

COSMOLOGICAL PARAMETERS DERIVED FROM THE FINAL PLANCK (PR4) DATA RELEASE

M. Tristram ADE #7, ANNECY, NOV 2023

Cosmological parameters derived from the final (PR4) Planck data release

M. Tristram¹, A. J. Banday², M. Douspis³, X. Garrido¹, K. M. Górski^{4,5}, S. Henrot-Versillé¹, L. T. Hergt⁶, S. Ilić^{1,7}, R. Keskitalo^{8,9}, G. Lagache¹⁰, C. R. Lawrence⁴, B. Partridge¹¹, and D. Scott⁶

¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

² IRAP, Université de Toulouse, CNRS, CNES, UPS, (Toulouse), France

³ Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405, Orsay, France

⁴ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, U.S.A.

⁵ Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland

⁶ Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, V6T 1Z1, Canada

⁷ Centre National d'Etudes Spatiales – Centre Spatial de Toulouse, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9, France

⁸ Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, U.S.A.

⁹ Space Sciences Laboratory, University of California, Berkeley, California, 94720, U.S.A.

¹⁰ Aix Marseille Université, CNRS, CNES, LAM, Marseille, France

¹¹ Department of Astronomy, Haverford College, Haverford, Pennsylvania, 19041, U.S.A.

[Tristram et al. A&A (2023)] [astro-ph/2309.10034](https://arxiv.org/abs/2309.10034)

PLANCK polarization data

- PLANCK detectors were sensitive to **one polarization direction**
- PLANCK scanning strategy did not allow for polarization reconstruction for each detector independently
	- need to **combine detectors** with different polarization orientation
- Any flux **mismatch** between detectors create spurious polarization signal through well known **I-to-P leakage**.

In particular : ADC non-linearity, bandpass mismatch, calibration mismatch, …

this is the major Planck systematic in polarization at large scales

PLANCK Release 4

NPIPE processing

[Planck Collaboration Int. LVII (2020)]

• **Processing applied consistently over the whole 9 PLANCK frequencies (from 30 GHz to 857 GHz) NEW**

• **NPIPE map-making includes templates for**

- systematic effects

(time transfer-function, ADC non-linearities, Far Side Lobes, bandpass-mismatch)

- sky-asynchronous signals (orbital dipole, zodiacal light)

• **Provide frequency maps**

- **cleaner**: less residuals (compared to PR3) at the price of a non-zero transfer function at large scale in polarization
- **more accurate**: less noise (compared to PR3)
- no residuals from template resolution mismatch (as visible in PR3)

• **Provide independent split-maps**

- PR3: time-split (half-mission or half-ring) ➡ correlated
- PR4: detector-split (detset) ➡ independent

• **Provide low-resolution maps with pixel-pixel noise covariance estimates across all PLANCK frequencies**

PLANCK Release 4

CMB polarized maps

[Planck Collaboration Int. LVII (2020)]

Commander CMB *Q* and *U* maps (large scale, 5º smoothing)

M. Tristram PLANCK PR4 cosmology 5

• **Allow for**

- 1. accurate effective description of the noise and **covariance** of the maps (including noise, instrumental systematics, foreground residuals)
- 2. estimation of the **transfer function** of the PLANCK processing Fig. 71. Comparison of end-to-end reconstructed (*top row*) and input (*middle row*) NPIPE simulations for the Stokes *Q* and *U* CMB Fig. 71. Comparison of end-to-end reconstructed (*top row*) and input (*middle row*) NPIPE simulations for the Stokes *Q* and *U* CMB

a realistic simulation set is essential to properly assess uncertainties especially at large angular scales

NPIPE simulations

• **600 consistent simulations (frequency and split maps) - 36 TB**

• **Inputs**

PLANCK Release 4

- including instrumental noise (consistent with data-split differences) Planck Collaboration: NPIPE processing
- including models for systematics (ADC non-linearity)
- random CMB with 4pi beam convolution
- foreground sky model based on Commander PLANCK solution

Output *Q*

[Planck Collaboration Int. LVII (2020)]

Output *Q*

Planck Collaboration: NPIPE processing

Output *Q* Planck Collaboration: NPIPE processing

Planck Collaboration: NPIPE processing

Planck Collaboration: NPIPE processing

U

PLANCK PR4 likelihoods

[Tristram+ (2023)]

