Mixture of non-stationary components
 - \rightarrow isolated processes are very rare

• Almost no training ground

- ▶ Often no complete physical/numerical models
- Simulations are very expensive
 - \rightarrow no or very limited dataset

Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Specific challenges of astrophysics

• A limited amount of intricate observations

- ▶ A unique static multi-frequency sky
- Mixture of non-stationary components
 - \rightarrow isolated processes are very rare

• Almost no training ground

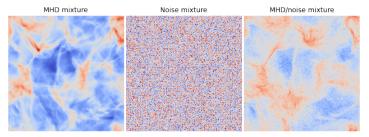
- ▶ Often no complete physical/numerical models
- Simulations are very expensive
 - \rightarrow no or very limited dataset

 \rightarrow Work mainly from obs. data and physical knowledge \rightarrow Need to work with low-variance statistics!

Scattering Transforms and generative models Statistical separation of components Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Non-Gaussian foregrounds models

• Non-Gaussianity is not our enemy!

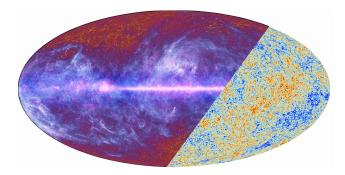


- ▶ Important lever arm for components separation
- Even from a small amount of data

 \rightarrow Challenge of using non-Gaussian information \rightarrow Should be possible to work with (very) small dataset

Scattering Transforms and generative models Statistical separation of components Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Example I: CMB/Galactic foregrounds



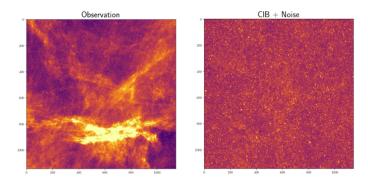
• Cosmic Microwave Background (CMB) polarized B-modes

- ▶ Gaussian process, know spatial/spectral distribution
- ► Signature of primordial Universe (inflation epoch)
- ▶ Beyond much brighter ($\simeq 10^{2-3}$) Galactic foregrounds, no model

\rightarrow Detection and measurement of CMB B-modes?

Scattering Transforms and generative models Statistical separation of components Non-Gaussian fields in astrophysics Challenges of astrophysical data Challenges of astrophysical data

Example II: CIB/Galactic dust emission



• Galactic dust emission and Cosmic Infrared Background (CIB)

- ▶ Thermal dust emission in the interstellar medium
- Same emission from Milky Way and other galaxies
- Cosmic background dominates a smaller scales

\rightarrow Characterization of Galactic dust on those scales?

Outline

1 Introduction

2 Scattering Transforms and generative models

3 Statistical separation of components

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Which statistics for non-Gaussian fields?

• High-order correlation functions

• e.g., third order correlation function and bispectrum

 $\langle s(\vec{x})s(\vec{x}+\vec{\tau}_1)s(\vec{x}+\vec{\tau}_2)\rangle_{\vec{x}} \longrightarrow B(\vec{k}_1,\vec{k}_2,\vec{k}_3)$

- ▶ Link with dynamics in perturbative regime
- Theoretically contains all information...
 - \rightarrow but numerous terms with high variance

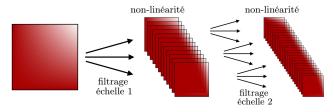
\rightarrow Explicit mathematical form and interpretability \rightarrow Not suitable for highly NG fields with limited data...

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Which statistics for non-Gaussian fields?

• Machine learning and neural network

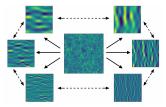
- e.g., convolutional network structure with learned weights
- ▶ Extremely efficient to deal with complex images...
 - \rightarrow but need specific tasks and good quality data



 \rightarrow Need of data, uncertain transfer, weak interpretability... \rightarrow Can we take an intermediate path?

Scattering transform (ST) statistics

- Scattering transform statistics (Mallat+, 2010+)
 - ▶ Initially developed in data science
 - Inspired from neural networks
 - \rightarrow efficient characterization and reduced variance
 - ▶ Do not need any training stage
 - \rightarrow explicit mathematical form and interpretability

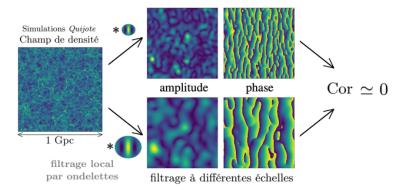


 \rightarrow Wavelet filters separating the different scales \rightarrow Coupling between scales with non-linearities

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

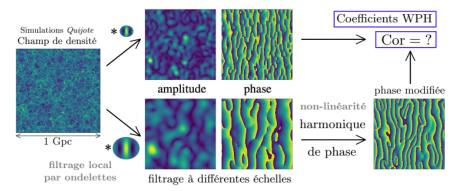
• Wavelet Phase Harmonics and phase alignment (EA+, 20)



Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• Wavelet Phase Harmonics and phase alignment (EA+, 20)

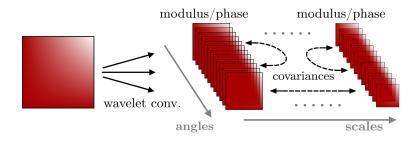


 \rightarrow 1 coeff / pair of scales / type of interaction \rightarrow Can be extended to cross-statistics between maps

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• Final network structure for scattering statistics



 $\label{eq:2} \begin{array}{l} \rightarrow 2 \mbox{ initial convolutions } + \mbox{ 1 translation } \Rightarrow \mbox{ triplets of scales} \\ \rightarrow \mbox{ 1 coefficient per covariance and per type of coupling} \end{array}$

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• A family of statistics

- Different generations of statistics
 - \rightarrow Wavelet Scattering Transforms (WST)
 - \rightarrow Wavelet Phase Harmonics (WPH)
 - \rightarrow Scattering covariances/spectra
- ▶ All share the same framework

(EA+, 19) (EA+, 20) (Cheng+, in prep.)

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• A family of statistics

- Different generations of statistics
 - \rightarrow Wavelet Scattering Transforms (WST)
 - \rightarrow Wavelet Phase Harmonics (WPH)
 - \rightarrow Scattering covariances/spectra
- ▶ All share the same framework

• Characterization and parameter inference

- Interstellar medium (EA+ 19, Regaldo+20, Saydjari+, 20, Lei+, 22)
 Weak lensing (Cheng+, 20, 21)
- ► Large scale structures (EA+, 20, Eickenberg+, 22, Valogiannis+, 22a, 22b)
- ▶ 21cm epoch of reionization

▶ ...

16

 \rightarrow Very informative (sometimes on par with CNN!) \rightarrow Wide range of applicability (generic, training-less)

(EA+, 19)(EA+, 20)

(Greig+, 22)

(Cheng+, in prep.)

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

- Generative model from the ST statistics $\Phi(s)$ of a map s
- Maximum entropy microcanonical model
- \blacktriangleright Generate new maps \tilde{s} with same ST statistics
- ▶ Non-gaussian properties quantitatively reproduced

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

- Generative model from the ST statistics $\Phi(s)$ of a map s
- Maximum entropy microcanonical model
- Generate new maps \tilde{s} with same ST statistics
- Non-gaussian properties quantitatively reproduced

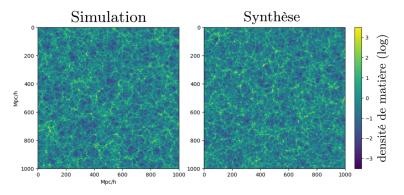
• Practical implementation

- Constraints $\Phi(s)$ from a (set of) data s
- ► Sampled with a gradient-descent algorithm
 - \rightarrow from a whrite noise realization
 - \rightarrow optimizing \tilde{s} such that $\Phi(\tilde{s}) \simeq \Phi(s)$

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- Quantitative validation of syntheses (EA+, 20)
 - ▶ Large scale structures density field, Wavelets Phase Harmonics

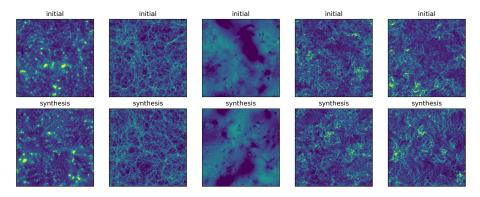


 \rightarrow Usual (NG) statistics very well reproduced (up to 1-10 %)

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- Syntheses from a single image (Cheng+, in prep.)
 - Scattering spectra + physical dimensionality reduction

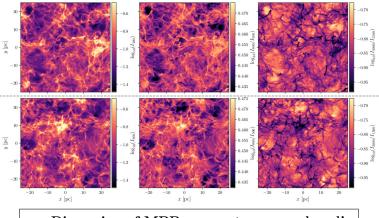


 \rightarrow Realistic NG models from a few hundreds coefficients!

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- Multi-frequency dust syntheses (Regaldo+, 22)
 - ▶ Cross-WPH, simulated dust intensity, 300/500/800/1500/3000GHz

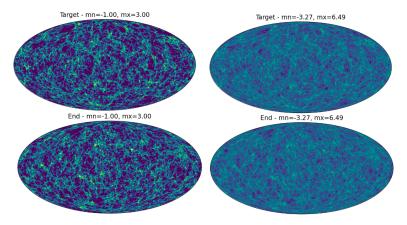


 \rightarrow Dispersion of MBB parameters reproduced!

