Correction of the effect of fiber collisions in DESI Y1

Action Dark Energy – Nov. 6 & 7 2023 Mathilde Pinon – CEA Saclay Supervised by Arnaud de Mattia, Étienne Burtin, Vanina Ruhlmann-Kleider In collaboration with Pat McDonald

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science **IRFU – CEA Saclay** Institut de recherche sur les lois fondamentales de l'univers

DESI fibers

1

Fiber collisions: 2 galaxies fall within the patrol radius of the same fiber

Fiber collisions: 2 galaxies fall within the patrol radius of the same fiber

Fiber collisions bias two-point statistics

Mathilde Pinon - Action Dark Energy

Idea: modify 2-pt estimators by removing all galaxy pairs at small transverse separation

Removing pairs at $r_{\perp} < 2.5 \text{ Mpc}/h$ removes fiber collisions effect

r_{\perp} -cut must be accounted for in the model

 r_{\perp} -cut correlation function

$$\langle {\hat \xi}_\ell^{\,
m cut}(s)
angle = W^{
m cut}_{\ell\ell'}(s) {\xi_{\ell'}(s)}$$

 $W^{ ext{cut}}_{\ell\ell'}(s) = rac{2\ell+1}{|I_\mu(s)|} \int_{I_\mu(s)} d\mu \mathcal{L}'(\mu) \mathcal{L}(\mu)$

 $I_{\mu}(s) = \{\mu, r_{\perp}^2 = s^2(1-\mu^2) > \Lambda_{r_p}^2 \}$

window matrix

integration over μ such that $r_{\perp} > \Lambda_{r_{\perp}}$

2.5 Mpc/h

 r_{\perp} -cut power spectrum

$$\langle {\widehat P}_\ell(k)
angle = 4\pi \int k'^2 dk' W_{\ell\ell'}(k,k') P_{\ell'}(k')$$

window matrix

$$W_{\ell\ell'}(k,k') = rac{(-i)^\ell i^{\ell'}}{2\pi^2 A} \int s^2 ds \sum_p rac{2\ell+1}{2p+1} A_{p\ell\ell'} W^{ ext{cut}}_p(s) j_{\ell'}(k's) j_\ell(ks)$$

$$egin{aligned} W_p^{ ext{cut}}(s) &= rac{2p+1}{4\pi} \int d\mathbf{x} \int d\phi \int_{I_\mu(s)} d\mu ar{n}(\mathbf{x}) ar{n}(\mathbf{x}+\mathbf{s}) \mathcal{L}_p(\mu) \ &= W_p^{ ext{FFT}}(s) - W_p^{r_\perp < \Lambda_{r_\perp}}(s) \end{aligned}$$

standard window r_{\perp} -cut estimator direct pair

$$r_{\perp}$$
-cut part
direct pair counts

r_{\perp} -cut removes bias on cosmological parameters due to fiber collisions

correlation function power spectrum complete complete fiber assigned fiber assigned fiber assigned with r_p cut fiber assigned with r_p cut ----. 1.05 1.1 model $d^{\, {\scriptscriptstyle \top}}$ **b** 1.00 **ShapeFit template** 1.0(Brieden et al 2021) Alcock-Paczynski q_{\parallel} , q_{\perp} 1.41.5tilt parameter m df df 1.2growth rate 1.0 1.0 **b**₁ linear bias • nuisance param. ٠ ... dmdт 0.0 0.0 -0.2-0.20.3 0.2 b_1 b_1 0.1 0.0 -0.1-0.2-0.2 0.1 0.96 1.04 0.97 1.03 1.0 1.3 0 0.0 0.40.9 1.0 1.0 1.1 1.01.50.0 0.3 df b_1 df dm b_1 q_{\parallel} q_{\perp} dm q_{\parallel} q_{\perp}

Potential issue: $r_{\rm L}$ -cut power spectrum window matrix overweights theory at high k

We can transform the window to force it to converge to zero at high k

method by Pat McDonald (in prep)

 change of basis with a transformation optimized to remove high-k tails from the window matrix

 $egin{aligned} \chi^2 &= (d-Wt)^T C(d-Wt) \ &= (d'-W't)^T C'(d'-W't) \end{aligned}$

W' = MW

d' = Md

C' = MC

• **loss** $L(M) = L_W(M) + L_C(M) + L_M(M)$ \rightarrow penalizes far-off-diagonal terms in W and C \rightarrow normalizes M

 $W_{\ell\ell'}(k,k')$

Conclusion

- Cutting out small- r_{\perp} pairs in **2-point measurements and model**
 - removes the effect of fiber collisions
 - > **unbiased constraints** on cosmological parameters
- We can transform the r₁-cut window to remove high-k tails without changing the likelihood, and thus avoid integrating theory up to high k
- Default method for **DESI Y1 standard analyses**

Legendre multipoles

$$egin{aligned} P(k,\mu) & P_\ell(k) = rac{2\ell+1}{2} \int_{-1}^1 d\mu P(k,\mu) \mathcal{L}_\ell(\mu) \ & \xi(s,\mu) & \xi_\ell(s) = rac{2\ell+1}{2} \int_{-1}^1 d\mu \xi(s,\mu) \mathcal{L}_\ell(\mu) \end{aligned}$$

$$egin{split} \mathcal{L}_0(x) &= 1 \ \mathcal{L}_2(x) &= rac{1}{2}(3x^2-1) \ \mathcal{L}_4(x) &= rac{1}{8}(35x^4-30x^2+3) \end{split}$$

r_{\perp} -cut correlation function

r_{\perp} -cut power spectrum

r_{\perp} -cut correlation function is well modelled by multiplying the theory with an appropriate window matrix

Complete mocks vs. best fit theory model

Complete mocks with r_p -cut vs. r_p -cut theory model

r_{\perp} -cut power spectrum model fits well to r_{\perp} -cut data (mostly stochastic parameters are changed)

Complete mocks vs. best fit theory model

Complete mocks with r_p -cut vs. r_p -cut theory model

r_{\perp} -cut correlation function constraints

Grey area: 1/5 of Y1 uncertainty

r_{\perp} -cut power spectrum constraints

Difference of posterior mean between complete and r_p -cut mocks

Grey area: 1/5 of Y1 uncertainty

r_{\perp} -cut power spectrum constraints (all parameters)

Apodization: using a smoother r_{\perp} -cut

Power spectrum window