

F DR2 SNIa and the Large Scale Structure

Overview of current and future analyses

Marie Aubert (LPC/IN2P3), on behalf of : B. Carreres, D.Rosselli, F.Ruppin, M. Rigault and ZTF-IN2P3 working group

7th Action Dark Energy , 06/11/2023

The large scale structure and the SNIa within.

The unprecedented statistic of ZTF SNIa samples the underlying galaxy density field, and subsequent Large Scale Structure (LSS).

 $\text{LSS} \rightarrow \text{Network}$ of matter shaping large structures : Filaments, Voids and Clusters

ZTF SNIa and Voids

3

VoidFinder

Intrinsic properties in the vicinity of voids

Void centric distribution of the intrinsic parameters.

 \rightarrow 3D distance matching between SNIa and void centre.

Aubert & al, in prep.

U

Intrinsic properties w.r.t local density

Voronoi volume distribution of the intrinsic parameters

Each galaxy is attributed a volume by the Voronoi Tesselation (*byproduct of the voidfinder*)

 \rightarrow 3D distance matching between SNIa and nearest galaxy.

PRELIMINARY

Property of the **Voronoi tesselation :** 1/V_c = local density.

ZTF SNIa and Clusters

Cluster sample

7913 galaxy clusters selected. → Multiple detection various surveys *Planck SZ-2, MCXC, SPT, ACT, SDSS*

SNIa sample

Ruppin et al, in prep

Intrinsic properties w.r.t r/R₅₀₀

Strong dependency of the stretch w.r.t r/R₅₀₀

 \rightarrow 3D matching between SNIa and nearest cluster.

PRELIMINARY

7

Modelling the environmental drift

Stretch distribution can be modelled by two populations.

 \rightarrow The stretch distribution varies in redshift (Nicolas et al 2021)

Redshift drift

 \rightarrow The stretch depends on proximity to over(under) dense environment :

Environmental drift

Can be modelled as a function of $\rm r/R_{500}$

Redshift + Environmental drift modelled SNIa stretch PDF.

PRELIMINARY

Are SNIa properties dependent on LSS environment?

There is indeed an environmental drift for the stretch. No dependency was detected for the colour.

Can SNIa peculiar velocities constrain cosmology?

As for all redshifts, SNIa's contain information of peculiar velocities (PV)

$$1 + z_{\text{obs}} = (1 + \bar{z})(1 + \frac{v}{c})$$
Cosmo
Peculiar velocities :
Growth + additional effects

Dual information from the SNIa \rightarrow Distance modulus and redshift

Peculiar velocities and SNIa

Unlock $f\sigma_8$ constraint with SNIa :

 \rightarrow Need realistic simulations of SNIa samples with LSS velocities

Carreres et al 2023, & Phd Thesis

Probing the growth of structure with ZTF SNIa

 \rightarrow Test of max. likelihood analysis of the Hubble Diagram to constrain $f\sigma_8$ Realistic 6-year ZTF data forecast.

Carreres et al 2023, & Phd Thesis

Probing the growth of structure with ZTF SNIa

Only low redshift SNIa (z<0.1) needed

~5000

 $\sigma_8 - \Omega_m$

27% precision

Combining PV & Hubble diagram

Credits: M.Rigault & R. Graziani

PRELIMINARY

PRELIMINARY Peculiar velocities and low redshift Hubble Diagram.

Test impact of peculiar velocities corrections on the low redshift Hubble Diagram :

Use of SNSim to investigate corrections :

 H_{0} and M_{0} are degenerate x4 error on M_{0}

Velocity covariance

Concluding remarks on LSS and ZTF.

With ZTF SNIa can no longer be considered as independent from the LSS :

Environmental:

Cosmological:

Statistics allows us to investigate the environmental dependencies

\rightarrow Evidence of environmental drifts.

→ Uncover potential new selection effects (e.g cluster selection as targets for high redshift SNIa sample)

New aspects to consider in the cosmological constraint.

Unlock new probe
$$ightarrow f\sigma_8$$

Refine the HD analysis \rightarrow Velocity covariance

Complementary slides

Voronoi tesselation based algorithm \rightarrow Revolver (Nadathur 2019), VIDE (Sutter 2014)

ZOBOV, (Neyrinck 2008)

Contact emails

Florian Ruppin / IP2I - UCBL 1, SNIA and Clusters : f.ruppin@ip2i.in2p3.fr

Bastien Carreres / CPPM - AMU - Duke University,, Peculiar velocities : <u>carreres@cppm.in2p3.fr</u> (Adress will change soon !)

Damiano Rosselli / CPPM - AMU, Peculiar velocities : rosselli@cppm.in2p3.fr

M. Rigault / IP2I - UCBL 1, Peculiar velocities | Forward Modelling : m.rigault@ipnl.in2p3.fr

M. Aubert / LPC - UCA, SNIa and Voids : marie.aubert@clermont.in2p3.fr