Quasinormal modes of higher-derivative Kerr black holes

Pablo A. Cano

based on JHEP 05 (2019) w/ Alejandro Ruipérez Phys. Rev. D 102 (2020), 044047 w/ Kwinten Fransen, Thomas Hertog Phys. Rev. D 105 (2022) 2, 024064 w/ KF, TH and Simon Maenaut arXiv: 2304.02663 and 23XX.XXXXX w/ KF, TH and SM

Journèes Relativistes de Tours, 2 June 2023

KU LEUVEN

Gravitational waves \rightarrow probes of gravity

$$R_{\mu\nu}=0?$$

$$g_{\mu\nu}^{\mathsf{BH}} = g_{\mu\nu}^{\mathsf{Kerr}}(M, a)$$
?

Gravitational waves \rightarrow probes of gravity

$$R_{\mu\nu} = 0?$$

$$g_{\mu\nu}^{\text{BH}} = g_{\mu\nu}^{\text{Kerr}}(M, a)$$
?

Look for specific deviations from GR

Gravitational waves \rightarrow probes of gravity

$$R_{\mu\nu} = 0?$$

 $g_{\mu\nu}^{BH} = g_{\mu\nu}^{Kerr}(M, a)?$

Look for specific deviations from $\text{GR} \rightarrow \text{higher-derivative corrections}$

$$\mathcal{L} = R + \ell^2 \mathcal{R}^2 + \ell^4 \mathcal{R}^3 + \dots$$

Natural EFT extension of GR. Scale ℓ essentially unconstrained

Can we really see higher-derivative corrections? Depends on the scale ℓ

The first corrections are $\sim \ell^4 Riem^3$. The relative deviation Δ with respect to GR is of order

$$\Delta \sim \frac{\ell^4 (GM)^2}{r^6}$$

Can we really see higher-derivative corrections? Depends on the scale ℓ

The first corrections are $\sim \ell^4 Riem^3$. The relative deviation Δ with respect to GR is of order

$$\Delta \sim \frac{\ell^4 (GM)^2}{r^6}$$

$$\Delta_{Surf.Sun} \sim \left(\frac{\ell}{5 \times 10^8 \text{km}}\right)^4 , \quad \Delta_{Surf.Earth} \sim \left(\frac{\ell}{2 \times 10^8 \text{km}}\right)^4 , \quad \Delta_{BH}(10M_\odot) \sim \left(\frac{\ell}{40 \text{km}}\right)^4$$

Improve constraints by a factor $\sim 10^{30}$

Where to look for higher-derivative corrections?

Where to look for higher-derivative corrections?

Ringdown: most powerful test of GR

Where to look for higher-derivative corrections?

Ringdown: most powerful test of GR
Controlled by the **quasinormal modes**
$$h = \sum_{n=0} c_n e^{-i\omega_n t}, \quad \text{Im}(\omega_n) < 0$$

- $\bullet\,$ QNMs only depend on the final black hole \rightarrow mass and angular momentum
- Studied through perturbation theory
- Depend on the photon-sphere physics \to small length scale \to sensitive to short-distance modifications of GR

QNM frequencies of Kerr black holes: $\omega_{l,m,n}$

QNM frequencies of Kerr black holes: $\omega_{l,m,n}$

What about modifications of GR?

$$\mathcal{L} = \mathbf{R} + \text{corrections} \quad \Rightarrow \quad \omega = \omega^{\text{Kerr}} + \delta \omega$$

Computation of $\delta \omega$: crucial to test these theories, but remarkably challenging [Gualtieri, Pierini '21, '22], [Wagle, Yunes, Silva '21], [Srivastava, Chen, Shankaranarayanan '21], [Li, Wagle, Chen, Yunes '22], [Hussain, Zimmerman '22]

