

Implicit Likelihood Inference in Cosmology while efficiently checking for survey systematics

National Action Dark Energy Colloquium 2023 LAPP, Annecy

Tristan Hoellinger

hoellin.github.io

Institut d'Astrophysique de Paris CNRS & Sorbonne Université

In collaboration with: Florent Leclercq (IAP – CNRS & Sorbonne Université)

and the Aquila Consortium

www.aquila-consortium.org

5 November 2023

Challenges

Systematic effects

Large surveys (Euclid, LSST) will be dominated by **systematic** rather than statistical uncertainty.

- How to integrate prior knowledge?
 - Prior on cosmology $\boldsymbol{\omega} = (h, \Omega_{\rm b}, \Omega_{\rm m}, n_{\rm S}, \sigma_8)$
 - Prior on non measurable physical quantities
 - The initial matter power spectrum θ should be close to $\theta_{Planck,2018}$: can we benefit from this?
 - Can we benefit from theoretical insights on θ ?

- Model misspecification in Bayesian & simulation-based inference (SBI)
 - When model differ from data-generating process
 - Biased or overly concentrated posteriors <u>Müller 2013, 10.3982/ECTA9097</u>

68% and 95% marginalized posterior via MCMC on simulated galaxy catalogues w/ two mass functions To8 and D16.

Salvati, Douspis & Aghanim 2020, 2005.10204

Jasche & Lavaux 2017, 1706.08971

Laureijs et al., 2011, 1110.3193

Tristan Hoellinger

Implicit Likelihood Inference in Cosmology while efficiently checking for systematics 2023/11/05

A general class of Bayesian Hierarchical Model of interest in cosmology

A general class of Bayesian Hierarchical Model of interest in cosmology

Tristan Hoellinger

4

SELFI (Simulator Expansion for Likelihood-Free Inference) Leclercq et al. 2019, 1902.10149

1. Infer a latent function, in this work the initial matter power spectrum θ

θ : initial matter powerspectrum normalized by BBKS spectrum

SELFI (Simulator Expansion for Likelihood-Free Inference) Leclercq et al. 2019, 1902.10149

- 1. Infer a latent function, in this work the initial matter power spectrum θ
- 2. Utilize the posterior on θ to check for model misspecification

$\boldsymbol{\theta}:$ initial matter powerspectrum normalized by BBKS spectrum

SELFI (Simulator Expansion for Likelihood-Free Inference) Leclercq et al. 2019, 1902.10149

- 1. Infer a latent function, in this work the initial matter power spectrum θ
- 2. Utilize the posterior on θ to check for model misspecification
- 3. Infer the top-level cosmology ω
 - Recycle simulations from step 1. for optimal data compression
 - Use implicit likelihood inference (ABC, Bayesian optimization: BOLFI, other methods)

- Linearization of the black-box data model around an expansion point $\pmb{\theta}_0$
 - $\mathbf{\hat{\Phi}}_{\theta} \approx \mathbf{f}_0 + \nabla \mathbf{f}_0 \cdot (\mathbf{\theta} \mathbf{\theta}_0) \equiv \mathbf{f}(\mathbf{\theta})$
- For step 1. & data compression <u>only</u>, assume:
 - Gaussian prior
 - Gaussian effective likelihood

- $\mathbf{f}_0, \mathbf{C}_0$ and $abla \mathbf{f}_0$ evaluated through simulations
- The number of simulations is fixed *a priori* (contrary to MCMC)

- Grid specifications:
 - θ defined on S = 100 support wavenumbers
 - 512³ grid, comoving L = 3.6 Gpc/h
- Gravitational evolution with Simbelmynë:

Leclercq, Jasche & Wandelt 2015, 1502.02690

- Flat Λ -CDM, initial $\delta^{ ext{i}}$ with CLASS
- 512³ DM particles, 2LPT up to z = 19
- PM grid of 1024³ voxelx, COLA to z = 0

From initial matter overdensity field to observed galaxy counts

The observer is at the corner of a cubic box covering 1 octant of the sky, with Euclid-like mask

Model A Model B 10 additional masked areas, extinction near galactic plane no such effects, lower resolution

Tristan Hoellinger

Hoellinger & Leclercq, in prep.

x

Initial matter power spectrum

Tristan Hoellinger

Implicit Likelihood Inference in Cosmology while efficiently checking for systematics

Initial matter power spectrum

Tristan Hoellinger

Optimal data compression

3. Infer top-level cosmology ω

We rely on score compression to compress the summaries from $\dim(\mathbf{\Phi}) = 111$ to $\dim(\widetilde{\mathbf{\omega}}) = \dim(\mathbf{\omega}) = 5$

- Score function $abla_{m{\omega}} \hat{\ell}_{m{\omega}_0} \longrightarrow \text{steepness of } \hat{\ell}$
- It is a sufficient statistic for *ω* for the the linearized log-likelihood, hence it is a natural way to compress the data

