

Numerical investigation of screened scalar-tensor theories in space-based experiments

Hugo Lévy, Joël Bergé, Jean-Philippe Uzan

Colloque national Action Dark Energy 2023 - 7ème édition, Annecy

Based on arxiv 2209.07226 & 2310.03769

Scalar-Tensor theories

Scalar field in the gravitational sector

- 1. The dark sector [1]
 - Dark Matter
 - Dark Energy
 - + inflation paradigm

- 2. A 'true' scalar field exists in nature
 - Discovery of the Higgs boson in 2012

3. More fundamental theories

- String theory as an effective 4dimensional theory [1]
- f(R)-theories \equiv scalar-tensor [2]

[1] A. Joyce et al, arXiv:1407.0059

Scalar field in the gravitational sector

1. The dark sector [1]

- Dark Matter
- Dark Energy
- + inflation paradigm

- 2. A 'true' scalar field exists in nature
 - Discovery of the Higgs boson in 2012

3. More fundamental theories

- String theory as an effective 4dimensional theory [1]
- f(R)-theories \equiv scalar-tensor [2]

[1] A. Joyce et al, arXiv:1407.0059

Solar System Tests

Astrophysical Tests

Galaxy rotation curves [7]

Length scales

Solar System Tests

Length scales

Scalar fields playing *hide-and-seek*

Review of the most popular screening mechanisms [2]			
Classification	Type of Equation	Rule of Thumb	
 Weak coupling Symmetron Damour-Polyakov Large mass Chameleon 	$\Box \phi = \frac{\mathrm{d}V_{\mathrm{eff}}}{\mathrm{d}\phi}$	Occurs in regions of high Newtonian potential	
Large inertiaK-Mouflage	$\Box \phi + A_1 \partial_\mu \left[(\partial \phi)^2 \partial^\mu \phi \right] + A_2 T = 0$	Occurs in regions where the gravitational acceleration is large	
Vainshtein	$6\Box\phi + B_1 \left[(\Box\phi)^2 - (\partial_\mu\partial_\nu\phi)^2 \right] = B_2 T^{\mu}_{\ \mu}$	Occurs in regions where spatial curvature is large	

Take-home messages:

- Different mechanisms to 'screen' scalar fields from local tests of gravity (i.e. recover GR at Solar System scales)
- At the equation level, screening \equiv non-linearity

^[2] A. Joyce et al, Beyond the Cosmological Standard Model, arXiv:1407.0059

Scalar fields playing *hide-and-seek*

Review of the most popular screening mechanisms [2]			
Classification	Type of Equation	Rule of Thumb	
 Weak coupling Symmetron Damour-Polyakov Large mass Chameleon 	$\Box \phi = rac{\mathrm{d} V_{\mathrm{eff}}}{\mathrm{d} \phi}$ Non-linear Klein-Gordon equation	Occurs in regions of high Newtonian potential	
Large inertiaK-Mouflage	$\Box \phi + A_1 \partial_\mu \left[(\partial \phi)^2 \partial^\mu \phi \right] + A_2 T = 0$	Occurs in regions where the gravitational acceleration is large	
• Vainshtein	$6\Box\phi + B_1\left[(\Box\phi)^2 - (\partial_\mu\partial_\nu\phi)^2\right] = B_2T^{\mu}_{\ \mu}$	Occurs in regions where spatial curvature is large	

Take-home messages:

- Different mechanisms to 'screen' scalar fields from local tests of gravity (i.e. recover GR at Solar System scales)
- At the equation level, screening \equiv non-linearity

^[2] A. Joyce et al, Beyond the Cosmological Standard Model, arXiv:1407.0059

Numerical considerations arxiv:2209.07226

Chameleon field equation

Field equation (in the Newtonian limit)	5 th force
$\Delta \phi = \frac{\beta}{M_{Pl}} \rho - n \frac{\Lambda^{n+4}}{\phi^{n+1}}$	$\vec{F}_{\phi} = -m \frac{\beta}{M_{Pl}} \nabla \phi$
Free parameters: β , n , Λ Mass distribution: $\rho = \rho(\mathbf{x}, t)$ Unknown: $\phi = \phi(\mathbf{x}, t)$	Point-mass follows geodesics of the Jordan frame metric ≠ Einstein frame geodesics

Chameleon field equation

Field equation (in the Newtonian limit)	5 th force	
$\Delta \phi = \frac{\beta}{M_{Pl}} \rho - n \frac{\Lambda^{n+4}}{\phi^{n+1}}$	$\vec{F}_{\phi} = -m \frac{\beta}{M_{Pl}} \nabla \phi$	
Free parameters: β , n , Λ Mass distribution: $\rho = \rho(\mathbf{x}, t)$ Unknown: $\phi = \phi(\mathbf{x}, t)$	Point-mass follows geodesics of the Jordan frame metric ≠ Einstein frame geodesics	

Geometry can be quite complex!

