Testing Gravity through the Distortion of Time

Sveva Castello

sveva.castello@unige.ch

Density fluctuation

Velocity

MATTER FIELD

8

GRAVITATIONAL POTENTIALS

Spatial component

Density fluctuation

Velocity

MATTER FIELD

Relations in GR

GRAVITATIONAL POTENTIALS

Spatial component

Density fluctuation Velocity ${\cal S}$

Relations in GR

GRAVITATIONAL POTENTIALS

MATTER FIELD

ф

 Ψ

Spatial component

Time component

Comparison with observations

Fluctuations in galaxy number counts

$$\Delta(z, \mathbf{n}) = b \delta_{\text{DM}} - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$$

DM density x galaxy bias

Redshift-space distortions (RSD)

Credits: M.Blanton, SDSS

Comparison with observations

Fluctuations in galaxy number counts

$$\Delta(z, \mathbf{n}) = b \delta_{\text{DM}} - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$$

DM density x galaxy bias

Redshift-space distortions (RSD)

Two-point correlation function

$$\xi \equiv \langle \Delta(z, \mathbf{n}) \Delta(z', \mathbf{n}') \rangle$$

Extracted from observations and compared with theoretical predictions

Credits: M.Blanton, SDSS

$$\Delta_{\mathrm{gr}} = \frac{1}{\mathcal{H}} \partial_r \Psi$$
McDonald (2009)
Yoo et al. (2012)
Bonvin, Hui and Gaztañaga (2014)

- Much smaller than RSD
- Observable by future surveys

Observable by future surveys

Can we distinguish modified gravity from a fifth force?

In collaboration with C. Bonvin, L. Pogosian, Z. Wang, H. Mirpoorian, L. Dam

Gravity modifications affecting all constituents

Breaking of the WEP for DM only

Can we distinguish modified gravity from a fifth force?

In collaboration with C. Bonvin, L. Pogosian, Z. Wang, H. Mirpoorian, L. Dam

Gravity modifications affecting all constituents

Breaking of the WEP for DM only

Generalised Brans-Dicke
Universal coupling 6

Coupled quintessence

DM-only coupling B

Generate mock data with only one type of modification (e.g. $\beta_1=0,\,\beta_2=1$)

Fit with both models

Generate mock data with only one type of modification (e.g. $\beta_1 = 0$, $\beta_2 = 1$)

Fit with both models

- Generate mock data with only one type of modification (e.g. $\beta_1=0,\,\beta_2=1$)
- Fit with both models

With δ + RSD only, we have a constraint on $\beta_1^2 + X_c\beta_2^2 = X_c$

Generate mock data with only one type of modification (e.g. $\beta_1=0,\,\beta_2=1$)

Fit with both models

With δ + RSD only, we have a constraint on $\beta_1^2 + X_c\beta_2^2 = X_c$

Gravitational redshift isolates one of the two modifications

Two approaches to test modified gravity

Two approaches to test modified gravity

Two approaches to test modified gravity

Effective theory of interacting dark energy

Gleyzes et al. (2015) Gleyzes et al. (2016)

Effective theory of interacting dark energy

Gleyzes et al. (2015) Gleyzes et al. (2016)

Gravitational sector

Metric + scalar field Bellini and Sawicki (2014)

- α_K : Kinetic scalar term

- α_B : Scalar-tensor kinetic mixing

- α_M : Planck-mass run rate

Effective theory of interacting dark energy

Gleyzes et al. (2015) Gleyzes et al. (2016)

Gravitational sector

Metric + scalar field Bellini and Sawicki (2014)

- α_K : Kinetic scalar term

- α_B : Scalar-tensor kinetic mixing

- α_M : Planck-mass run rate

Encompass all Horndeski theories

Effective theory of interacting dark energy

Gleyzes et al. (2015) Gleyzes et al. (2016)

Gravitational sector

Metric + scalar field Bellini and Sawicki (2014)

- α_K : Kinetic scalar term

- α_R : Scalar-tensor kinetic mixing

- α_M : Planck-mass run rate

Encompass all Horndeski theories

Matter sector

CDM coupled differently to the metric

 \Rightarrow Breaking of the WEP encoded in γ_c

Effective theory of interacting dark energy

Gleyzes et al. (2015) Gleyzes et al. (2016)

Gravitational sector

Metric + scalar field Bellini and Sawicki (2014)

- α_K : Kinetic scalar term
- α_B : Scalar-tensor kinetic mixing
- α_M : Planck-mass run rate

Encompass all Horndeski theories

Matter sector

CDM coupled differently to the metric

 \Rightarrow Breaking of the WEP encoded in γ_c

Forecasts for SKA2 in \(\Lambda\)CDM

SC, Mancarella, et al. (in preparation)

Gravity modifications $\alpha_{M'}$, α_{B}

WEP breaking

Y

Equation of state of DE w_{DE}

Take-home messages

Standard constraints on modified gravity from galaxy number counts rely on the assumption that DM obeys the WEP.

