Dark energy and string theory: an update

David Andriot

LAPTh, CNRS, Annecy, France

2201.04152, 2204.05327 (with L. Horer, P. Marconnet) 2209.08015 (with P. Marconnet, M. Rajaguru, T. Wrase) 2309.03938 (with D. Tsimpis, T. Wrase)

Colloque national Action Dark Energy 2023 - 7ème édition

07/11/23 - Annecy, France

 \longrightarrow What is the energy responsible for this acceleration? \longrightarrow **Dark energy**

Nature is unknown / not understood

(early universe: possible phase of accelerated expansion: inflation \longrightarrow similar question)

 \longrightarrow What is the energy responsible for this acceleration? \longrightarrow **Dark energy**

Nature is unknown / not understood \longrightarrow string theorists very interested (and challenged) these days! (early universe: possible phase of accelerated expansion: inflation \longrightarrow similar question)

 \longrightarrow What is the energy responsible for this acceleration? \longrightarrow **Dark energy**

Nature is unknown / not understood \longrightarrow string theorists very interested (and challenged) these days! (early universe: possible phase of accelerated expansion: inflation \longrightarrow similar question)

Cosmological model to describe dark energy: with a scalar potential V > 0

 \rightarrow 4d theory of scalar fields φ^i minimally coupled to gravity:

$$\int \mathrm{d}^4 x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$$

 \longrightarrow What is the energy responsible for this acceleration? \longrightarrow **Dark energy**

Nature is unknown / not understood \longrightarrow string theorists very interested (and challenged) these days! (early universe: possible phase of accelerated expansion: inflation \longrightarrow similar question)

Cosmological model to describe dark energy: with a scalar potential V > 0

 \rightarrow 4d theory of scalar fields φ^i minimally coupled to gravity:

$$\int \mathrm{d}^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$$

Prime example: cosmological constant $\Lambda = \frac{V}{M_p^2} = \text{constant}$, \checkmark in agreement with current observations \rightarrow several ways to have an (almost) constant V

almost flat, plateau V

critical point, de Sitter solution $V' \equiv \partial_{\varphi} V = 0$ From string theory, we **easily** get $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

 \longrightarrow V due to compact extra dimensions and physical content \longrightarrow origin to Dark energy

From string theory, we **easily** get $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

 \longrightarrow V due to compact extra dimensions and physical content \longrightarrow origin to Dark energy

Challenge is V > 0 with the right shape for V: difficult!

Challenge is V > 0 with the right shape for V: difficult!

- (Classical) **de Sitter solutions**
 - → **Difficult** to get positive **cosmo. constant**!

Challenge is V > 0 with the right shape for V: difficult!

- (Classical) de Sitter solutions
 - → **Difficult** to get positive **cosmo. constant**!
- Rolling fields: slope of V (how flat/steep?) or rather ratio $\frac{|V'|}{V}$ (+ in the asymptotics)

Challenge is V > 0 with the right shape for V: difficult!

- (Classical) de Sitter solutions
 - → **Difficult** to get positive **cosmo. constant**!
- **Rolling fields**: slope of V (how flat/steep?) or rather ratio $\frac{|V'|}{V}$ (+ in the **asymptotics**)
 - \longrightarrow **Difficult** to get small $\frac{|V'|}{V}$ or ϵ_V (slow-roll)
 - → (multifield) inflation / quintessence?
 - → study **transient** scenarios?

Challenge is V > 0 with the right shape for V: difficult!

- (Classical) **de Sitter solutions**
 - → **Difficult** to get positive **cosmo. constant**!
- Rolling fields: slope of V (how flat/steep?) or rather ratio $\frac{|V'|}{V}$ (+ in the asymptotics)
 - \longrightarrow **Difficult** to get small $\frac{|V'|}{V}$ or ϵ_V (slow-roll)
 - → (multifield) inflation / quintessence?
 - → study **transient** scenarios?
- Acceleration and high $\frac{|V'|}{V}$ in asymptotics \checkmark with space curvature (open universe k = -1)

De Sitter solutions/critical points of V? \longrightarrow which regime of string theory?