Finite Element Method can deal with complex geometries

[2] A. Upadhye, Dark energy fifth forces in torsion pendulum experiments, arXiv:1209.0211

Chameleon field equation

Field equation (in the Newtonian limit)	5 th force
$\Delta \phi = \frac{\beta}{M_{Pl}} \rho - n \frac{\Lambda^{n+4}}{\phi^{n+1}}$	$\vec{F}_{\phi} = -m \frac{\beta}{M_{Pl}} \nabla \phi$
Free parameters: β , n , Λ Mass distribution: $\rho = \rho(\mathbf{x}, t)$ Unknown: $\phi = \phi(\mathbf{x}, t)$	Point-mass follows geodesics of the Jordan frame metric ≠ Einstein frame geodesics

Boundary conditions? $\begin{cases} \alpha \Delta \phi = \rho - \phi^{-(n+1)} \\ \phi(\mathbf{x}) \xrightarrow{\longrightarrow} \phi_{\text{vac}} \\ \|\mathbf{x}\| \to +\infty \end{cases}$ "well-posed problem "

 S_{2}

Not possible to mesh a domain of infinite spatial extent...

Let's compactify* space!

*(i.e. apply a global coordinate transform that will map the whole plane to a bounded domain)

Not possible to mesh a domain of infinite spatial extent...

 $\mathcal{T} \colon \mathbb{R}^2 \to \mathbb{R}^2$ $\mathbf{x} = (x, y) \mapsto \frac{R_{\text{cut}}}{1 + \|\mathbf{x}\|} (x, y)$

One idea among (many) others! Caveat: Applying such coordinate transforms leads to unbounded coefficients in the resulting PDE (weight regularisation technique arxiv:2209.07226)

Inspired by Grosch and Orszag (1977) Zenginoglu (2011) Chernogorova et al. (2016) Boulmezaoud (2005)

Study Scripts (from femtoscope import ...)

- Custom nonlinear solver with line-search
- Implementation of 3 techniques to handle asymptotic boundary conditions
- \bullet 1D, 2D and 3D Finite Element Method

Programming (low level code)

femtoscope

• Poisson *Class*

 $(+ analytical \ {\it C} semi-analytical solutions available})$

- Chameleon *Class*
 - (+ few analytical approximations)

Application to space geodesy* arxiv:2310.03769

All computations are performed with

*Space geodesy is a scientific discipline that involves precise measurements and analysis of the Earth's shape, gravitational field, and the dynamic behavior of its surface using satellite-based technologies.

Motivations

- A satellite in orbit is subject to both **Newtonian** attraction and fifth force
- Strong **impact of the local landform** on the scalar field in the **screened regime**
- Mountain ≡ deviation from spherical symmetry
 + analogy with the 'lightning-rod effect' in chameleon and symmetron models [10]
- Can a satellite flying over a mountain distinguish between Newtonian gravity and chameleon gravity?

[10] K. Jones-Smith and F. Ferrer, *Detecting Chameleon Dark Energy via an Electrostatic Analogy*, Phys. Rev. Lett. 108, 221101 – Published 29 May 2012

Screened Earth

Testing screened scalar-tensor models with mountains (?!)

_44

Credit: Guilhem Vellut This file is licensed under the Creative Commons Attribution 2.0 Generic license.

Credit: NASA/JPL-Caltech

Credit: NASA/JPL-Caltech

C MA

Laser Ranging Interferometry: precision of **few tenths of microns**

220 km

That's ~10⁻¹⁰ km!!!

 $t = t_1$

$d(t_1) > d(t_0)$

$d(t_2) < d(t_1)$

Interpreting the measurement in the framework of Newtonian gravity gives us a gravity map

The anomaly is well within the range of GRACE-FO precision!

 $\mathcal{O}(1cm) \gg \mathcal{O}(10^{-5}cm)$

Sources of degeneracy

 $x_{sat}(t_0) = x_0[1 + \delta_x]$

<u>Questions</u>

 $\rho(\mathbf{x}) = \rho_0 [1 + \delta_\rho(\mathbf{x})]$

Is it possible to absorb the chameleon anomaly in

- a small uncertainty in the satellite's initial state vector δ_x ?
- a slight variation in the {Earth + Mountain} density δ_{ρ} ? (in the framework of Newtonian gravity)

Sources of degeneracy

Questions

 $\rho(\mathbf{x}) = \rho_0 [1 + \delta_\rho(\mathbf{x})]$

Is it possible to absorb the chameleon anomaly in

a small uncertainty in the satellite's initial state vector δ_x ?