<u>Alsing & Wandelt 2018, 1712.00012</u>

Optimal data compression

$$\begin{split} \mathcal{C}(\Phi) &= \widetilde{\omega} \equiv \omega_0 + \mathbf{F}_0^{-1} \left[(\nabla_{\omega} \mathbf{f}_0)^{\mathsf{T}} \underline{\mathbf{C}_0^{-1}} (\Phi - \mathbf{f}_0) \right] \\ \text{Fisher matrix:} \quad \mathbf{F}_0 &= (\nabla_{\omega} \mathbf{f}_0)^{\mathsf{T}} \underline{\mathbf{C}_0^{-1}} \nabla_{\omega} \mathbf{f}_0 \\ \nabla_{\omega} \mathbf{f}_0 &= \overline{\nabla \mathbf{f}_0} \cdot \overline{\nabla_{\omega} \mathcal{I}_0} \\ \end{split}$$

$$\begin{aligned} \text{Already computed} & \text{Cheap via finite} \\ \text{differences} \end{aligned}$$

- The compression is optimal in the sense that it preserves the Fisher content of the data. Hypothesis:
 - the covariance matrix does not vary close to the expansion point∇_ωC = 0
 - The likelihood is gaussian or the following holds: $\nabla \mathbb{E}_{\theta} \left[\nabla^T \mathcal{L} \right] = \nabla \mathbb{E}_{\theta} \left[\nabla \nabla^T \mathcal{L} \right]$

• Example for Ω_m and *h* (simplified data model):

Leclercq 2022, 2209.11057

<u> Alsing & Wandelt 2018, 1712.00012</u>

Tristan Hoellinger Imp

Hoellinger & Leclercq, in prep Implicit Likelihood Inference in Cosmology while efficiently checking for systematics

2023/11/05 14

Optimal data compression

3. Infer top-level cosmology ω

_eclercg 2022, 2209.11057

Tristan Hoellinger

- Assumptions made for steps 1. 2.
 do not impact final inference:
 - the Gaussian effective likelihood is not required to infer the cosmology except through data compression
 - lossy data compression usually leaves posteriors unbiased
 - Any algorithm can be used to obtain the posterior ${\cal P}(\omega | \widetilde{\omega}_O)$
 - Non-parametric approaches can use the Fisher-Rao distance

$$d_{\rm FR}(\widetilde{\boldsymbol{\omega}},\widetilde{\boldsymbol{\omega}}_{\rm O}) \equiv \sqrt{(\widetilde{\boldsymbol{\omega}} - \widetilde{\boldsymbol{\omega}}_{\rm O})^{\mathsf{T}} \mathbf{F}_0(\widetilde{\boldsymbol{\omega}} - \widetilde{\boldsymbol{\omega}}_{\rm O})}$$

• Example with ABC (same data model but smaller dim. for ω and 64³ grid)

Hoellinger & Leclercq, in prep

Implicit Likelihood Inference in Cosmology while efficiently checking for systematics 2023/11/05 15

Final posterior

- We ran the full SELFI pipeline with a simplified forward data model
 - same instrumental response as before,
 - no gravitational evolution
 - baseline ABC for step 3.
- We got unbiased posteriors for the top-level cosmological parameters $\boldsymbol{\omega}=(h,\,\Omega_{\mathrm{b}},\,\Omega_{\mathrm{m}},\,n_{\mathrm{S}},\,\sigma_{8})$

2313 selected samples out of 700K

<u>_eclercq et al. 2019, 1902.10149</u>

Tristan Hoellinger

2023/11/05 16

Conclusion

A novel two-step simulation-based Bayesian approach, combining SELFI and SBI, to tackle the issue of model misspecification for a large class of BHMs.

- Advantages related to the first step (SELFI):
 - No need to incorporate any knowledge of the data-generating process in the analysis, even with high dimensional complex black-box simulators.
 - Number of simulations fixed a priori.
 - The computational workload is perfectly parallel.
- Advantages related to the second step (SBI):
 - The score compressor comes for free: we recycle simulations from step 1.
 - General advantages of SBI with respect to likelihood-based methods are preserved.
 - No simplification nor inner knowledge of the forward data model required

Perspectives

- Incorporate parametrization of deviations from Λ-CDM in the top-level parameters:
 - equation of state of dark energy w(a)
 - total neutrino masses m_v
 - deviations from gaussianity *f_{NL}*
- Jointly infer all top-level parameters and nuisance parameters such as galaxy biases
 - \succ This means implicit likelihood inference in dimension $\mathcal{O}(10-20)$
 - We need to investigate and extend advanced Bayesian optimisation strategies to explore the parameter space to avoid curse of dimensionality

- Thanks for listening!
- Main references:

Alsing & Wandelt 2018, 1712.00012 Leclercq et al. 2019, 1902.10149 Leclercq 2022, 2209.11057 Leclercq, Jasche & Wandelt 2015, 1502.02690

• Code and data availability: wait for SELFI2 release in 2024!

hoellin.github.io www.aquila-consortium.org