Take-home messages

Standard constraints on modified gravity from galaxy number counts rely on the assumption that DM obeys the WEP.

Dropping this restrictive assumption leads to modifications that are fully degenerate with deviations from the Poisson equation.

Take-home messages

Standard constraints on modified gravity from galaxy number counts rely on the assumption that DM obeys the WEP.

Gravitational redshift, which will be observable by future surveys, can break this degeneracy and provide tight constraints!

Credits: freepik

A small advertisement...

Subscribe to our Youtube channel Cosmic Blueshift

We post video abstracts and outreach videos, feedback is welcome!

Additional slides

Two approaches to test modified gravity

Constrain the parameters in a specific model

Direct link between theory and observations

Each model must be tested separately

Test the relations between the four fields describing the Universe

Model-independent approach

No clear relation to any model

Impact on the growth of cosmic structures

$$\delta'' + \left(1 + \frac{\mathcal{H}}{\mathcal{H}'} + \Theta\right) \delta' - \frac{3}{2} \frac{\Omega_{m,0}}{a} \left(\frac{\mathcal{H}_0}{\mathcal{H}}\right)^2 \mu \left(\Gamma + 1\right) \delta = 0$$

Assumption throughout
$$\mu(z) = 1 + \mu_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$$

$$\Theta(z) = \Theta_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$$

$$\Gamma(z) = \Gamma_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$$

Enhancement of structure growth

- 1. Fifth force acting on DM ($\Gamma > 0$)
- 2. Increasing the depth of the gravitational potentials ($\mu > 1$)

Impact on
$$f = \frac{\mathrm{d} \ln \delta}{\mathrm{d} \ln a}$$
 and σ_8

Two-point correlation function

Extract information through correlations:

$$\xi \equiv \langle \Delta(\mathbf{n}, z) \Delta(\mathbf{n}', z') \rangle$$

Expansion in Legendre polynomials:

With
$$\Delta = \delta + RSD$$
,

Kaiser (1987) Hamilton (1992)

$$\xi = C_0(z,d) P_0(\cos \beta)$$
 Monopole
 $+ C_2(z,d) P_2(\cos \beta)$ Quadrupole

$$+ C_4(z,d) P_4(\cos\beta)$$

Hexadecapole

Credits: M.Blanton, SDSS

Relation with gravity modifications

$$C_0(z,d) = \left[\tilde{b}^2(z) + \frac{2}{3}\tilde{b}(z)\tilde{f}(z) + \frac{1}{5}\tilde{f}^2(z)\right]\mu_0(z_*,d)$$

$$C_2(z,d) = -\left[\frac{4}{3}\tilde{f}(z)\tilde{b}(z) + \frac{4}{7}\tilde{f}^2(z)\right]\mu_2(z_*,d)$$

$$C_4(z,d) = \frac{8}{35}\tilde{f}^2(z)\mu_4(z_*,d)$$

$$\mu_{l}(z_{*},d) = \int \frac{\mathrm{d}k \, k^{2}}{2\pi^{2}} \frac{P_{\delta\delta}(k,z_{*})}{\sigma_{8}^{2}(z_{*})} j_{l}(kd)$$

constrained by CMB

$$\tilde{f}(z) = f(z) \, \sigma_8(z)$$
 and $\tilde{b}(z) = b(z) \, \sigma_8(z)$

measured

$$\delta'' + \left(1 + \frac{\mathcal{H}}{\mathcal{H}'} + \Theta\right) \delta' - \frac{3}{2} \frac{\Omega_{m,0}}{a} \left(\frac{\mathcal{H}_0}{\mathcal{H}}\right)^2 \mu \quad (\Gamma + 1) \delta = 0$$

Deus ex machina: relativistic effects

Standard terms

Gravitational redshift

$$\Delta(\mathbf{n}, z) = b \, \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n}) + \frac{1}{\mathcal{H}} \partial_r \Psi + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \mathbf{V} \cdot \mathbf{n}$$

$$+\left(5s + \frac{5s - 2}{\mathcal{H}r} - \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + f^{\text{evol}}\right)\mathbf{V} \cdot \mathbf{n}$$

Doppler terms

Extracting the signal from observations

Relativistic effects break the symmetry of ξ

Bonvin, Hui and Gaztanaga (2014)

$$C_{1}(z,d) = \frac{\mathcal{H}}{\mathcal{H}_{0}} \nu_{1}(d,z_{*}) \left[5\tilde{f} \left(\tilde{b}_{B} s_{F} - \tilde{b}_{F} s_{B} \right) \left(1 - \frac{1}{r\mathcal{H}} \right) \right.$$

$$\left. - 3\tilde{f}^{2} \Delta s \left(1 - \frac{1}{r\mathcal{H}} \right) + \tilde{f} \Delta \tilde{b} \left(\frac{2}{r\mathcal{H}} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} \right) \right.$$

$$\left. + \Delta \tilde{b} \left(\Theta \right) \tilde{f} - \frac{3}{2} \frac{\Omega_{m,0}}{a} \frac{\mathcal{H}_{0}^{2}}{\mathcal{H}^{2}} \Gamma \mu \sigma_{8} \right) \right] - \frac{2}{5} \Delta \tilde{b} \tilde{f} \frac{d}{r} \mu_{2}(d,z_{*})$$