Planck likelihoods are splits in **two parts** due to different **statistical assomptions**

• **lowT: Commander** *[Planck Collaboration V 2020]*

Bayesian posterior Gibbs sampling that combines astrophysical component separation and likelihood estimation

• **lowE(B): Lollipop**

[Tristram et al. 2022]

H&L likelihood based on cross-spectra between CMB clean maps on 50% of the sky

large scales (low ℓ **) small scales (high** ℓ **)**

• **Hillipop: TT, TE, EE, TTTEEE** *[Tristram et al. 2023]*

Gaussian likelihood based on crossspectra from frequency maps on 75% of the sky, including models for the foreground residuals

Lollipop PR4 power-spectra

Lollipop Tensor-to-scalar ratio & Reionization

Reionization optical depth (scattering of photons by free electrons)

Galaxies become more efficient producers of ionizing photons at higher redshifts and fainter magnitudes

Faintest galaxies (MUV > −15) dominate the ionizing emissivity

[Tristram et al. A&A 647, A128 (2021)] [Tristram et al. PRD 105, 083524 (2022)]

*r*0.05 < 0.032 (Planck + BK18)

Hillipop PR4 power-spectra

[Tristram+ (2023)]

2 maps per frequencies at 100, 143 and 217 GHz 15 cross-spectra at 6 cross-frequencies

xpol [\[https://gitlab.in2p3.fr/tristram/xpol\]](https://gitlab.in2p3.fr/tristram/xpol)

M. Tristram PLANCK PR4 cosmology 10

Hillipop PR4 TT-TE-EE likelihood

[Tristram+ (2023)]

An accurate masking

- our Galaxy

- point sources
- nearby extended galaxies (e.g. M31)

An accurate foreground model

- Galactic dust
- cosmic infrared background (CIB)
- thermal (tSZ) and kinetic (kSZ) Sunyaev-Zeldovich components
- Poisson-distributed point sources from radio and infrared star-forming galaxies
- the correlation between CIB and the tSZ effect (tSZ×CIB)

Hillipop PR4 CMB power-spectra

 δ 0.0

 -2.5

 $\mathbf 0$

250

500

750

multipole *l*

1000 1250 1500 1750 2000

ΛCDM cosmology model

• **6 parameters**

- 3 for the primordial matter spectra
- -1 expansion rate $\left(H_0\right)$ (in practice sound horizon $\left|\theta_{\text{s}}\right|$) $\mathscr{P}_s(k) = A_s$ $\sqrt{2}$ k_0) *θ*s

ns−1

k

- $-$ 2 parameters for densities $\left(\Omega_bh^2\right)\left(\Omega_ch^2\right)$
- reionization σ

• **hypothesis**

- **-** flat Universe $\;\Omega_k=0$
- **-** No running $dn_s/d \ln k = 0$
- **-** no tensor $r = 0$

- 3 neutrinos
$$
N_{\text{eff}} = 3.044
$$

- standard neutrinos with low mass $\sum m_{\nu} = 0.06$ eV

ΛCDM cosmology parameters

[Tristram+ (2023)]

ΛCDM cosmology TT, TE, EE

[Tristram+ (2023)]

ΛCDM cosmology +lensing+BAO

[Tristram+ (2023)]

But still:

• **low H0** compared to SNIa

$$
H_0 = 67.64 \pm 0.52 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (TTTEEE)}
$$

$$
H_0 = 67.81 \pm 0.38 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (TTTEEE+lensing+BAO)}
$$

ΛCDM cosmology growth of structures

• **DES**

$$
S_8 = 0.782 \pm 0.019 \quad (DES-Y3)
$$

• **Planck**

reduced from 2.1σ to 1.5σ

ΛCDM cosmology Comparison with PR3 and CamSpec

[Planck 2018 Results. VI. (2020)] [Rosenberg, Gratton, Efstathiou, MNRAS, 517, 4620 (2022)] [Tristram+ (2023)]

• **Good consistency between the PR4 and PR3 power spectra**, which

translates to very good agreement on cosmological parameters as well.

