Mocks for DESI BGS

Svyatoslav Trusov

3rd year PhD, LPNHE, Sorbonne University supervisor: Pauline Zarrouk

Analysis

Analytic

- + Cheap computationally
- + Precise
- + Have super-sampling covariance
- Not clear how to implement systematics
- Unresolved small scales

Analytic

- + Cheap computationally
- + Precise
- + Have super-sampling covariance
- Not clear how to implement systematics
- Unresolved small scales

Internal (Jackknife, bootstrap)

- + Cheap computationally
- + Resolve well small scales
- + Allow a natural implementation of observational effects
- Extremely unprecise
- Feature non-trivial biases, which depend on density and survey size
- Fundamentally lacks super-sampling covariance

Analytic

- + Cheap computationally
- + Precise
- + Have super-sampling covariance
- Not clear how to implement systematics
- Unresolved small scales

Simulation-based

- + Resolve well small scales
- + Allow a natural implementation of observational effects
- + Have super-sampling covariance
- Very expensive computationally

Internal (Jackknife, bootstrap)

- + Cheap computationally
- + Resolve well small scales
- + Allow a natural implementation of observational effects
- Extremely unprecise
- Feature non-trivial biases, which depend on density and survey size
- Fundamentally lacks super-sampling covariance

Analytic

- + Cheap computationally
- + Precise
- + Have super-sampling covariance
- Not clear how to implement systematics
- Unresolved small scales

Simulation-based

- + Resolve well small scales
- Allow a natural implementation of observational effects
- + Have super-sampling covariance
- Very expensive computationally

Internal (Jackknife, bootstrap)

- + Cheap computationally
- + Resolve well small scales
- + Allow a natural implementation of observational effects
- Extremely unprecise
- Feature non-trivial biases, which depend on density and survey size
- Fundamentally lacks super-sampling covariance

extra (if time left)

Hybrid approach: fitted covariance ?

Bright Galaxy Survey and why it is difficult to simulate

Bright Galaxy Survey and why it is difficult to simulate

Compromises are needed

Make a cut on the BGS to reduce the number density (and statistics)

VS

Reduce the simulated volume size

Make a cut on the BGS to reduce the number density (and statistics)

VS

- Current baseline approach
- Lowers number density to 5x10⁻⁴ with a magnitude cut
- Allows for creation of the EZmock and much faster analysis
- Disables possibility of analysis beyond standard

Reduce the simulated volume size (need to use replications)

- Instead of the required volume the simulation features only a part of it, which is later replicated
- Allows for alternative types of analysis (Multitracer, Density split)
- Mocks take much longer to produce

Make a cut on the BGS to reduce the number density (and statistics)

- Current baseline approach
- Lowers number density to 5x10⁻⁴ with a magnitude cut
- Allows for creation of the EZmock and much faster analysis
- Disables possibility of analysis beyond standard

EZmock BGS

VS

Reduce the simulated volume size (need to use replications)

- Instead of the required volume the simulation features only a part of it, which is later replicated
- Allows for alternative types of analysis (Multitracer, Density split)
- Mocks take much longer to produce

GLAM BGS

BGS Y1 EZmock

EZ mocks

BGS GLAM mocks

+High resolution N-body based + HOD-based population + GLAM halo Halo Catalogs +Quantities like magnitudes and colors present **GLAM** boxes lightcone Small box size (500 Mpc/h) -E1: 500 Mpc/h z1, z2, z3, z4... Computationally expensive Add tracers to Add galaxy properties **BGS-GLAM** GLAM halo Colors lightcones lightcones Apparent magnitudes More information can be Uchuu-DESI HOD Uchuu: reference found in Klypin, Prada as a function of K-correction (currently (2018): N-body simulation redshift and absolute from GAMA) 10.1093/mnras/sty1340 (Prada et al. 2023) magnitude (only one is available)

GLAM mocks

Features of the GLAM-BGS lightcones:

- 1) Based on GLAM E1
- 2) Clustering evolution is present
- Color, absolute and apparent magnitudes, other properties are present
- 4) Lightcone represents BGS up to mag < 20.0

BGS Y1 lightcone clustering

BGS Y1 sample

z = [0.1-0.4]

Apparent magnitude cut: r < 19.5

Absolute magnitude cut: Mr < -21.5

BGS Y1 lightcone/cutsky covariances

Current progress:

1000 EZmock BGS mocks

200 GLAM BGS mocks (800 more needed)

Because of the box size that implies replication, some rescaling of the covariance is needed. (More details on demand)

Fit covariance: Hybrid approach

Using resampling of several mocks and a correction factor that is fitted on this reduced set of mocks, it is possible to drastically reduce the number of simulations needed for a proper covariance estimation, by a factor of ~20-30. More on that: Trusov et. al. (2023) <a href="https://www.arxiv.exa/arxiv.e

Current status of the mock production

- 1) Version 1 of EZmock BGS is ready: 1000 mocks produced
- 2) Version 2 of EZmock BGS with fixed velocities (bug in the reference BGS Abacus mocks) is in the production
- 3) GLAM mocks: 200 ready, 800 more in production

Further plans

- 1) Finish the production of version 2 EZmocks and compare with other methods
- 2) Finish the production of GLAM mocks and test GLAM covariance matrix
- 3) Add systematics to the mocks and verify their impact
- 4) Perform cosmological analysis using BGS Y1 mocks

Thank you!

Scaling of covariance matrix

See dotted curves which were rescaled to 4 Gpc^3 volume from green and red curves. Note: those are NOT fits.

Cone depth = 2 Gpc

1 Gpc 1 Gpc

Slide from A.Klypin

What is the difference of sqrt(Cov(s,s)) for 1 Gpc box and 1 Gpcdeep cone (no replications) and 2 Gpc-deep cone with 8 replications? (green and blue curves). From the plot the ratio is about 1.4. How we estimate it from geometry?

Volume of 2 Gpc cone is 4pi/3, but independent pairs are coming only from 1 Gpc cube. Volume of 1 Gpc-deep cone is pi/6. The sqrt(ratio of volumes) = sqrt(6/pi) = 1.38.

Box covariances