Compare $\mu(\Gamma + 1)$ term in the evolution equation

Credits: M.Blanton, SDSS

Symmetry breaking by gravitational redshift

Survey specifications

	SDSS-IV	DESI	SKA2
σ_{μ_0} (restricted to WEP validity)	0.21	0.02	0.004
$\sigma_{\mu_0+\Gamma_0}$ (no assumption on WEP)	6.05	0.42	0.068

DESI (Bright Galaxy Sample):

- 10 million galaxies up to z=0.5.
- Galaxy bias: $b_{\text{BGS}}(z) = b_0 \delta(0)/\delta(z)$. $b_0 = 1.34$ (fiducial value)

SKA, phase 2:

- \sim 1 billion galaxies up to z=2.0.
- Galaxy bias: $b_{SKA}(z) = b_1 \exp(b_2 z)$. $b_1 = 0.554$, $b_2 = 0.783$ (fiducial value)

Fisher analysis:

- minimum separation $d_{\min} = 20 \,\mathrm{Mpc}/h$.
- include shot noise, cosmic variance, cross-correlations between different multipoles

Modified gravity vs dark sector interactions

Bonvin and Pogosian (2022)

Gravity modifications affecting all constituents (μ, η)

$$\delta'' + \left(1 + \frac{\mathcal{H}}{\mathcal{H}'}\right)\delta' - \frac{3}{2}\frac{\Omega_{m,0}}{a}\left(\frac{\mathcal{H}_0}{\mathcal{H}}\right)^2 \mu \delta = 0$$

Breaking of the WEP for DM only (E^{break})

$$\delta'' + \left(1 + \frac{\mathcal{H}}{\mathcal{H}'} + \mathcal{J}\right)\delta' - \frac{3}{2} \frac{\Omega_{m,0}}{a} \left(\frac{\mathcal{H}_0}{\mathcal{H}}\right)^2 (\Gamma + 1)\delta = 0$$
Negligible

Enhancement of the growth of structure

Undistinguishable using RSD measurements

Modified gravity vs dark sector interactions

Bonvin and Pogosian (2022)

Breaking of the WEP for DM only ($E^{\rm break}$)

Measurements

$$\frac{\Phi + \Psi}{\Psi} = 1 + \eta \neq 2$$

Lensing:
$$\Phi + \Psi$$

Euler

RSD: $V = \Psi$

$$\frac{\Phi + \Psi}{\Psi^{\text{eff}}} = 1 + \eta^{\text{eff}} \neq 2$$

Relations to μ , Θ , Γ

$$\mu = 1 + \frac{2}{c_s^2 \alpha} (\alpha_B - \alpha_M) (\alpha_B - \alpha_M + 3\gamma_c \omega_c b_c)$$

$$\Theta = 3\gamma_c$$

$$\Gamma = 3\gamma_c \frac{2}{c_s^2 \alpha} \frac{(\alpha_B - \alpha_M) + 3\gamma_c \omega_c b_c}{\mu}$$

α: total kinetic term of the scalar mode

 $\frac{c_s^2}{s}$: speed of propagation

EFT of IDE equations

Background

$$\frac{H'}{H} = -\frac{3}{2} \left[\Omega_b + (1 + w_{DE})\Omega_{DE} + \frac{\Omega_r}{3} \right]$$

$$\Omega_b' = -\Omega_b \left[\alpha_M - 3 w_{\text{DE}} \Omega_{\text{DE}} - \Omega_r \right]$$

$$\Omega_c' = -\Omega_c \left[\alpha_M - 3 \gamma_c - 3 w_{\text{DE}} \Omega_{\text{DE}} - \Omega_r \right]$$

$$\Omega_r' = -\Omega_r [1 + \alpha_M - 3w_{\text{DE}}\Omega_{\text{DE}} - \Omega_r]$$

EFT of IDE equations

Perturbations

$$\delta_c'' + (2 + \frac{H'}{H} + 3\gamma_c)\delta_c' - \frac{3}{2}\Omega_m \delta_m \left[1 + \frac{2}{c_s^2 \alpha} (\alpha_B - \alpha_M + 3\gamma_c) (\alpha_B - \alpha_M + 3\gamma_c \omega_c b_c) \right] = 0$$

$$c_s^2 \alpha = 2\alpha_M + 3(1 + w_{DE})\Omega_{DE} + (1 + \Omega_r - 3\Omega_{DE})\alpha_B - 2\alpha_B'$$

Gravitational redshift

$$3\gamma_c \left[f - \frac{3\Omega_{m,0}}{a^3 h^2} \frac{1}{c_s^2 \alpha} (\alpha_B - \alpha_M + 3\gamma_c \omega_c b_c) \right]$$

