

Smoking guns on beyond GR physics gravitational phase transitions

Daniela Doneva

University of Tübingen

Approaches in testing strong gravity

Model independent (e.g. PPN formalism)

- Much simpler
- No prior knowledge of the modified gravity theory is needed
- Mapping to a modified gravity models is not straightforward
- Performing dynamics is not possinle

Model dependent

(bounded to a given modified gravity theory)

- Observational implications predicted self consistently from a modified theory
- Gives intuition about what is physically relevant
- Much more involved

Approaches in testing strong gravity

Model independent (e.g. PPN formalism)

- Much simpler
- No prior knowledge of the modified gravity theory is needed
- Mapping to a modified gravity models is not straightforward
- Performing dynamics is not possinle

Model dependent (bounded to a given modified gravity theory)

- Observational implications predicted self consistently from a modified theory
- Gives intuition about what is physically relevant
- Much more involved

Lovelock's theorem

Einstein's field equations are **unique** if:

- $\checkmark\,$ we are working in **four dimensions**
- ✓ diffeomorphism invariance is respected
- ✓ the metric is the only field mediating gravity
- ✓ the equations are **second-order differential equations**.

Extra scalar field(s)

Quantum gravity motivated:

- Gauss-Bonnet gravity
- Chern-Simons gravity ۲

Cosmology:

- Ultralight axion dark matter
- Inflation scalar field
- f(R), Horndeski gravity

Daniela Doneva

Quantitative vs. Qualitative

Daniela Doneva

Quantitative changes

Modifying the theory of gravity ⇔ EOS uncertainty

Daniela Doneva

Quantitative changes

Modifying the theory of gravity ⇔ EOS uncertainty

Daniela Doneva

Quantitative vs. Qualitative

Daniela Doneva

Jumps in GW emission during merger

Daniela Doneva

• Gauss-Bonnet gravity – the equations are of second order

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \Big[R - 2\nabla_{\mu} \varphi \nabla^{\mu} \varphi - V(\varphi) + \lambda^2 f(\varphi) \mathcal{R}_{GB}^2 \Big]$$

Gauss-Bonnet invariant:
$$\mathcal{R}_{GB}^2 = R^2 - 4R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta}$$

- With a proper choice of $f(\varphi)$:
 - ✓ Perturbatively equivalent to GR in the weak field
 - ✓ Nonlinear effects for strong fields scalarization

• Scalar field equation :

$$\nabla_{\alpha}\nabla^{\alpha}\varphi = \frac{1}{4}\frac{dV(\varphi)}{d\varphi} - \frac{\lambda^2}{4}\frac{df(\varphi)}{d\varphi}\mathcal{R}_{GB}^2,$$

• Conditions for the existence of scalarized solutions

$$(\Box - \mu_{\text{eff}}^2)\delta\varphi = 0 \text{ with } \mu_{\text{eff}}^2 = -\frac{\lambda^2}{4}\frac{d^2f}{d\varphi^2}(0)R_{GB}^2 < 0$$

• If $\mu_{eff}^2 < 0$ a **tachyonic instability** is present leading to development of the scalar field. DD, Yazadjiev PRL (2018), Antoniou et al. PRL (2018), Silva et al. PRL (2018)

• Scalar field equation :

$$\nabla_{\alpha}\nabla^{\alpha}\varphi = \frac{1}{4}\frac{dV(\varphi)}{d\varphi} - \frac{\lambda^2}{4}\frac{df(\varphi)}{d\varphi}\mathcal{R}_{GB}^2,$$

• Conditions for the existence of scalarized solutions

$$(\Box - \mu_{\text{eff}}^2)\delta\varphi = 0 \text{ with } \mu_{\text{eff}}^2 = -\frac{\lambda^2}{4}\frac{d^2f}{d\varphi^2}(0)R_{GB}^2 < 0$$

