Martin Kärcher Supervisors: Sylvain de la Torre (LAM) and Julien Bel (CPT)

Action Dark Energy Annecy 6th of November 2023

Anticorrelating Void and Peak Galaxies with Marked CF to Pin Down Modified Gravity

Modified Gravity (MG) - Why?

- ACDM paradigm seems to be most accurate model... up to now
- Accelerated expansion is modelled by a huge unknown energy contribution dubbed 'dark energy'
- Not flawless in every regard: H_0 -tension, fine tuning $problem,.. \rightarrow MG$ comes to the rescue!
- To comply with GR in the solar system/high densities MG theories need to exhibit a screening effect \rightarrow fundamental effect of environment

Goal: Use this environmental dependency to better detect MG

CRIT

RECO

Setup - ELEPHANT Simulations

$$
SN(r) = \frac{\overline{\Delta\xi}(r)}{\sigma_{avg}(r)}
$$

CINTS

- Box side length: *L* = 1024 h−1Mpc
- Galaxy density: $\bar{n} \sim 3 \times 10^{-4}$ h³Mpc⁻³
- 5 realisations of GR, f(R)(3x) and nDGP(2x) gravity
- Rockstar halos, HOD (5-parameter) galaxies
- Matching projected 2PCF $w_p(r_p)$ by tuning HOD parameters

Aix*Marseille

université

Simulated Cosmic Web

Original plot from [Millenium simulation](https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/)

Reconstructed Environment

Kärcher et al. in prep.

Aix*Marseille université

Marked Correlation Functions (mCF)

- mCF originally developed to investigate correlation of galaxy properties
- Free choice for mark $m(\delta(\mathbf{x}))$, $m(T_{ij}(\mathbf{x}))$ or $m(E)$
- General idea: up-weigh galaxies for which MG effects are more pronounced
- What if mark is allowed to switch signs? Correlation and anticorrelation ⇒

Aix*Marseille

université

CINTS

$$
W(\mathbf{r}) = \langle m(\mathbf{x})\delta(\mathbf{x})m(\mathbf{x} + \mathbf{r})\delta(\mathbf{x})
$$

$$
\mathcal{M}(r) \equiv \frac{1 + W(r)}{1 + \xi(r)}
$$

Results - Negative Void Mark

- Anticorrelating galaxies in voids with remaining ones \rightarrow Increase anticorrelation
- High SN particularly for F4 and N1
- Difficult to model perturbatively for real application

$$
f(t) = \begin{cases} -1 & \text{if void} \\ 1 & \text{else} \end{cases}
$$

Kärcher et al. in prep.

Results - Tanh Mark

• Try to reproduce performance of negative void mark but based on density

• F6 even significantly detectable in single simulation (given the limited statistics we

• Very stable SN up to scales of 60-80Mpc/h

-
- - have)

 $m[\delta(\mathbf{x})] = \tanh(a(\delta(\mathbf{x}) + b)$ with $a = 2.5$ and $b = -0.7$

Results - What About Redshift Space?

⇒ Similar performance in the monopole

⇒ Apparently no propagation into quadrupole

⇒Behaviour differs for different marks

Kärcher et al. in prep. **Negative void mark**

Conclusion/Outlook

• Creating anticorrelation yields significant differences at intermediate scales of

• Differences seem to propagate into monopole in redshift space but not into

• Particularly tanh mark promising due to straightforward perturbative expansion

Aix*Marseille

université

• mCF in redshift space via a Gaussian streaming approach within LPT

CINTS

- 40-80Mpc/h
- quadrupole
-
- Future:
	-
	- Compute mCF on real data for proposed marks

mCF - How to Compute?

Weighted pair counts

Normalisation c

Marked correlation function:

- •If totally uncorrelated or mark=const then $WW(r) \rightarrow DD(r)$
- $\mathscr{M}(r)$ will approach 1 on large scales
- $\mathcal{M}(r)$ measures correlation of marks

$$
\mathcal{M}(r) \equiv \frac{1 + W(r)}{1 + \xi(r)} = \frac{WW(r)}{DD(r)}
$$

Aix*Marseille

université

CINTS

$$
WW(r) = \frac{1}{c} \sum_{i \neq j} m_i m_j
$$

$$
= \left(\sum m_i\right)^2 - \sum m_i^2
$$

nDGP Gravity

• Additional scalar degree of freedom (brane bending mode) *φ*

$$
\nabla^2 \Phi = 4\pi G a^2 (\rho - \bar{\rho}) \left[\frac{1}{2} \nabla^2 \varphi \right]
$$

radius $r_V^{}$

$$
\nabla^2 \varphi \qquad \nabla^2 \varphi + \frac{r_c}{3\beta a^2} \left((\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi)^2 \right) = \frac{8\pi G a^2}{3\beta} (\rho - \bar{\rho})
$$