Pablo A. Cano

In this talk: general EFT extension of GR

$$\begin{split} S &= \frac{1}{16\pi G} \int d^4 x \sqrt{|g|} \left\{ R + \ell^4 \left(\lambda_{\rm ev} R_{\mu\nu}^{\ \rho\sigma} R_{\rho\sigma}^{\ \delta\gamma} R_{\delta\gamma}^{\ \mu\nu} + \lambda_{\rm odd} R_{\mu\nu}^{\ \rho\sigma} R_{\rho\sigma}^{\ \delta\gamma} \tilde{R}_{\delta\gamma}^{\ \mu\nu} \right) \\ &+ \ell^6 \left(\epsilon_1 C^2 + \epsilon_2 \tilde{C}^2 + \epsilon_3 C \tilde{C} \right) + O(\ell^8) \right\} \\ C &= R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} , \quad \tilde{C} = R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} , \quad \tilde{R}_{\mu\nu\rho\sigma} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} R^{\alpha\beta}_{\ \rho\sigma} \end{split}$$

In this talk: general EFT extension of GR

$$\begin{split} S &= \frac{1}{16\pi G} \int d^4 x \sqrt{|g|} \bigg\{ R + \ell^4 \left(\lambda_{ev} R_{\mu\nu}{}^{\rho\sigma} R_{\rho\sigma}{}^{\delta\gamma} R_{\delta\gamma}{}^{\mu\nu} + \lambda_{odd} R_{\mu\nu}{}^{\rho\sigma} R_{\rho\sigma}{}^{\delta\gamma} \tilde{R}_{\delta\gamma}{}^{\mu\nu} \right) \\ &+ \ell^6 \left(\epsilon_1 C^2 + \epsilon_2 \tilde{C}^2 + \epsilon_3 C \tilde{C} \right) + O(\ell^8) \bigg\} \\ C &= R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} , \quad \tilde{C} = R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} , \quad \tilde{R}_{\mu\nu\rho\sigma} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} R^{\alpha\beta}{}_{\rho\sigma} \end{split}$$

Goal: obtain $\delta \omega$ at first order in the couplings

PERTURBATIONS OF KERR BLACK HOLES

- 2 Perturbations of rotating black holes beyond GR
- **3** Corrections to the QNM frequencies
- 4 Conclusions

Quasinormal modes of Kerr black holes in a nutshell

Quasinormal modes of Kerr black holes in a nutshell

Metric perturbations $g_{\mu\nu} = g_{\mu\nu}^{\text{Kerr}} + h_{\mu\nu} \rightarrow \text{not practical}$

Quasinormal modes of Kerr black holes in a nutshell

Metric perturbations $g_{\mu\nu} = g_{\mu\nu}^{\text{Kerr}} + h_{\mu\nu} \rightarrow \text{not practical}$

Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

• Introduce null tetrad $\{I_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\}, I^{\mu}n_{\mu} = -1, m^{\mu}\bar{m}_{\mu} = 1$

Quasinormal modes of Kerr black holes in a nutshell

Metric perturbations $g_{\mu\nu} = g_{\mu\nu}^{\text{Kerr}} + h_{\mu\nu} \rightarrow \text{not practical}$

Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

- Introduce null tetrad $\{I_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\}, I^{\mu}n_{\mu} = -1, m^{\mu}\bar{m}_{\mu} = 1$
- Decompose Weyl tensor in the NP basis $\rightarrow \Psi_0, \Psi_1, \Psi_2, \Psi_3, \Psi_4$

Quasinormal modes of Kerr black holes in a nutshell

Metric perturbations $g_{\mu\nu} = g_{\mu\nu}^{\text{Kerr}} + h_{\mu\nu} \rightarrow \text{not practical}$

Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

- Introduce null tetrad $\{I_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\}, I^{\mu}n_{\mu} = -1, m^{\mu}\bar{m}_{\mu} = 1$
- Decompose Weyl tensor in the NP basis $\to \Psi_0, \, \Psi_1, \, \Psi_2, \, \Psi_3, \, \Psi_4$
- Key property: the Kerr metric algebraically special (Petrov type D):

$$\Psi_0^{(0)} = \Psi_1^{(0)} = \Psi_3^{(0)} = \Psi_4^{(0)} = 0$$

Quasinormal modes of Kerr black holes in a nutshell

Metric perturbations $g_{\mu\nu} = g_{\mu\nu}^{\text{Kerr}} + h_{\mu\nu} \rightarrow \text{not practical}$

Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

- Introduce null tetrad $\{I_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\}, I^{\mu}n_{\mu} = -1, m^{\mu}\bar{m}_{\mu} = 1$
- Decompose Weyl tensor in the NP basis $\rightarrow \Psi_0, \Psi_1, \Psi_2, \Psi_3, \Psi_4$
- Key property: the Kerr metric algebraically special (Petrov type D):

$$\Psi_0^{(0)} = \Psi_1^{(0)} = \Psi_3^{(0)} = \Psi_4^{(0)} = 0$$

• For perturbations around Kerr, $\delta\Psi_0$ and $\delta\Psi_4$ satisfy decoupled equations

$$\mathcal{D}_{+2}\delta\Psi_0=0\,,\quad \mathcal{D}_{-2}\delta\Psi_4=0$$

These are the **Teukolsky equations**. Arise as a combination of Bianchi identities $\nabla_{[\alpha} R_{\mu\nu]\rho\sigma} = 0$

Teukolsky equations are decoupled, homogeneous second-order equations

Furthermore, they are separable

$$\delta \Psi_0 = e^{-i\omega t + im\phi} R_2(r) S_2(x) , \quad \delta \Psi_4 = e^{-i\omega t + im\phi} (r - iax)^{-4} R_{-2}(r) S_{-2}(x)$$

Teukolsky equations are decoupled, homogeneous second-order equations

Furthermore, they are separable

$$\delta \Psi_0 = e^{-i\omega t + im\phi} R_2(r) S_2(x) , \quad \delta \Psi_4 = e^{-i\omega t + im\phi} (r - iax)^{-4} R_{-2}(r) S_{-2}(x)$$

$$\frac{d}{dx}\left[(1-x^2)\frac{dS_s}{dx}\right] + \left[(a\omega)^2x^2 - 2sa\omega x + B_{lm} - \frac{(m+sx)^2}{1-x^2}\right]S_s = 0$$
$$\Delta^{-s+1}\frac{d}{dr}\left[\Delta^{s+1}\frac{dR_s}{dr}\right] + VR_s = 0$$

where $x = \cos \theta$, $\Delta = r^2 - 2Mr + a^2$

Teukolsky equations are decoupled, homogeneous second-order equations

Furthermore, they are separable

$$\delta \Psi_0 = e^{-i\omega t + im\phi} R_2(r) S_2(x) , \quad \delta \Psi_4 = e^{-i\omega t + im\phi} (r - iax)^{-4} R_{-2}(r) S_{-2}(x)$$

$$\frac{d}{dx}\left[(1-x^2)\frac{dS_s}{dx}\right] + \left[(a\omega)^2x^2 - 2sa\omega x + B_{lm} - \frac{(m+sx)^2}{1-x^2}\right]S_s = 0$$
$$\Delta^{-s+1}\frac{d}{dr}\left[\Delta^{s+1}\frac{dR_s}{dr}\right] + VR_s = 0$$

where $x = \cos \theta$, $\Delta = r^2 - 2Mr + a^2$

 \rightarrow 1-dim. Schrödinger equation

$$\begin{split} & \frac{d^2\varphi}{d\rho_*^2} + \left(\omega^2 - V(\rho_*,\omega)\right)\varphi = 0 \\ & \varphi \propto R_s \,, \quad \rho_* = \rho_*(r) \end{split}$$