- If $\mu_{eff}^2 < 0$ a **tachyonic instability** is present leading to development of the scalar field. DD, Yazadjiev PRL (2018), Antoniou et al. PRL (2018), Silva et al. PRL (2018)
- Expand $f(\varphi)$ in series around $\varphi = 0$:

$$f(\varphi) = f_0 + f_1 \varphi + f_2 \varphi^2 + f_3 \varphi^3 + f_4 \varphi^4 + O(\varphi^5)$$

• Scalar field equation :

$$\nabla_{\alpha}\nabla^{\alpha}\varphi = \frac{1}{4}\frac{dV(\varphi)}{d\varphi} - \frac{\lambda^2}{4}\frac{df(\varphi)}{d\varphi}\mathcal{R}_{GB}^2,$$

• Conditions for the existence of scalarized solutions

$$(\Box - \mu_{\text{eff}}^2)\delta\varphi = 0 \text{ with } \mu_{\text{eff}}^2 = -\frac{\lambda^2}{4}\frac{d^2f}{d\varphi^2}(0)R_{GB}^2 < 0$$

- If $\mu_{eff}^2 < 0$ a **tachyonic instability** is present leading to development of the scalar field. DD, Yazadjiev PRL (2018), Antoniou et al. PRL (2018), Silva et al. PRL (2018)
- Expand $f(\varphi)$ in series around $\varphi = 0$:

$$f(\varphi) = f_0 + f_1 \varphi + f_2 \varphi^2 + f_3 \varphi^3 + f_4 \varphi^4 + O(\varphi^5)$$

For scalarization
$$\frac{d^2f}{d\varphi^2} \neq 0$$

Daniela Doneva

(De)scalarization with a jump during merger

$$f(\varphi) = \frac{1}{2\beta} \left(1 - e^{-\beta \left(\varphi^2 + \kappa \varphi^4\right)} \right)$$

- Transition from **stable scalarized to GR** happens with a **jump**
- For a similar effect for charged BH see Blázquez-Salcedo et al. PLB (2020)

Daniela Doneva

(De)scalarization WITHOUT a jump during merger

$$f(\varphi) = \frac{1}{12} \left(1 - e^{-6\varphi^2} \right) (\beta = 6, \kappa = 0)$$

Daniela Doneva

2nd June, Tours

(De)scalarization WITHOUT a jump during merger

(De)scalarization WITH a jump during merger

$$f(\varphi) = \frac{1}{12} \left(1 - e^{-6(\varphi^2 + 16\varphi^4)} \right) (\beta = 6, \kappa = 16)$$

DD, Vano-Vinuales, Yazadjiev PRD (2022)

Daniela Doneva

(De)scalarization WITH a jump during merger

$$f(\varphi) = \frac{1}{12} \left(1 - e^{-6(\varphi^2 + 16\varphi^4)} \right) (\beta = 6, \kappa = 16)$$

• Similarities with the matter phase transitions during neutron star binary mergers Most et al. PRL (2019), Bauswein et al. PRL (2019), Weih et al. (2020).

Daniela Doneva

Gravitational Phase Transitions

Daniela Doneva

Matter phase transitions in GR: Twin Stars

• Matter phase transitions from nuclear matter to deconfined quark matter

Daniela Doneva

Scalarized neutron stars – DEF model

 Scalarization of neutron stars Damour&Esposito-Farese PRL (1993) due to a nonzero trace of the energy momentum tensor. Energetically more favorable over the GR solutions.

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} \left[R - 2g^{\mu\nu}\partial_{\mu}\varphi\partial_{\varphi}\varphi - 4V\varphi \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$

Kinetic term

- Coupling function polynomial expansion in φ $\alpha(\varphi) = \frac{d \ln(A(\varphi))}{d\varphi} = \alpha_0 + \beta_0 \varphi$
- Scalar field equation: $\Box \varphi = -4\pi G_* \alpha(\varphi) T$ (reminder in sGB gravity $\Box \varphi = -\frac{\lambda^2}{4} \frac{df(\varphi)}{d\varphi} R_{GB}^2$)