• Lower noise of the NPIPE maps + improvement in polarization signal provides **tighter parameter constraints**, with more than **10% improvement** for ΛCDM parameters in TTTEEE

ΛCDM extensions

Alens

[Tristram+ (2023)]

ΛCDM extensions curvature ΩK

ΛCDM extensions

Sum of neutrino masses, Σmν

[Tristram+ (2023)]

Conclusions

• **PR4 final PLANCK maps**

- **cleaner** (less systematics)
- **more sensitive** (less noisy)
- split-maps not correlated

• **NPIPE sims**

- consistent with the data
- **allow for TF and variance estimation**
- include uncertainties from systematics (both instrumental and astrophysical)

• **CMB likelihoods (Lollipop & Hillipop)**

- Cosmology consistent with the PR3 and with CamSpec ent with the PR3 and with Cam5pec newspaper in the large-scale *Planck* 2016 CMB map in the top row was in the to
- about **10% improvement** in most of ΛCDM parameters never publicly released, due to the high level of residual systematic e↵ects. The grey region corresponds to the *Planck* 2018 common **vement**-in-most of ACDM parameters **are solution in the smoothed to a common angular resolution of 5 FWHM.**
- give the tightest constraints from Planck CMB today
- **no deviation from standard ΛCDM** $m_{\rm m}$ shows the di $m_{\rm m}$ erence between the output and input sky maps are smoothed to a common angular smoothed to a common angula Fig. 71. Comparison of end-to-end reconstructed (*top row*) and input (*middle row*) NPIPE simulations for the Stokes *Q* and *U* CMB $m_{\rm F1}$, the di $m_{\rm F2}$ erence between the output and input sky maps are smoothed to a common angular Fig. 71. Comparison of end-to-end reconstructed (*top row*) and input (*middle row*) NPIPE simulations for the Stokes *Q* and *U* CMB

 \sim \sim \sim \sim \sim \pm 0.052 \pm \pm (100) shows the output and input sky maps are smoothed to a common and input sky maps are smoothed to a common and input sky maps. All maps are smoothed to a common and input sky maps. All maps are smoothed to a comm resolution of 2 FWHM. Fig. 71. Comparison of end-to-end reconstructed (*top row*) and input (*middle row*) NPIPE simulations for the Stokes *Q* and *U* CMB $A_{lens} = 1.039 \pm 0.052$ $r = 2.010$ Ω $2 + 0.010$ π $+$ ()()()()() $+$ Fig. 71. Comparison of end-to-end reconstructed (*top row*) and input (*middle row*) NPIPE simulations for the Stokes *Q* and *U* CMB $\mathbf v$ shows the di $\mathbf v$ \mathcal{L} \perp 0.010 $\Omega_K = -0.012 \pm 0.010$

Science with PR4...

• **ΛCDM with CMB**

- Lollipop+Hillipop [Tristram et al., A&A (2023)]
- CamSpec [Rosenberg et al., MNRAS 517 4620 (2022)]

• **CMB at large scales (tensor modes, reionization)**

- [Tristram et al., PRD 105 083524 (2022)] *Improved limits on the tensor-to-scalar ratio using BICEP and Planck*

• **Lensing**

- [Carron, Mirmelstein, Lewis, JCAP 2022 039 (2022)] *CMB lensing from Planck PR4 maps*

• **Cosmic Birefringence**

- [Diego-Palazuelos et al., PRL 128 091302 (2022)] *Cosmic Birefringence from Planck Public Release 4*

• **Inflation**

- [Campeti et al., JCAP 2022 039 (2022)] *New constraints on axion-gauge field dynamics during inflation from Planck and BICEP/Keck data sets*
- [Galloni et al., JCAP 2023 062 (2022)] *Updated constraints on amplitude and tilt of the tensor primordial spectrum*

• **Sunyaev-Zeldovich**

- [Tanimura et al., MNRAS 509 300 (2022)] *Constraining cosmology with a new all-sky y-map from the Planck PR4 data*
- [Chandran, Remazeilles, Barreiro, MNRAS 526 4 (2023)] *An updated and improved tSZ y-map from Planck PR4 data*

• **Cross-correlation**

- [Carron, Lewis, Fabbian, PRD 106 103507 (2022)] *Planck ISW-lensing likelihood and the CMB temperature*

and many others...