KKLT, LVS

Classical

De Sitter solutions/critical points of V? \longrightarrow which regime of string theory?

KKLT, LVS: include (non)-perturbative contributions

Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 debate on validity of approximations/regimes/control Recently discussed LVS example: C. Crinò, F. Quevedo, R. Valandro '20 (see also Junghans '22

Bento et al '23)

Classical

De Sitter solutions/critical points of V? \rightarrow which regime of string theory?

KKLT, LVS: include (non)-perturbative contributions

Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control

Recently discussed LVS example: C. Crinò, F. Quevedo, R. Valandro '20 (see also Junghans '22 Bento et al '23)

Classical de Sitter string backgrounds?

Andriot '19

1. Low energy, perturbative approx. of string theory \longrightarrow use 10d supergravity (and 4d effective theory)

find solution in 10d supergravity: candidate solution

recent progress, many found (IIA/B), **database**: $dS_4 \times 6d$ group manifold

2.

De Sitter solutions/critical points of V? \longrightarrow which regime of string theory?

KKLT, LVS: include (non)-perturbative contributions

Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05
→ debate on validity of approximations/regimes/control
Recently discussed LVS example: C. Crinò, F. Quevedo, R. Valandro '20 (see also Junghans '22)

Bento et al '23)

Classical de Sitter string backgrounds? Andriot '19

1. Low energy, perturbative approx. of string theory \longrightarrow use 10d supergravity (and 4d effective theory)

find solution in 10d supergravity: candidate solution

 \longrightarrow recent progress, many found (IIA/B), **database**: dS₄ × 6d group manifold

2. verify that solution obeys class. approx.: $g_s \sim e^{\phi} < 1, r > l_s, ...$ Difficult to check typically not well realised / boundary of validity / grey zone

De Sitter solutions/critical points of V? \longrightarrow which regime of string theory?

KKLT, LVS: include (non)-perturbative contributions

Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05
→ debate on validity of approximations/regimes/control
Recently discussed LVS example: C. Crinò, F. Quevedo, R. Valandro '20 (see also Junghans '22)

Classical de Sitter string backgrounds? Andriot '19

1. Low energy, perturbative approx. of string theory \longrightarrow use 10d supergravity (and 4d effective theory)

find solution in 10d supergravity: candidate solution

 \longrightarrow recent progress, many found (IIA/B), **database**: dS₄ × 6d group manifold

2. verify that solution obeys class. approx.: $g_s \sim e^{\phi} < 1$, $r > l_s$, ... Difficult to check typically not well realised / boundary of validity / grey zone

→ No known good (classical) de Sitter solution!

Bento et al '23)

From 10d supergravity solution (database IIA/B) $dS_4 \times 6d$ group manifold \rightarrow dimensional reduction / consistent truncation to 4d theory with V Automatized into code MSSV.nb : 10d solutions $\rightarrow g_{ij}(\varphi^k), V(\varphi^k)$

Andriot, Marconnet, Rajaguru, Wrase '22

From 10d supergravity solution (database IIA/B) $dS_4 \times 6d$ group manifold \longrightarrow dimensional reduction / consistent truncation to 4d theory with V Automatized into code MSSV.nb : 10d solutions $\longrightarrow g_{ij}(\varphi^k), V(\varphi^k)$

Ex.: m_{5577}^+4 (2 O_5 , 2 O_7)

Andriot, Marconnet, Rajaguru, Wrase '22

From 10d supergravity solution (database IIA/B) $dS_4 \times 6d$ group manifold \longrightarrow dimensional reduction / consistent truncation to 4d theory with V Automatized into code MSSV.nb : 10d solutions $\longrightarrow g_{ij}(\varphi^k), V(\varphi^k)$

Ex.: m_{5577}^+4 (2 O_5 , 2 O_7)

A whole region (towards asymptotics) where classical regime / **trustable** V

 \longrightarrow of interest to further applications

Andriot, Marconnet, Rajaguru, Wrase '22

II. Rolling fields and asymptotic slopes

We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$

Cosmology with potential slopes and rolling fields: inflation, quintessence

Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much? We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$

Cosmology with potential slopes and rolling fields: inflation, quintessence

Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much?

