

Measurement of the small-scale 3D Lyman-α forest power spectrum arXiv: 2310.09116

Marie Lynn Abdul Karim Action Dark Energy - 7th edition 7 November 2023 - Annecy

With Eric Armengaud, Guillaume Mention

DESI tracers of matter: Lyman- α forest

- Tracer of interest: Lyman- α forest (Ly α)
- Best tracer of the matter distribution in the universe at z > 2

- U.S. Department of Energy Office of Science
 - Ly α transition between ground state n=1 and first excited state n=2 of HI ($\lambda_{Ly\alpha} = 1215.17$ Å)
 - Absorption by neutral hydrogen HI at $\lambda_{absorption} = \lambda_{Ly\alpha}(1 + z_{HI})$
 - Measurement along the quasar's line-of-sight (LOS)
 - Ly α forest encodes the density fluctuations of matter $\longrightarrow \delta_F$: density contrast

1D Power Spectrum: first DESI samples

- Cosmological observable: Lyα forest power spectrum at small scales
- P_{1D}: measurement of power spectrum along the quasar's LOS
- Measured P_{1D} for the first DESI Ly α forest sample (EDR) with the Fast Fourier Transform method

SPECTROSCOPIC Cosmological constraints with P_{1D} (eBOSS)

- Fit P_{1D} with a model from hydrodynamical simulations
- Main cosmological observables: (Amplitude, Slope) of the linear matter power spectrum P_L(k) at k_{Lyα} and z_{Lyα} => Constraints on σ₈, n_s See plot (eBOSS P_{1D} in agreement with Planck) => Constraints on neutrino properties: ∑m_v
- Also: DM properties (small scale cut-off in $P_L(k)$)

3D Power Spectrum: Extending P_{1D}

- P_{1D} : Correlating δ_F in independent LOS separately
- P_{3D} : Correlating δ_F across different LOS
- High density of quasars with eBOSS and DESI $\longrightarrow P_{3D}$

$$P_{1D}(z,k_{\parallel}) = \int \frac{d^{2}k_{\perp}}{(2\pi)^{2}} P_{3D}(z,k_{\perp},k_{\parallel}) = \int d^{2}\theta \ e^{i\theta \cdot k_{\perp}} \int d\Delta\lambda \ e^{i\Delta\lambda k_{\parallel}} \ \xi_{3D}(z,\theta,\Delta\lambda)$$

$$IOS \qquad \qquad IOS \qquad IOS \qquad IOS \qquad \qquad IOS \qquad I$$

A fast and simple estimator for P_x and P_{3D}

U.S. Department of Energy Office of Science

• P_x: cross-spectrum, a hybrid quantity between real and Fourier space :

$$egin{aligned} P_{ imes}(z, heta,k_{\parallel}) &\equiv \int d\Delta\lambda \ e^{i\Delta\lambda k_{\parallel}} \ \xi_{3D}(z, heta,\Delta\lambda) \ &= \int rac{d^2k_{\perp}}{(2\pi)^2} \ e^{im{ heta}\cdot\mathbf{k}_{\perp}} \ P_{3D}(z,k_{\perp},k_{\parallel}) \end{aligned}$$

Font-Ribera+ 2018 Lam Hui+ 1998

•
$$\mathsf{P}_{1\mathsf{D}}$$
 is a special case of P_{x} : $P_{1D}(z,k_{\parallel})=P_{ imes}(z, heta=0,k_{\parallel})$

• A fast and simple estimator for $P_x : \delta_{i:LOS}(\lambda) \xrightarrow{FFT} \delta_{i:LOS}(k_{\parallel})$

Computation of angular separation for all possible pairs of LOS ij

Estimator:
$$P_{\times}(\theta, k_{\parallel}) = \left\langle \Re \left(\tilde{\delta}_i(k_{\parallel}) \ \tilde{\delta}_j^*(k_{\parallel}) \right) \right\rangle$$

• The computation of P_x enables P_{3D} inference:

$$P_{
m 3D}(z,k_{\perp},k_{\parallel})=2\pi\int_{0}^{\infty}d heta\,J_{0}(k_{\perp} heta)\, heta\,P_{ imes}(z, heta,k_{\parallel})$$