2 Perturbations of rotating black holes beyond GR

3 Corrections to the QNM frequencies

4 Conclusions

Challenges

• Background black hole not known analytically

- Background black hole not known analytically
- No Petrov type $D \rightarrow$ no Teukolsky equations

- Background black hole not known analytically
- No Petrov type $\mathsf{D} \to \mathsf{no}$ Teukolsky equations
- Non-separability

- Background black hole not known analytically
- No Petrov type $\mathsf{D} \to \mathsf{no}$ Teukolsky equations
- Non-separability
- EOM of higher order in derivatives

$$\mathcal{E}_{\pm 2}\left(\Psi_{i},\,\Phi\right)=0\,,\qquad\text{where}\qquad\Phi=\{e^{a}_{\mu},\,\gamma_{abc},\,R_{ab}\}$$

$$\mathcal{E}_{\pm 2}(\Psi_i, \Phi) = 0$$
, where $\Phi = \{e^a_{\mu}, \gamma_{abc}, R_{ab}\}$

• For Ricci-flat Petrov type D it reduces to Teukolsky

 $\mathcal{D}_{\pm 2}(\delta \Psi_{0,4}) = 0$

$$\mathcal{E}_{\pm 2}(\Psi_i, \Phi) = 0$$
, where $\Phi = \{e^a_{\mu}, \gamma_{abc}, R_{ab}\}$

• For Ricci-flat Petrov type D it reduces to Teukolsky

$$\mathcal{D}_{\pm 2}(\delta \Psi_{0,4}) = 0$$

• For departures from that we have

$$\mathcal{D}_{\pm 2}(\delta \Psi_{0,4}) = \lambda F \left(\delta \Psi_i, \, \delta \Phi \right)$$

$$\mathcal{E}_{\pm 2}(\Psi_i, \Phi) = 0$$
, where $\Phi = \{e^a_{\mu}, \gamma_{abc}, R_{ab}\}$

• For Ricci-flat Petrov type D it reduces to Teukolsky

$$\mathcal{D}_{\pm 2}(\delta \Psi_{0,4}) = 0$$

• For departures from that we have

$$\mathcal{D}_{\pm 2}(\delta \Psi_{0,4}) = \lambda F \left(\delta \Psi_i, \, \delta \Phi \right)$$

There are still outstanding challenges

How to decouple this? How to obtain radial equations?

From Universal Teukolsky to master radial equations

() Evaluate the Universal Teukolsky equations \rightarrow needs background geometry

From Universal Teukolsky to master radial equations

- **()** Evaluate the Universal Teukolsky equations \rightarrow needs background geometry
- **(a)** Express the equations only in terms of $\delta \Psi_{0,4} \rightarrow$ Metric reconstruction $h_{\mu\nu}(\delta \Psi_{0,4})$

From Universal Teukolsky to master radial equations

- **()** Evaluate the Universal Teukolsky equations \rightarrow needs background geometry
- **(a)** Express the equations only in terms of $\delta \Psi_{0,4} \rightarrow$ Metric reconstruction $h_{\mu\nu}(\delta \Psi_{0,4})$
- Seffective separation of the equation

Assume
$$\delta \Psi_0 = e^{-i\omega t + im\phi} R_s^{lm}(r) S_s^{lm}(x) \rightarrow \text{project on } S_s^{lm}(x)$$

Perturbations of rotating black holes beyond GR

(1) Rotating black hole solutions PAC, Ruipérez '19:

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma} - H_{1}\right)dt^{2} - (1 + H_{2})\frac{4Mar(1 - x^{2})}{\Sigma}dtd\phi + (1 + H_{3})\Sigma\left(\frac{dr^{2}}{\Delta} + \frac{dx^{2}}{1 - x^{2}}\right) + (1 + H_{4})\left(r^{2} + a^{2} + \frac{2Mra^{2}(1 - x^{2})}{\Sigma}\right)(1 - x^{2})d\phi^{2}$$

where Σ and Δ are given by

$$\Sigma = r^2 + a^2 x^2, \qquad \Delta = r^2 - 2Mr + a^2, \qquad x = \cos \theta$$