Daniela Doneva

$$\alpha(\varphi) = \alpha_0 + \beta_0 \varphi$$

• Brans-Dicke theory – $\varphi = 0$ NOT a solutions, ruled out by weak field observations

Scalarized neutron stars – DEF model

$$\alpha(\varphi) = \chi_0 + \beta_0 \varphi \text{ (reminder } \mu_{\text{eff}}^2 = \frac{d\alpha}{d\varphi}|_{\varphi=0} 4\pi G_\star T < 0)$$

• Original DEF model Damour&Esposito-Farese (1993)

Daniela Doneva

Observational constraints – binary pulsars

Daniela Doneva

28th March, MPIfR

Original DEF model – Ruled out!

Kramer et al (2021), Zhao et al. (2022)

Daniela Doneva

28th March, MPIfR

Evading the constraints – massive scalar field

Scalar field potential

- Introduces an effective range of the scalar field connected to its Compton wavelength $\lambda_{\varphi} = \frac{2\pi}{m_{\varphi}}$
- For $r \gg \lambda_{arphi}$ the scalar field drops exponentially.
- For $m_{\varphi} \gg 10^{-16} {\rm eV}$: not constraints on β_0 Ramazanoglu,Pretorius(2016), Yazadjiev,DD(2016), Rosca-Mead et al. (2020)

Daniela Doneva

Gravitational phase transition

• DEF model with a massive scalar field

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{g} \left[R - 2g^{\mu\nu} \partial_\mu \varphi \partial_\varphi \varphi - 4V(\varphi) \right] + S_m [\psi_m, A^2(\varphi)g_{\mu\nu}]$$

• $V(\varphi) \neq 0$ in order to **avoid binary pulsar constraints zhao et al. (2022)**

Daniela Doneva

Effective power-spectral density

- Spherically symmetric perturbations ⇒ emission of breathing modes
- Observational period 2 months, distance 10kpc

Daniela Doneva

Binary neutron star mergers

Kuan, Lam, DD, Yazadjiev, Shibata, Kiuchi (2023)

Daniela Doneva

NS scalarization in Gauss-Bonnet gravity

• Scalar field trigerred by the curvate itself through R_{GB}^2

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \Big[R - 2\nabla_\mu \varphi \nabla^\mu \varphi + \lambda^2 f(\varphi) \mathcal{R}_{GB}^2 \Big] + S_{\text{matter}}(g_{\mu\nu}, \chi)$$

Daniela Doneva

EMRIs - inverse chirp signal

Daniela Doneva

Supermassive black holes beyond GR

Kerr black holes with scalar hair

• A minimally coupled **complex massive scalar field** Φ

$$S = \int \left[\frac{R}{2} - g^{\mu\nu} \partial_{\mu} \Phi^* \partial_{\nu} \Phi - 2U(\Phi) \right] \sqrt{-g} d^4 x , \quad \text{with} \quad U = \frac{1}{2} \mu^2 |\Phi|^2$$

- Scalar field **NOT** stationarity and axisymmetric (similar to boson start) $\Phi = \phi(r, \theta) e^{i(\omega t + m\varphi)}$
- The Noether charge -> number of particles.
- The scalar field forms a torus (similar to rotating boson stars)

Circular orbits structure

Collodel, DD, Yazadjiev PRD (2021, 2022)

Daniela Doneva

Extreme mass-ratio inspiral

- A small object (e.g. a black hole) orbiting a massive black
- Can be observed with LISA
- A perfect way to "feel" the geometry of spacetime

CREDIT: N. FRANCHINI

Daniela Doneva

Extreme mass-ratio inspiral

Daniela Doneva

- GWs are among the ultimate tools to test beyond-GR physics
- Quantitative vs. Qualitative tracing the smoking guns
- Jumps (Gravitational phase transitions) in the equilibrium properties ⇒ specifics in the GW signal
- **Final goal:** understand which exotics are physically motivated and constrain them via GWs.

THANK YOU!

Scalar radiation

- Massive scalar field: Modes with distinct frequencies propagate at different subluminal velocities
- A dispersively stretched burst

Daniela Doneva