Which statistics for non-Gaussian fields? Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

• Scattering transform on the sphere (Delouis, Mousset+, in prep.)



 \rightarrow Public tools should be available soon

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Outline

1 Introduction

2 Scattering Transforms and generative models

3 Statistical separation of components

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Modelisation and separation of components

• Framework of the problem

- We observe a mixture d = s + c
 - \rightarrow d data, s signal of interest, c contamination
- \blacktriangleright Use prior knowledge to recover properties of s
- Typical for astrophysical observations

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Modelisation and separation of components

• Framework of the problem

- We observe a mixture d = s + c
 - \rightarrow d data, s signal of interest, c contamination
- \blacktriangleright Use prior knowledge to recover properties of s
- Typical for astrophysical observations

• If we can model, can we separate?

- Assume we have a model for s and c
 - \rightarrow we can generate a data set of $d_i = s_i + c_i$
 - \rightarrow we can train a neural network to recover s from d

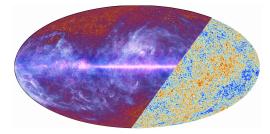
\rightarrow Does it work from a single image?

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Modelisation and separation of components

• CMB B-mode/dust foregrounds at 143GHz (Jeffrey+, 22)

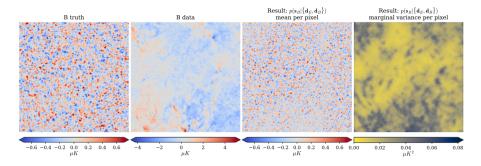
- Application with simulated foregrounds
 - \rightarrow Assume we have a single foreground map
 - \rightarrow Construct a model from this image
- ▶ Gaussian model with prior distribution for CMB
- ▶ Train a neural network to perform foreground removal
 - \rightarrow Moment network for Bayesian framework



Modelisation and separation of components Statistical components separation Separation solely from observational data?

Modelisation and separation of components

• Validation on independent simulated foregrounds (Jeffrey+, 22)

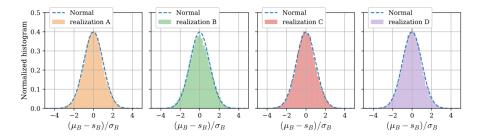


 \rightarrow Marginal posterior distributions per pixel well recovered

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Modelisation and separation of components

• Validation on independent simulated foregrounds (Jeffrey+, 22)



 \rightarrow Successful separation in a Bayesian framework \rightarrow Validate the foregrounds model learned from one image

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Modelisation and separation of components

- But this problem was easy...
 - ▶ We rarely have a given "clean" realization
 - ► Have to deal with unknown components
 - \rightarrow we have at best a model for contamination

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Modelisation and separation of components

• But this problem was easy...

- ▶ We rarely have a given "clean" realization
- ▶ Have to deal with unknown components
 - \rightarrow we have at best a model for contamination

• Scientific objective of the components separations?

- Recovering s: minimizing $MSE(s, \tilde{s})$
 - \rightarrow filtering effect at low SNR
 - \rightarrow statistics of \tilde{s} not well constrained
- ▶ Recovering s: minimizing $MSE(\phi(s), \phi(\tilde{s}))$
 - \rightarrow model and statistics of s are recovered
 - \rightarrow most of the time scientific target

 \rightarrow *Statistical* components separation

 \rightarrow Can we extend the generative framework?

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Statistical components separation

- Maximum entropy model from available sample
 - Estimate $\phi(\bar{s})$ from sample \bar{s}
 - Generate a map such that

 $\Phi(\tilde{s}) \simeq \Phi(s)$

▶ Sampled with gradient descent from white noise

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Statistical components separation

• Maximum entropy model from available sample

- Estimate $\phi(\bar{s})$ from sample \bar{s}
- Generate a map such that

 $\Phi(\tilde{s}) \simeq \Phi(s)$

▶ Sampled with gradient descent from white noise

• Indirect observation with know contamination

- $d = s_0 + c_0$, assume we have $\{c_i\}_i$
- Generate a map such that

$$\langle \Phi(\tilde{s} + c_i) \rangle_i \simeq \Phi(d)$$

 \blacktriangleright Gradient descent from d

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Statistical components separation

• Maximum entropy model from available sample

- Estimate $\phi(\bar{s})$ from sample \bar{s}
- Generate a map such that

 $\Phi(\tilde{s}) \simeq \Phi(s)$

▶ Sampled with gradient descent from white noise

• Indirect observation with know contamination

- $d = s_0 + c_0$, assume we have $\{c_i\}_i$
- Generate a map such that

$$\langle \Phi(\tilde{s} + c_i) \rangle_i \simeq \Phi(d)$$

 \blacktriangleright Gradient descent from d

 \rightarrow New framework for components separation \rightarrow Can include various statistical constraints

