Precision supernova photometry with the **Zwicky Transient Facility**

Leander Lacroix for the ZTF participation group

The Samuel Oshin P48 telescope

ZTF Camera Technical Specifications		
Telescope	Samuel Oschin (48-inch Schr	nidt)
Field of View	47 square degrees	
Detectors	16 e2v 6k x 6k CCD231-C6	
Pixel size	15 micron	
Pixel scale	1.0"/pixel	
Median Delivered Image Quality	2.0" FWHM	
Exposure Time	30 sec	
Readout Time	10 sec	
Median Time Between Exposures	15 sec	
Median Single Visit Depth (5σ, R band)	20.4 mag (all lunar phases)	
Filters	ZTF g, ZTF r, ZTF i	
Areal Survey Rate	3750 square degrees/hour	

©Caltech

Photometry goals for precision w cosmology

3/21

Ingredients for SN flux metrology

- Repeatability matters:
 - ZTF pipeline repeatability: 2%
 - Our goal: 0.1% (for $\Delta w = 1\%$ and ~10k Ia Sne)
 - Work on systematical error at the ‰ level
- Ingredients:
 - Survey calibration → UberCal
 - Instrument non uniformity caracterisation → starflats
 - Efficient SN lightcurve extraction → scene modeling
 - Instrument throughput model
 - Internal detrending pipeline
- Large french team coordinated effort for calibration 4/2

DR2 sample

DR2 sample & primary standard stars

DR2 sample & primary standard stars

DR2 sample & primary std. & CALSPEC stars

Calibrating the field stars

 $m_{1} + 0 = m_{11}^{obs}$ $m_{2} + 0 = m_{21}^{obs}$ $m_{3} + \Delta ZP_{2} = m_{32}^{obs}$ $m_{4} + \Delta ZP_{2} = m_{42}^{obs}$ $m_{1} + \Delta ZP_{3} = m_{13}^{obs}$ $m_{2} + \Delta ZP_{3} = m_{23}^{obs}$ $m_{3} + \Delta ZP_{3} = m_{33}^{obs}$ $m_{4} + \Delta ZP_{3} = m_{43}^{obs}$

 $m_{obs} - m_{ps_g} = \alpha (m_{ps_g} - m_{ps_r}) + ZP(t_{exposure}) + k(t_{night}) * \operatorname{airmass} + \delta ZP(u, v)$

Calibrating the field stars

- For now: anchored on PS1 as a large scale rigidifier
 - Needs slight modification of observing strategy (as for DES, SDSS...)
- Main product: uniform star catalog of the whole survey

10/21

Conclusion: •

• Anchored on PS1 as a large scale rigidifier

B. Racine et al

Camera non uniformities

Map zero point variation on focal plane

From UberCal fit

Scene Modeling Photometry (SMP)

- Statistically optimal maximum likelihood flux estimator
- Directly work at the pixel level
- Models the "scene" (SN flux and background galaxy)
- Same flux estimator for SN and field stars \rightarrow auto cancellation of systematics

≻

- Simultaneously fits > Galaxy profile
- SN position
 - - Fluxes \leftarrow lightcurve!

Lightcurve calibration

- For each star lightcurve, fit constant magnitude model
 - High $\chi^2 \rightarrow$ variable stars removed
- Find Zero Point (ZP) \rightarrow compare with calibrated catalog

Scene modeling pipeline

- 180 TB dataset 3.6M quadrants
 - ~ 3600 SNe → ~10k lightcurves
 - ~ 1 week processing for whole DR2

16/21

17/21

Scene modeling requirements

- Are we done? Not yet!
 - Still dominated by systematics
- Indeed: SMP has strict requirements
 - Robust and precise relative astrometry maps
 - PSF linearity \rightarrow independent of flux

Sensor effects affecting PSF linearity

- Brighter-fatter
 - High flux
 - Expected
 - 1-2% effect (p-to-p)

- "Pocket effect"
 - Low flux low background
 - Unexpected
 - 5-10% effect (p-to-p)

Toward DR 2.5

- Current state
 - Fast pipeline able to process full dataset
 - ‰ statistical precision
- However
 - Challenging instrumental effects need to be fully corrected (from raw pixels) → control of systematics at the ‰ level

These corrections implies full data processing

Conclusion

- Full pipeline: from raw pixels to calibrated lightcurves
- Scales well, suitable for spectroscopic ZTF III \rightarrow ~10k SNe
 - Also enables photometric sample processing, i.e. ~40k
 SNe
- 10k low z Ia SNe \rightarrow will be unmatched for years
- Prepares the LSST era

Thank you