Perturbations of rotating black holes beyond GR

(1) Rotating black hole solutions PAC, Ruipérez '19:

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma} - H_{1}\right)dt^{2} - (1 + H_{2})\frac{4Mar(1 - x^{2})}{\Sigma}dtd\phi$$
$$+ (1 + H_{3})\Sigma\left(\frac{dr^{2}}{\Delta} + \frac{dx^{2}}{1 - x^{2}}\right) + (1 + H_{4})\left(r^{2} + a^{2} + \frac{2Mra^{2}(1 - x^{2})}{\Sigma}\right)(1 - x^{2})d\phi^{2}$$

where Σ and Δ are given by

$$\Sigma = r^2 + a^2 x^2, \qquad \Delta = r^2 - 2Mr + a^2, \qquad x = \cos \theta$$

Power series in χ : **analytic solution**

$$H_{i} = \sum_{n=0}^{\infty} \chi^{n} \sum_{p=0}^{n} \sum_{k=0}^{k_{\max}} H_{i}^{(n,p,k)} \frac{\chi^{p}}{r^{k}}$$

n = 14 accurate for $\chi \sim 0.7$

(2) Metric reconstruction Dolan, Kavanagh, Wardell '21

$$h_{\mu\nu} = -\frac{i}{3M\omega} \nabla_{\beta} \left[\zeta^{4} \nabla_{\alpha} C_{(\mu \ \nu)}^{\alpha \ \beta} \right] - \frac{i}{3M\omega} \nabla_{\beta} \left[(\zeta^{*})^{4} \nabla_{\alpha} \bar{C}_{(\mu \ \nu)}^{\alpha \ \beta} \right]$$

$$C_{\mu\alpha\nu\beta} = 4 \left(\psi_0 n_{[\mu}\bar{m}_{\alpha]} n_{[\nu}\bar{m}_{\beta]} + \psi_4 I_{[\mu}m_{\alpha]} I_{[\nu}m_{\beta]} \right)$$
$$\bar{C}_{\mu\alpha\nu\beta} = 4 \left(\psi_0^* n_{[\mu}m_{\alpha]} n_{[\nu}m_{\beta]} + \psi_4^* I_{[\mu}\bar{m}_{\alpha]} I_{[\nu}\bar{m}_{\beta]} \right)$$

(2) Metric reconstruction Dolan, Kavanagh, Wardell '21

$$h_{\mu\nu} = -\frac{i}{3M\omega} \nabla_{\beta} \left[\zeta^{4} \nabla_{\alpha} C_{(\mu \ \nu)}^{\alpha \ \beta} \right] - \frac{i}{3M\omega} \nabla_{\beta} \left[(\zeta^{*})^{4} \nabla_{\alpha} \bar{C}_{(\mu \ \nu)}^{\alpha \ \beta} \right]$$

$$C_{\mu\alpha\nu\beta} = 4 \left(\psi_0 n_{[\mu} \bar{m}_{\alpha]} n_{[\nu} \bar{m}_{\beta]} + \psi_4 l_{[\mu} m_{\alpha]} l_{[\nu} m_{\beta]} \right)$$

$$\bar{C}_{\mu\alpha\nu\beta} = 4 \left(\psi_0^* n_{[\mu} m_{\alpha]} n_{[\nu} m_{\beta]} + \psi_4^* l_{[\mu} \bar{m}_{\alpha]} l_{[\nu} \bar{m}_{\beta]} \right)$$

$$\begin{split} \psi_0 &= e^{-i\omega t + im\phi} R_2(r) S_2(x) & \psi_0^* &= e^{-i\omega t + im\phi} R_2^*(r) S_{-2}(x) \\ \psi_4 &= e^{-i\omega t + im\phi} \zeta^{-4} R_{-2}(r) S_{-2}(x) & \psi_4^* &= e^{-i\omega t + im\phi} (\zeta^*)^{-4} R_{-2}^*(r) S_2(x) \end{split}$$