Validation with hydrodynamical simulations

- Nyx: cosmological simulation code solving the evolution of the baryonic gas coupled to dark matter in the expanding Universe.
- Nyx snapshots at z = 2.0: 1536^3 cells, $150 h^{-1}$ Mpc, $\Delta \lambda = 98 h^{-1}$ kpc
- P_{3D} truth computed using gimlet: FFT 3D of the field

$\frac{\text{DARK ENERGY}}{\text{SPECTROSCOPIC}} \text{ Results with reference, high density and noiseless mock: } P_x(k_{\parallel}, \theta)$

- Reference mock: 10⁴ LOS drawn from Nyx box (very high density) without noise
- Overall power decreasing as function of θ
- Small-scale cut off at lower k_{\parallel} as θ increases

Results with reference, high density and noiseless mock: $P_{3D}(k_{\parallel}, k_{\perp})$

- P_{3D} in cartesian coordinates inferred from P_x with $N_{LOS} = 10^4$: good agreement with truth
- $k_{\perp,max} = 10 \text{ h} Mpc^{-1} \propto 1 / \theta_{min}$

Results with reference, high density and noiseless mock: $P_{3D}(k,\mu)$

10

U.S. Department of Energy Office of Science

• Same measurement but in polar coordinates: $k=\sqrt{k_{\perp}^2+k_{\parallel}^2}, \mu=k_{\parallel}/k$

• Fit:
$$\frac{P_{3\mathrm{D}}(k,\mu)}{P_{\mathrm{L}}(k)} = b^2 \left(1 + \beta \mu^2\right)^2 \exp\left(\left(q_1 \Delta^2(k) + q_2 \Delta^4(k)\right) \left[1 - \left(\frac{k}{k_v}\right)^{a_v} \mu^{b_v}\right] - \left(\frac{k}{k_p}\right)^2\right)$$

Results with realistic mocks

- Low LOS density mock: $N_{LOS} = 500 \sim eBOSS$ pair statistics
- Noisy mock: adding realistic noise with σ_{Δ} = 0.5 for 1 Å (N_{LOS} = 10⁴) ~ eBOSS
- Increase of statistical uncertainties in the measurement

DARK ENERGY SPECTROSCOPIC INSTRUMENT SPECTRA

U.S. Department of Energy Office of Science

- Use public eBOSS DR16Q catalog
- Reprocess Lya forest sample: Select corresponding wavelength ranges (z bins)

- Apply dedicated cuts (SNR, Resolution)

	$\langle \theta \rangle$ (°)	0	0.013	0.03	0.065	0.085	
Pair statistics:	N(z = 2.2)	6848	105	329	342	440	
	N(z=2.4)	3438	28	89	78	104	

• Shuffling (null test): cross-correlate LOS with random angular separations

Proof-of-principle: Application to SDSS quasar spectra

- P_{3D} computed from the statistical combination of $P_x(z = 2.2)$ and $P_x(z = 2.4)$
- For an illustrative purpose: P_{3D} model from Arinyo-i-Prats

Conclusion and prospects

U.S. Department of Energy Office of Science

Summary

- Small-scale correlations of Lya forest are a powerful cosmological tool
- P1D measurement (BOSS/DESI EDR): longitudinal correlations only
- P3D measurement: more challenging, yet to be made
- Fast and simple method to compute P_x and P_{3D}
- Validation on Nyx hydrodynamical simulations
- Proof-of-principle measurement on real data: eBOSS DR16Q

Prospects

- Towards DESI Y1 measurement:
 - Full systematics study on P_{3D} required for DESI ~ expected to be similar to P_{1D}
 - Better pair statistics with DESI Y1
 - Cosmological interpretation

U.S. Department of Energy Office of Science

Thank you !

Acknowledgements to Corentin Ravoux, Solène Chabanier, Zarija Lukić

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy

Quasar spectrum

U.S. Department of Energy Office of Science

• Ly α forest range: 1050 < λ < 1180 Å

$$\delta(\lambda) = \frac{f_q(\lambda)}{\overline{F}(z)C_q(\lambda)} - 1 \quad = \quad \delta(\theta, \lambda) = \frac{F(\theta, \lambda)}{\overline{F}(\lambda)} - 1 \qquad : \text{Represents the fluctuations around}$$
the mean expected flux