De Sitter swampland conjecture: $c \sim O(1)$ Obied, Ooguri, Spodyneiko, Vafa '18

 \rightarrow no way to realise slow-roll single-field inflation: reminder: $\epsilon_V \approx 0.001$ Planck '18

We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2}\mathcal{R}_4 - \frac{1}{2}g_{ij}\partial_\mu\varphi^i\partial^\mu\varphi^j - V\right)$

If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$

Cosmology with potential slopes and rolling fields: inflation, quintessence

Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much?

De Sitter swampland conjecture: $c \sim O(1)$ Obied, Ooguri, Spodyneiko, Vafa '18

 \rightarrow no way to realise slow-roll single-field inflation: reminder: $\epsilon_V \approx 0.001$ Planck '18 Discussions, refinements: this cannot be true everywhere in field space \rightarrow only true in the **asymptotics** of field space: $\varphi \rightarrow \infty$

Trans-Planckian Censorship ConjectureBedroya, Vafa '19(TCC): $\varphi \rightarrow \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$

We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$

Cosmology with potential slopes and rolling fields: inflation, quintessence

Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much?

De Sitter swampland conjecture: $c \sim O(1)$ Obied, Ooguri, Spodyneiko, Vafa '18

→ no way to realise slow-roll single-field inflation: reminder: $\epsilon_V \approx 0.001$ Planck '18 Discussions, refinements: this cannot be true everywhere in field space → only true in the **asymptotics** of field space: $\varphi \rightarrow \infty$

 $V(\varphi)$

Trans-Planckian Censorship Conjecture Bedroya, Vafa '19 (TCC): $\varphi \to \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ $V \sim V_0 \ e^{-\gamma \varphi}, \ |V'|/V = \gamma$ 4d multifield: Strong de Sitter conjecture (asymptotics in field and time): $\frac{\nabla V}{V} \ge \sqrt{2}$ Rudelius '21, '22 No known counter example from string models potentials

→ Cosmology in the asymptotics of field space?

4d multifield: Strong de Sitter conjecture (asymptotics in field and time): $\frac{\nabla V}{V} \ge \sqrt{2}$ Rudelius '21, '22 No known counter example from string models potentials

→ Cosmology in the asymptotics of field space?

 $V \sim V_0 e^{-\gamma \varphi}$, Observational bounds on **exponential rate** γ (for quintessence)? $\gamma \leq 0.6$ Agrawal, Obied, Steinhardt, Vafa '18

 \rightarrow Tight!

4d multifield: Strong de Sitter conjecture (asymptotics in field and time): $\frac{\nabla V}{V} \ge \sqrt{2}$ Rudelius '21, '22 No known counter example from string models potentials

→ Cosmology in the asymptotics of field space?

 $V \sim V_0 e^{-\gamma \varphi}$, Observational bounds on **exponential rate** γ (for quintessence)? $\gamma \leq 0.6$ Agrawal, Obied, Steinhardt, Vafa '18

 \rightarrow Tight!

More dramatic: theoretical bound on **asymptotic accelerated expansion**: $\gamma \leq \sqrt{2}$

Halliwell '86, Copeland, Liddle, Wands '97 Shiu, Tonioni, Tran '23

 \rightarrow explain and extend this

Take FLRW metric with arbitrary space curvature, $k = 0, \pm 1$

(observations: very small Ω_k , compatible with k = 0 or diluted (expansion) $k \neq 0$)

Write down 3 equations of motion

→ can be rewritten as a dynamical system → study the fixed points → relevant for asymptotics!!