(2) Metric reconstruction Dolan, Kavanagh, Wardell '21

$$h_{\mu\nu} = -\frac{i}{3M\omega} \nabla_{\beta} \left[\zeta^{4} \nabla_{\alpha} C_{(\mu \ \nu)}^{\ \alpha \ \beta} \right] - \frac{i}{3M\omega} \nabla_{\beta} \left[(\zeta^{*})^{4} \nabla_{\alpha} \bar{C}_{(\mu \ \nu)}^{\ \alpha \ \beta} \right]$$

$$C_{\mu\alpha\nu\beta} = 4 \left(\psi_0 n_{[\mu} \bar{m}_{\alpha]} n_{[\nu} \bar{m}_{\beta]} + \psi_4 l_{[\mu} m_{\alpha]} l_{[\nu} m_{\beta]} \right)$$

$$\bar{C}_{\mu\alpha\nu\beta} = 4 \left(\psi_0^* n_{[\mu} m_{\alpha]} n_{[\nu} m_{\beta]} + \psi_4^* l_{[\mu} \bar{m}_{\alpha]} l_{[\nu} \bar{m}_{\beta]} \right)$$

$$\begin{split} \psi_0 &= e^{-i\omega t + im\phi} R_2(r) S_2(x) & \psi_0^* &= e^{-i\omega t + im\phi} R_2^*(r) S_{-2}(x) \\ \psi_4 &= e^{-i\omega t + im\phi} \zeta^{-4} R_{-2}(r) S_{-2}(x) & \psi_4^* &= e^{-i\omega t + im\phi} (\zeta^*)^{-4} R_{-2}^*(r) S_2(x) \end{split}$$

The radial functions can be related by

$$\begin{aligned} R^*_{+2} &= q_{+2}R_{+2} & R_{-2} &= C_{+2}\Delta^2 \left(\mathcal{D}_0\right)^4 \left(\Delta^2 R_{+2}\right) \\ R^*_{-2} &= q_{-2}R_{-2} & R_{+2} &= C_{-2} \left(\mathcal{D}_0^\dagger\right)^4 R_{-2} \end{aligned}$$

 $q_{\pm 2} \rightarrow$ polarization, $C_{\pm 2} \rightarrow$ Starobinsky-Teukolsky constants, $C_{+2}C_{-2} = \mathcal{K}^{-2}$

(2) Metric reconstruction

The Teukolsky variables are proportional to the metric variables

$$\delta \Psi_s = \mathbf{P}_s \psi_s \,, \quad \delta \Psi_s^* = \mathbf{P}_s^* \psi_s^* \,.$$

The constants P_s , P_s^* depend on the polarization parameters q_s and ST constants C_s and are given by

$$P_{\pm 2} = \frac{1}{2} \pm \frac{iD_2q_{\pm 2}}{24M\omega} \mp \frac{iC_{\pm 2}q_{\mp 2}\mathcal{K}^2}{6M\omega} ,$$
$$P_{\pm 2}^* = \frac{1}{2} \pm \frac{iD_2}{24M\omega q_{\pm 2}} \mp \frac{iC_{\pm 2}\mathcal{K}^2}{6M\omega q_{\pm 2}}$$

Start with

$$\delta \Psi_{s} = e^{-i\omega t + im\phi} \zeta^{s-2} \sum_{l} R_{s}^{lm}(r) S_{s}^{lm}(x)$$

Start with

$$\delta \Psi_{s} = e^{-i\omega t + im\phi} \zeta^{s-2} \sum_{l} R_{s}^{lm}(r) S_{s}^{lm}(x)$$

② Find $h_{\mu\nu}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation

Start with

$$\delta \Psi_s = e^{-i\omega t + im\phi} \zeta^{s-2} \sum_l R_s^{lm}(r) S_s^{lm}(x)$$