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Statistical components separation

• Application to dust polarized emission and noise (Regaldo+, 21)

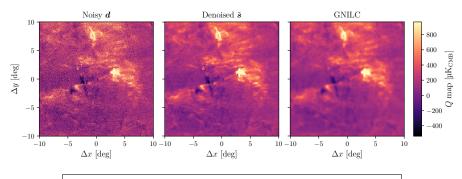
- ▶ d = s + c Planck polarization data at 353GHz
- $\blacktriangleright\ s$ polarized dust emission, c inhomogeneous noise
- ▶ 300 noise realizations c_i from Planck team
- \blacktriangleright Optimization done from d to keep largest scales

 $\langle \Phi(\tilde{s}+c_i) \rangle_i \simeq \Phi(d)$

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Statistical components separation

• Application to Chameleon-Musca region (Régaldo+ 21)

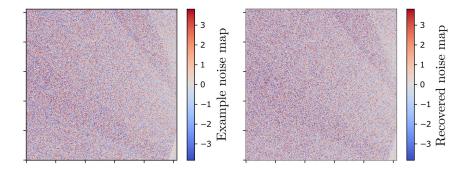


 \rightarrow Transition btw. deterministic and statistical \rightarrow Conceptual validation of the method

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Statistical components separation

• Recovered contamination (Régaldo+ 21)



 \rightarrow Statistical separation of components \rightarrow Residual structures could also be constrained

Modelisation and separation of components Statistical components separation Separation solely from observational data?

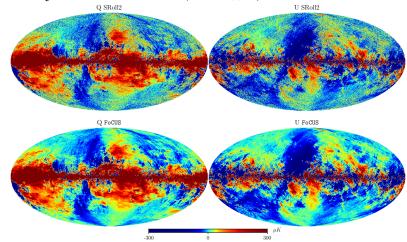
Statistical components separation

• Refinements of this work on the whole sky (Delouis+, 22)

- Introduce additional constraints
 - \rightarrow 3 constraints including cross-statistics
- Educated normalization of each constraint
 - \rightarrow constraints normalized by variance over $\{c_i\}$
- ▶ Introduce local constraints for non-stationary
 - \rightarrow 4 selected regions for Galactic heterogeneity

Modelisation and separation of components Statistical components separation Separation solely from observational data?

• Full sky results at 353GHz (Delouis+, 22)



→ Deterministic up to SNR \simeq 0.1, statistical up to SNR \simeq 0.01 → Efficient and versatile framework for statistical comp. separation

Modelisation and separation of components Statistical components separation Separation solely from observational data?

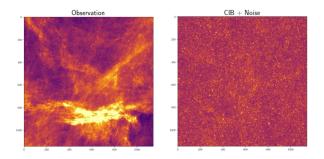
Separation solely from observational data?

• But this problem was easy...

- Astrophysical components more difficult to model
- Instrumental noise not always modeled
- Can we characterize an unknown component
 - \rightarrow without prior model for contamination?
 - \rightarrow relying only on observational data?

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Separation solely from observational data?



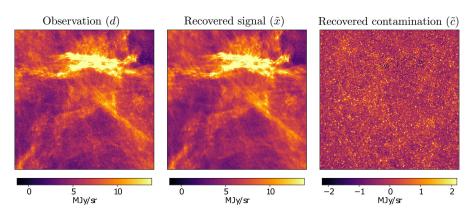
• Dust emission/Cosmic Infrared Background (Auclair+, sub.)

- ▶ $d = s + c_1 + c_2$, s thermal dust emission, c_1 CIB, c_2 noise
- CIB model from separate observation (cosmological \Rightarrow homogeneous)
- Noise estimated from two observations of the same region
- Two constraints, with $\{c_i^{\text{tot}}\}_i$ from models above

$$\left\langle \Phi(\tilde{s} + c_i^{\text{tot}}) \right\rangle_i \simeq \Phi(d), \qquad \Phi(\tilde{c}^{\text{tot}}) = \Phi(c^{\text{tot}})$$

Modelisation and separation of components Statistical components separation Separation solely from observational data?

• Recovered components (Auclair+, sub.)



 \rightarrow Statistical components separation solely from obs. data \rightarrow Thermal dust is recovered at an unprecedented resolution

Modelisation and separation of components Statistical components separation Separation solely from observational data?

Conclusion

• Scattering Transforms

 \rightarrow Efficient non-Gaussian statistics inspired from neural network

 \rightarrow Characterize interaction between scales in non-linear processes

• New tools for (astro-)physics

- \rightarrow Generative models and component separations
- \rightarrow Ability to work with a very limited amount of data
- Applications to come are very exciting! :-)

Thanks for your attention!