• Screening effect, involving derivative-terms of φ , gives rise to Vainshtein

$$
S = M_5^3 \int d^5x \sqrt{-g_5} R_5 + \int d^4x \sqrt{-g_4} \left\{ -2M_5^3 K + \frac{M_4^2}{2} R_4 - \sigma + \mathcal{L}_m \right\}
$$

• Action has 5D bulk with a 4D brane embedded in it

$$
r_V \approx (r_s r_c^2)
$$

1/3

Example of MG: f(R) Gravity

$$
\nabla^2 \Phi = 4a^2 \pi G \delta \rho \left[-\frac{1}{2} \nabla^2 f_R \right]
$$

$$
\nabla^2 f_R = -\frac{a^2}{3} \delta R - \frac{8\pi G}{3} a^2 \delta \rho
$$

$$
S = \int d^4x \sqrt{-g} \left\{ \frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right\}
$$

 \rightarrow Large scales see modifications (clustering), small scales see GR (solar system)

• Fifth force is arising due to an additional scalar degree of freedom (scalaron)

• Allowing for general function *f*(*R*) of Ricci scalar

• Additional force suppressed on small distance from massive object

Can we Actually Model the mCF?

• 'Straightforward' as long as we can expand the mark function in density

contrast…

$$
1 + W(r) = \frac{1}{\bar{m}^2} \int \frac{d^3q \, e^{-\frac{1}{2}(\mathbf{r} - \mathbf{q})^T \mathbf{A}_L^{-1}(\mathbf{r} - \mathbf{q})}}{(2\pi)^{3/2} |\mathbf{A}_L|^{1/2}} \int \frac{d^3Q \, e^{-\frac{1}{2}(\mathbf{R} - \mathbf{Q})^T \mathbf{C}^{-1}(\mathbf{R} - \mathbf{Q})}}{(2\pi)^{3/2} |\mathbf{C}|^{1/2}} \Big(1 + \mathcal{I}\Big)
$$

[Aviles+ \(2020\)](https://iopscience.iop.org/article/10.1088/1475-7516/2020/01/006)

- Based on CLPT for unmarked correlation function
- Treat mark function as a bias function, define renormalized mark parameters
- Double convolution of I-function containing all bias and mark contributions up to specific order

How to Infer Environment?

$$
\rho(\mathbf{x}) = \frac{\bar{\rho}}{(1 - D(t)\lambda_1)(1 - D(t)\lambda_2)(1 - D(t)\lambda_3)}
$$
 D

$$
\begin{cases}\n\lambda_1 > 0 \Rightarrow \lambda_2 > 0, \lambda_3 > 0 \text{ then cluster} \\
\lambda_1 < 0, \lambda_2 > 0 \Rightarrow \lambda_3 > 0 \text{ then filament} \\
\lambda_1 < 0, \lambda_2 < 0, \lambda_3 > 0 \text{ then wall} \\
\lambda_3 < 0 \Rightarrow \lambda_2 < 0, \lambda_3 < 0 \text{ then void}\n\end{cases}
$$

- \cdot Assume that $D(t)$ is growing mode of growth factor
- Eigenvalues λ_i of the tidal tensor $T_{ij} = \partial_i \partial_j \phi$
- Problems arise if some Eigenvalues are very small compared to others
- Environmental signatures account for this problem

Aix*Marseille

université

ture defines environment

CINTS

$$
\mathcal{S} = \begin{cases}\n|\lambda_1|\theta(\lambda_1)| \frac{\lambda_1}{\lambda_3} | & \text{cluster} \\
|\lambda_2|\theta(\lambda_2)| \frac{\lambda_2}{\lambda_3} | (1 - |\frac{\lambda_1}{\lambda_3}|) \theta(1 - |\frac{\lambda_1}{\lambda_3}|) & \text{filament} \\
|\lambda_3|\theta(\lambda_3)(1 - |\frac{\lambda_2}{\lambda_3}|) \theta(1 - |\frac{\lambda_2}{\lambda_3}|) (1 - |\frac{\lambda_1}{\lambda_3}|) \theta(1 - |\frac{\lambda_1}{\lambda_3}|) & \text{wall}\n\end{cases}
$$

A Derived from LPT for the linear displacement field

Results - What About Redshift Space?

Kärcher et al. in prep. tanh mark

RECO

SHI

Aix*Marseille université