• a slight variation in the {Earth + Mountain} density δ_{ρ} ? (in the framework of Newtonian gravity) 17

Modified Gravity

(Newtonian + chameleon accelerations)

Newtonian Gravity with extra point-mass

VS

Modified Gravity Newtonian Gravity VS (Newtonian + chameleon accelerations) with extra point-mass Point of mass m_* at coordinate z_*

= 0,001% the mass of the initial mountain

How to lift the degeneracy?

Perform the experiment at different altitudes

 h_2

Idea:

How to lift the degeneracy?

Tensions come in...

Tensions come in...

The greater the tension, the tighter the potential constraints on the modified gravity model at stake

Conclusion

- *femtoscope*: solve semi-linear elliptic PDE using the Finite Element Method on unbounded domains (general purpose code)
- Application to scalar-tensor theories of gravity:

 $\begin{array}{l} \text{Linear Poisson} \\ \text{equation} \end{array} \begin{cases} \Delta \Phi = 4\pi G \rho(\mathbf{x}) \\ \Phi(\mathbf{x}) \xrightarrow{} 0 \\ \|\mathbf{x}\| \rightarrow +\infty \end{cases}$

Nonlinear Klein-Gordon equation $\begin{cases} \Delta \phi = \mathrm{d}V_{\mathrm{eff}}/\mathrm{d}\phi \\ \phi(\mathbf{x}) \xrightarrow{} \phi \\ \|\mathbf{x}\| \to +\infty \end{cases}$

 $\mathbf{a} \sim - \mathbf{\nabla} (\Phi + \phi)$

Gravitational Acceleration

- Application to space geodesy: focus on the GRACE-FO configuration
- Can we detect / put constraints on the chameleon model in this context?

With little to **no** uncertainties

Competitive constraints can be derived

• In comparison, lab experiments offer a more controlled environment

Mass distribution Satellite state inside the Earth

Dramatically improve our knowledge of the Earth density (unlikely)

With uncertainties

vector

Use \neq altitudes (taking advantage of the fact • that $a_{\phi} \propto 1/r^2$)

hugo.levy@onera.fr

- Application to space geodesy: focus on the GRACE-FO configuration
- Can we detect / put constraints on the chameleon model in this context?

With little to **no** With uncertainties uncertainties Mass distribution Satellite state inside the Earth vector Competitive constraints can be derived Dramatically improve our knowledge of the Earth density (unlikely) Use \neq altitudes (taking advantage of the fact • that $a_{\phi} \propto 1/r^2$) • In comparison, lab experiments offer a more controlled environment Thanks for your attention!

hugo.levy@onera.fr

References

- [1] A. Joyce et al, *Beyond the Cosmological Standard Model*, Physics Reports, Vol. 568, 22 March 2015, p. 1-98
- [2] J. Velásquez and L. Castañeda, *Equivalence between Scalar-Tensor theories and f(R)-gravity: From the action to Cosmological Perturbations*, Journal of Physics Communications, May 2020
- [3] B. Elder et al, *Chameleon dark energy and atom interferometry*, Phys. Rev. D, August 2016
- [4] A. Upadhye, Dark energy fifth forces in torsion pendulum experiments, Phys. Rev. D, November 2012
- [5] A. Almasi et al, *Force sensor for chameleon and Casimir force experiments with parallel-plate configuration*, Phys. Rev. D, May 2015
- [6] P. Touboul et al (MICROSCOPE Collaboration), Phys. Rev. Lett. 129, 121102 – Published 14 September 2022
- [7] V. Vikram et al, *Astrophysical tests of modified gravity: Stellar and gaseous rotation curves in dwarf galaxies*, Phys. Rev. D, May 2018
- [8] H. Wilcox et al, *Simulation tests of galaxy cluster constraints on chameleon gravity*, MNRAS, October 2016
- [9] A. Upadhye, J. H. Steffen, *Monopole radiation in modified gravity*, arXiv:1306.6113 [astro-ph.CO], June 2013
- [10] K. Jones-Smith and F. Ferrer, *Detecting Chameleon Dark Energy via an Electrostatic Analogy*, Phys. Rev. Lett. 108, 221101 Published 29 May 2012

Backup Slides

Tensions come in...