Andriot, Tsimpis, Wrase, '23

Take FLRW metric with arbitrary space curvature, $k = 0, \pm 1$

(observations: very small Ω_k , compatible with k = 0 or diluted (expansion) $k \neq 0$)

Write down 3 equations of motion

 \rightarrow can be rewritten as a dynamical system \rightarrow study the fixed points \rightarrow relevant for asymptotics!!

k = 0 : find fixed point P_2 Allows for acceleration: $\ddot{a} > 0 \Leftrightarrow \gamma < \sqrt{2}$ (also bound for P_2 stable/attractive)

---- Conflict with strong de Sitter conjecture and string models

Andriot, Tsimpis, Wrase, '23

Take FLRW metric with arbitrary space curvature, $k = 0, \pm 1$

(observations: very small Ω_k , compatible with k = 0 or diluted (expansion) $k \neq 0$)

Write down 3 equations of motion

 \rightarrow can be rewritten as a dynamical system \rightarrow study the fixed points \rightarrow relevant for asymptotics!!

k = 0 : find fixed point P_2 Allows for acceleration: $\ddot{a} > 0 \Leftrightarrow \gamma < \sqrt{2}$ (also bound for P_2 stable/attractive)

→ Conflict with strong de Sitter conjecture and string models

 $k = \pm 1$: a new fixed point P_1 Existence: $k = -1 \Leftrightarrow \gamma > \sqrt{2}$ (stable/attractive !)

 \rightarrow Useful to string models?

Andriot, Tsimpis, Wrase, '23

Take FLRW metric with arbitrary space curvature, $k = 0, \pm 1$

(observations: very small Ω_k , compatible with k = 0 or diluted (expansion) $k \neq 0$)

Write down 3 equations of motion

 \rightarrow can be rewritten as a dynamical system \rightarrow study the fixed points \rightarrow relevant for asymptotics!!

k = 0 : find fixed point P_2 Allows for acceleration: $\ddot{a} > 0 \iff \gamma < \sqrt{2}$ (also bound for P_2 stable/attractive)

→ Conflict with strong de Sitter conjecture and string models

 $k = \pm 1$: a new fixed point P_1 Existence: $k = -1 \Leftrightarrow \gamma > \sqrt{2}$ (stable/attractive !)

 \rightarrow Useful to string models?

Acceleration at P_1 : no! $\ddot{a} = 0$ But solutions in its vicinity exhibit (eternal) acceleration! \rightarrow « asymptotic acceleration »!

Cosmological solutions asymptoting to P_1

Phase space
$$(x, y) = \left(\frac{\dot{\varphi}}{H\sqrt{6}}, \frac{\sqrt{V}}{H\sqrt{3}}\right)$$

Cosmological solutions asymptoting to P_1 Acceleration: eternal, semi-eternal, transient

String theory realisations? $\gamma > \sqrt{2}$ makes it much easier

Consistent truncation from 10d to 4d, giving a single field with exponential potential Field: volume, or volume and dilaton \longrightarrow dynamical compactifications Advantage: no O-plane, no smearing discussion, and classical regime easily reached

Deserves more investigation (other fields?)

String theory realisations? $\gamma > \sqrt{2}$ makes it much easier

Consistent truncation from 10d to 4d, giving a single field with exponential potential Field: volume, or volume and dilaton \longrightarrow dynamical compactifications

Advantage: no O-plane, no smearing discussion, and classical regime easily reached Deserves more investigation (other fields?)

Event horizon, of size $d_e = a(t_i) \int_{t_i}^{\infty} \frac{dt}{a(t)}$ for solutions asymptoting to P_1 Determined by fixed point $P_1 : a(t) \sim t \longrightarrow d_e = \infty$, no horizon

Instead of ``no asymptotic acceleration'' claim (for string theory/quantum gravity), rather ``**no cosmological/event horizon**''...?!

(in particular no pure de Sitter solution)

- De Sitter solutions: difficult to obtain from string theory; no fully controlled example (for now)
- Accelerated expansion via rolling fields: in the asymptotics? Not with k = 0
- Possible / string realized with k = -1; how realistic are the solutions?
- General claim on the absence of cosmological event horizon from string theory?
- Transient scenarios: a lot to explore

- De Sitter solutions: difficult to obtain from string theory; no fully controlled example (for now)
- Accelerated expansion via rolling fields: in the asymptotics? Not with k = 0
- Possible / string realized with k = -1; how realistic are the solutions?
- General claim on the absence of cosmological event horizon from string theory?
- Transient scenarios: a lot to explore

Thank you for your attention!