

Colloque national Action Dark Energy - 6/7 Nov. 2023

Search for light Dark Matter with the DAMIC & DAMIC-M experiments

<u>Outline</u>

• What is the DARK MATTER?

- What are DAMIC & DAMIC-M?
- DAMIC & DAMIC-M results

What is the DARK MATTER?

Some dark matter evidence

Dark matter candidates

DM detection strategies

DAMIC & DAMIC-M: Dark Matter in CCD

Aim detect Light DM (WIMP, Hidden Sector) signals via interaction with Si nucleus or e- in the bulk of CCDs

DM detection principle

DM detection principle

Hidden sector - Electron recoil

$$\Delta E_e \le \frac{1}{2} \mu_{\chi N} v^2 \simeq \frac{1}{2} \text{ eV} \times \left(\frac{m_{\chi}}{\text{MeV}}\right)$$

O(eV) Si band gap \rightarrow Hidden sector mass O(MeV)

Hidden photon absorption is also possible. DM photon can be DM candidate!

CCD readout

Skipper readout

Readout noise reduced by a factor 1/sqrt(NDCM)

Pixel charge distribution with SKIPPER amplifiers

[arXiv:1706.00028]

Photographing particles

Backgrounds

X-ray, n, DM?

μ

Background source

cosmic muons

external neutrons

external gammas

internal background

U-238, Th-232 chains

cosmogenic activation (in Cu and Si)

dark current

Solution

underground laboratory

polyethylene shield

Pb shield

low background materials limit exposure to air (Rn) cleaning procedures

limit exposure to cosmic rays

low temperature

+ analysis techniques

+ optimization of the design

DAMIC at SNOLAB

 $675 \,\mu\text{m}$ thick, 16 Mpix CCD, 6 g 6 cm VIB Lead Kapton Copper Lead block Kapton signal cable module signal cable Cu box with CCDs Cu vacuum vessel

6g/CCD Polyethylene

Detector: 7 CCDs, 4kx4k pixels, 0.675 mm thick,

Temperature: ~140 K

Location: SNOLAB (Canada)

Resolution: 1.6 e-

Dark current: < 0.001 e-/pix/day

Background: ~12 d.r.u*

Operation: 2017-2019, upgrade in 2021

DAMIC at SNOLAB - WIMP search

Unknown origin of the excess. Took data with skipper CCDs (DAMIC-M CCDs) to understand it.

DAMIC at SNOLAB - Upgrade

- Aim: investigate event excess found in DAMIC
- Two 24 Mpix DAMIC-M skipper CCDs (18 g Si target) installed in Oct-Nov 2021.
- Detector commissioning completed in early 2022.

Confirmation of the excess of bulk events, with unknown origin. [arxiv:2306.01717]

DAMIC-M prototype CCDs

SENSEI CCDs

DAMIC-M features

(*) 1 d.r.u = 1 event/kg/day/keV

DAMIC-M physics reach

WIMP nuclear scattering

DAMIC-M physics reach

Status of DAMIC-M

Compton measurement setup @UChicago

- Detector design almost finalized and some part prototypes are tested
- CCD production ongoing
- Electronics designed, under test
- Calibration with radioactive sources:
 - o gamma source: Phys. Rev. D 106, 092001
 - neutron source: ongoing
- Low Background chamber operating at LSM
- Installation in 2024

Low Background Chamber

• Aim:

- Demonstrate the ability to control backgrounds for DAMIC-M
- integration/operation of DAMIC-M electronics
- Provide test bench for dark current studies and reduction strategies
- First dark matter search

• Achievements:

- Installed at LSM at the end of 2021
- First results for hidden sector candidates with an exposure of 85.2 gr-day
- Upgrade with DAMIC-M modules:
 2 modules = 8 CCDs (1,5k x 6k)

kapton cable

lead

open shielding

2 skipper CCDs 4k x 6k pix (18 g)

lead

lead

Ancient lead

Cu box

polyethylene

LBC - Data Selection

- **Image selection**: exclude images with outlier dark current
- **Cluster reconstruction**: adjacent pixels with charge > (3 x resolution) and at least 1 pixel ≥ 2e-
- Cluster + CTI mask: mask clusters with charge > 7e + 10 trailing pixels in horizontal and vertical directions to account for Charge Transfer Inefficiencies

Defect mask:

- Columns with excess of 1e- pixels (1e- rate vs column number)
- High-charge pixels appearing in multiple 3-hour exposures
- Columns with deficit of 1e- pixels (indication of serial register defect); mask all trailing columns
- Edge mask: Five-pixel window surrounding image

cluster + CTI

CCD edge

columns

trailing serial register defect

Partial CCD image

hot cols

LBC - Dark matter-electron limit setting

Measure single pixel charge distribution (PCD) per amplifier per CCD

DM signal generation:

- QEdark to generate differential rate of DM signal with halo parameters from PhystatDM (<u>arXiv: 2105.00599 (2021)</u>)
- apply detector response: : eV to e- conversion with low energy ionization yield (<u>PRD 102,</u> <u>063026 (2020)</u>) and diffusion model using parameters measured with LBC CCD
- **Fit whole PCD** and perform **binned joint likelihood minimization** to set 90% C.L. upper limits in cross section-DM mass parameter space:

24

LBC - 90% CL upper limits results

World leading exclusion limits on DM-electron interactions in the mass ranges [1.6-1000 MeV] and [1.5-15.1 MeV] for ultralight and heavy mediator interactions

LBC - 90% CL upper limits results

You can find <u>our paper</u> among PRL editors' suggestions!!!!

PHYSICAL REVIEW LETTERS											
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Editorial Team	٣	
Highlights											
Category -			Editors' Suggestion PDF HTML First Constraints from DAMIC-M on Sub-GeV Dark-Matter Particles Interacting with Electrons								
 Featured in Physics (3,879) Open Access (603) 			I. Arnquist <i>et al.</i> (DAMIC-M Collaboration) Phys. Rev. Lett. 130 , 171003 (2023) – Published 28 April 2023								
Milestone (39) Section -			with dark matter in the MeV to GeV range by the first underground operation of a new CCD detector. Show Abstract +								

LBC - <u>Daily modulation</u> 90% CL upper limits results

We performed a time-dependent analysis to look for a daily modulated DM signal above a time-independent background. DM expected to be modulated over a sidereal day due their interactions in the Earth

Daily modulation analysis improves up to ~2 orders of magnitude the previous DAMIC-M limits, with the same data set!

Current best constraints from searches for a non-relativistic flux of DM particles incident on Earth, for the mass ranges [0.53, 1000] MeVan d [0.53, 15.1] MeV for ultralight and hevy mediator interactions

LBC - Current status and next steps

Current status:

- 2 DAMIC-M modules installed in LBC: 8 6k x 1.5k skipper CCDs
- Commissioning phase: optimization of parameters, study of CCD performances and noise
- Lower dark current: 3 times lower
- Lower background (to be measured):
 - Cleaner CCDs (shorter surface exposure)
 - More electroformed copper parts (EFCu box lids)
 - Lower background cables

Next steps:

- Improve sub-electron resolution: Custom readout electronics for lower noise with fewer Nskips

LBC installation, December 2021

Thank you for the attention