$\begin{bmatrix} \text{Find } \boldsymbol{u} : \Omega \to \mathbb{R} \\ \end{bmatrix} \begin{cases} -\Delta \boldsymbol{u} &= f \text{ in } \Omega \\ \boldsymbol{u} &= 0 \text{ on } \Gamma \coloneqq \partial \Omega \end{cases}$ (1)

Find
$$\boldsymbol{u}: \Omega \to \mathbb{R}$$

$$\begin{cases} -\Delta \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega & (1) \\ \boldsymbol{u} = \boldsymbol{0} & \text{on } \Gamma \coloneqq \partial \Omega \end{cases}$$

FEM Recipe

- 1. Multiply Eq. (1) by a test function v
- 2. Integrate over Ω
- 3. Perform an integration by parts

 Find $\boldsymbol{u}: \Omega \to \mathbb{R}$ $\begin{cases} -\Delta \boldsymbol{u} &= \boldsymbol{f} & \text{in } \Omega \\ \boldsymbol{u} &= \boldsymbol{0} & \text{on } \Gamma \coloneqq \partial \Omega \end{cases}$

Find $\boldsymbol{u} \in V \coloneqq H_0^1(\Omega) \quad \forall \boldsymbol{v} \in V, \ \underbrace{\int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{v} \, \mathrm{d} \boldsymbol{x}}_{a(\boldsymbol{u},\boldsymbol{v})} = \underbrace{\int_{\Omega} \boldsymbol{f} \boldsymbol{v} \, \mathrm{d} \boldsymbol{x}}_{l(\boldsymbol{v})}$

Find
$$\boldsymbol{u}: \Omega \to \mathbb{R}$$

$$\begin{cases} -\Delta \boldsymbol{u} &= \boldsymbol{f} \quad \text{in } \Omega \\ \boldsymbol{u} &= \boldsymbol{0} \quad \text{on } \Gamma \coloneqq \partial \Omega \end{cases}$$

Find
$$\mathbf{u} \in V \coloneqq H_0^1(\Omega) \quad \forall v \in V, \ \underbrace{\int_{\Omega} \nabla \mathbf{u} \cdot \nabla v \, \mathrm{d}x}_{a(\mathbf{u},v)} = \underbrace{\int_{\Omega} \mathbf{f} v \, \mathrm{d}x}_{l(v)}$$

4. Look for *u* in a finite-dimensional subspace $V^h \subset V$ (e.g. space of piecewise polynomial functions)

The landscape of basis functions

How to lift the degeneracy?

Measuring gravitational redshift using clocks [under investigation]

Idea n°2

Chameleon constraints from MICROSCOPE

M. Pernot-Borràs et al. (2019)

Chameleon constraints from MICROSCOPE

MICROSCOPE can do:

- weak equivalence principle [state of the art]
- generic long-range Yukawa 5th-force [state of the art]
- light dilaton [competitive]
- Lorentz invariance [state of the art]

MICROSCOPE cannot do: (*) • generic short-range Yukawa 5th-force [not competitive] • chameleon 5th-force [not competitive]

MICROSCOPE was not designed for testing shortranged modified gravity theories. Recent work challenges the claim on the ability of space experiments to detect chameleon-sourced violations of the WEP sourced by the Earth [2, 3].

Convergence Analysis (FEM)

Implemented techniques

- Compactification : $\Omega \rightarrow \widetilde{\Omega}$ (global coordinate transform) + BC applied at the boundary of the compactified domain.
- "Connected": domain splitting $\overline{\Omega} = \overline{\Omega}_{int} \cup \overline{\Omega}_{ext}$ and Kelvin inversion $\Omega_{ext} \to \widetilde{\Omega}_{ext}$ + identification of the boundary DOFs $\partial \Omega_{int} \equiv \partial \widetilde{\Omega}_{ext}$.
- "ping-pong": domain splitting $\overline{\Omega} = \overline{\Omega}_{int} \cup \overline{\Omega}_{ext}$ and Kelvin inversion $\Omega_{ext} \rightarrow \widetilde{\Omega}_{ext}$ + iterative method with DtN / NtD transmission conditions at the boundary

Convergence Analysis (FEM)

Building blocks of Scalar-Tensor theories

Einstein-Hilbert action in General Relativity

$$S_{EH} = \frac{M_{Pl}^2}{2} \int d^4x \, \sqrt{-g} \, R + \int d^4x \, \sqrt{-g} \, L_m \Big(g_{\mu\nu}, \psi_m^{(i)} \Big)$$

Building blocks of Scalar-Tensor theories

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right] + \int d^4x \sqrt{-\tilde{g}} L_m \left(\Omega^2(\phi) g_{\mu\nu}, \psi_m^{(i)} \right)$$

Modified Gravity geodesics

$$u^{\mu}\nabla_{\mu}u^{\rho} = -\frac{\partial\ln\Omega}{\partial\phi}\bot^{\mu\rho}\partial_{\mu}\phi$$