- Find $h_{\mu\nu}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation
- Project the equation onto the spheroidal harmonics

$$\mathfrak{D}_{s}^{2}R_{s}^{lm}=\lambda\sum_{l',s'}\mathcal{D}_{s'}^{l'}R_{s'}^{l'm}+c.c.$$

Start with

$$\delta \Psi_s = e^{-i\omega t + im\phi} \zeta^{s-2} \sum_l R_s^{lm}(r) S_s^{lm}(x)$$

- Find $h_{\mu\nu}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation
- Project the equation onto the spheroidal harmonics

$$\mathfrak{D}_{s}^{2}R_{s}^{lm}=\lambda\sum_{l',s'}\mathcal{D}_{s'}^{ll'}R_{s'}^{l'm}+c.c.$$

• QNMs are composed of leading harmonic $R_s^{l_0m} = O(1), R_s''^m = O(\lambda)$. Leading harmonic satisfies decoupled equation

$$\mathfrak{D}_{s}^{2}R_{s}^{lm}=\lambda\sum_{s'}\mathcal{D}_{s'}^{ll}R_{s'}^{lm}+c.c.+O(\lambda^{2})$$

Start with

$$\delta \Psi_s = e^{-i\omega t + im\phi} \zeta^{s-2} \sum_l R_s^{lm}(r) S_s^{lm}(x)$$

- Find $h_{\mu\nu}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation
- Project the equation onto the spheroidal harmonics

$$\mathfrak{D}_{s}^{2}R_{s}^{lm}=\lambda\sum_{l',s'}\mathcal{D}_{s'}^{ll'}R_{s'}^{l'm}+c.c.$$

• QNMs are composed of leading harmonic $R_s^{l_0m} = O(1), R_s''^m = O(\lambda)$. Leading harmonic satisfies decoupled equation

$$\mathfrak{D}_{s}^{2}R_{s}^{lm}=\lambda\sum_{s'}\mathcal{D}_{s'}^{l'}R_{s'}^{lm}+c.c.+O(\lambda^{2})$$

Decouple $s = \pm 2$ and conjugates by using $q_{\pm 2}$ and ST identities

Result: corrected radial Teukolsky equations

$$\Delta^{-s+1} \frac{d}{dr} \left[\Delta^{s+1} \frac{dR_s}{dr} \right] + (V + \lambda \delta V) R_s = 0, \qquad \delta V = \sum_{n=-2}^{4} A_n r^n$$

Coefficients A_n analytic power series in χ : $A_n = \sum_{k=0}^{\infty} \chi^k A_{n,k}$

Result: corrected radial Teukolsky equations

$$\Delta^{-s+1} \frac{d}{dr} \left[\Delta^{s+1} \frac{dR_s}{dr} \right] + \left(V + \lambda \delta V \right) R_s = 0 , \qquad \delta V = \sum_{n=-2}^4 A_n r^n$$

Coefficients A_n analytic power series in χ : $A_n = \sum_{k=0}^{\infty} \chi^k A_{n,k}$

In total **4 equations** ($s = \pm 2$ and the conjugates)

For each harmonic numbers (I, m) these equations depend on

- Frequency ω
- Polarization q_{±2}
- Starobinsky-Teukolsky constants C_{±2} ("gauge" freedom)

Observe: for a QNM, all the equations are solved by the same frequency

Corrections to the QNM frequencies

1 Perturbations of Kerr black holes

2 Perturbations of rotating black holes beyond GR

3 Corrections to the QNM frequencies

4 Conclusions

Parity-preserving corrections

$$\omega = \omega^{\text{Kerr}} + \frac{\ell^4 \lambda_{\text{ev}}}{M^5} \delta \omega(\chi)$$

- Modes of even and odd parity decouple: q₊₂ = q₋₂ = ±1
- We can compute $\delta \omega$ either from the s = +2 or s = -2 equations
- The result should also be independent of C_{±2}