U.S. Department of Energy Office of Science

• For real data, noise and resolution effects must be accounted for:

$$P_{ imes, \mathrm{Ly}lpha}(heta, k_{\parallel}) = rac{P_{ imes}(heta, k_{\parallel}) - P_n(heta, k_{\parallel})}{\left\langle \widetilde{W}_i(k_{\parallel}) \, \widetilde{W}_j(k_{\parallel})
ight
angle}$$

• With the assumption of uncorrelated noise between different LOS:

$$P_n(heta, k_{\parallel}) = egin{cases} \langle | ilde{\delta}_{i,n} |^2
angle & ext{if } heta = 0 \ 0 & ext{if } heta > 0 \end{cases}$$

U.S. Department of Energy Office of Science

• The computation of P_x enables P_{3D} inference:

$$P_{
m 3D}(z,k_{\perp},k_{\parallel}) = \int d^2 heta \; e^{ioldsymbol{ heta}\cdotoldsymbol{k}_{\perp}} \; P_{ imes}(z, heta,k_{\parallel})$$

• Moving to cylindrical coordinates, $2D \rightarrow 1D$ integral:

$$P_{
m 3D}(z,k_{ot},k_{ot})=2\pi\int_{0}^{\infty}d heta\,J_{0}(k_{ot} heta)\, heta\,P_{ imes}(z, heta,k_{ot})$$

- Units:
 - Simulations: P_x in $h^{-1} Mpc$ and P_{3D} in $[h^{-1} Mpc]^3$
 - eBOSS: P_x in $km s^{-1}$ and P_{3D} in deg² $km s^{-1}$
 - DESI: P_x in Å and P_{3D} in $deg^2 Å$

P3D computation

U.S. Department of Energy Office of Science

$$P_{\times}(z,\Delta\theta) \equiv \int d\Delta v \ e^{i\Delta v k_{\parallel}} \ \xi_{3D}(z,\Delta\theta,\Delta v) = \int \frac{d\mathbf{k}_{\perp}}{(2\pi^2)} \ e^{i\Delta\theta\mathbf{k}_{\perp}} \ P_{3D}(z,k_{\perp},k_{\parallel})$$

$$P_{3D}(k_{\perp},k_{\parallel}) = 2\pi \int \Delta\theta \ J_0(\Delta\theta k_{\perp}) \ P_{\times}(z,\Delta\theta,k_{\parallel}) \ d\Delta\theta$$

- Choice of k_{\perp} grid
- For each $(k_{\perp}, k_{\parallel})$ bin: interpolate $P_x(\Delta \theta, k_{\parallel})$ with spline
- Integrate interpolated $P_x(\Delta\theta, k_{/\!\!/})$ according to the above equation to get $P_{3D}(k_{\perp}, k_{/\!\!/})$

Validation on Nyx box: LOS drawing

- Draw LOS from box
- Compute the transmitted flux fraction F and mean transmitted flux fraction \overline{F}
- Compute density contrast δ_{F}

Results with reference, high density and noiseless mock: P_x

- Reference mock: 10⁴ LOS drawn from Nyx box (very high density) without noise
- Overall power decreasing as function of θ
- Small-scale cut off at lower k_{\parallel} as θ increases
- The transverse correlations decrease faster as function of θ at larger k_{II}

Application to SDSS quasar spectra

- eBOSS DR16Q: z > 2.1 no BAL no DLA
- Computation of δ_F using the oublicly available pipeline picca
- Two samples:
 - z = 2.2: $(\lambda_{min}, \lambda_{max}) = (3850, 3930)$ Å including 38461 Ly α forests with 89 pixels each, spanning a comoving distance of ~ 59 h^{-1} Mpc
 - z = 2.4: $(\lambda_{min}, \lambda_{max}) = (4056, 4210) \text{ Å}$ including 18653 Ly α forests with 162 pixels each, spanning a comoving distance of ~ 105 $h^{-1} Mpc$
- Same resolution correction $W(k_{\parallel},R)$ as eBOSS P_{1D}
- SNR cut:
 - $P_x(\theta = 0)$: $\overline{SNR} > 3.9$ at z = 2.4 and > 4.1 at z = 2.2 as in eBOSS P_{1D}
 - $P_x(\theta > 0)$: $\overline{SNR} > 1$ for both z bins
- Resolution cut:
 - $P_x(\theta = 0): \bar{R} > 85 \ km \ s^{-1}$ as in eBOSS P_{1D}