Parity-preserving corrections

$$\omega = \omega^{\text{Kerr}} + \frac{\ell^4 \lambda_{\text{ev}}}{M^5} \delta \omega(\chi)$$

- Modes of even and odd parity decouple: q₊₂ = q₋₂ = ±1
- We can compute $\delta \omega$ either from the s = +2 or s = -2 equations
- The result should also be independent of C_{±2}

We consider four different estimations of $\delta \omega$

$$\left. \delta \omega_{+2} \right|_{C_{+2}=0}, \quad \left. \delta \omega_{+2} \right|_{C_{+2}=\infty}, \quad \left. \delta \omega_{-2} \right|_{C_{-2}=0}, \quad \left. \delta \omega_{-2} \right|_{C_{-2}=\infty}$$

Consistency test: they should all agree

1

Corrections to the QNM frequencies

Result: (*I*, *m*) = (2, 2) modes at $O(\chi^6)$

Pablo A. Cano

Corrections to the QNM frequencies

Result: (*I*, *m*) = (2, 2) modes at $O(\chi^6)$

Pablo A. Cano

Remarks

- Consistency tests are satisfied
 - The s = +2 and s = -2 yield the same results \checkmark
 - Results independent of C_{±2}
 - Reproduce results at linear order in the spin

Remarks

- Consistency tests are satisfied
 - **1** The s = +2 and s = -2 yield the same results \checkmark
 - 2 Results independent of $C_{\pm 2}$ <
 - 🗕 Reproduce results at linear order in the spin 🗸
- Results converge for higher χ if we increase the order of the expansion
- The s = -2 equation converges much faster than s = +2

Corrections to the $QNM\ \mbox{frequencies}$

Larger spins: expansion $O(\chi^{12})$

Corrections to the QNM frequencies

Larger spins: expansion $O(\chi^{12})$

Parity-breaking corrections

$$\omega = \omega^{\text{Kerr}} + \frac{\ell^4 \lambda_{\text{odd}}}{M^5} \delta \omega(\chi)$$

- Modes of even and odd parity are coupled \rightarrow obtain $q_{\pm 2}$ together with ω by solving all the equations
- The result should also be independent of C_{±2}

Parity-breaking corrections

$$\omega = \omega^{\text{Kerr}} + \frac{\ell^4 \lambda_{\text{odd}}}{M^5} \delta \omega(\chi)$$

- Modes of even and odd parity are coupled → obtain q_{±2} together with ω by solving all the equations
- The result should also be independent of C_{±2}

Again we consider four different estimations of $\delta\omega$

$$\delta\omega_{+2}\big|_{\mathcal{C}_{+2}=0}, \quad \delta\omega_{+2}\big|_{\mathcal{C}_{+2}=\infty}, \quad \delta\omega_{-2}\big|_{\mathcal{C}_{-2}=0}, \quad \delta\omega_{-2}\big|_{\mathcal{C}_{-2}=\infty}$$

finding agreement

We use the s = -2 equation to find the results at higher χ

Corrections to the QNM frequencies

Parity-breaking corrections: (I, m) = (2, 2) mode at $O(\chi^{12})$

Observe: for the two different polarizations $\delta \omega^+ = -\delta \omega^-$

2 Perturbations of rotating black holes beyond GR

3 Corrections to the QNM frequencies

4 Conclusions

Conclusions

- New era of experimental gravity. We can probe GR and its extensions. QNMs are a key feature to test these theories
- Calculation of QNMs of highly-rotating BHs in HDG is a highly difficult problem
- We have provided the first working approach to compute these QNMs
- Ongoing work: higher spin and higher order in EFT (quartic terms)
- Future challenges: comparison with other approaches, understanding nearextremal black holes
- Ultimate goal: phenomenological analysis and search for corrections to GR in GWs

Conclusions

- New era of experimental gravity. We can probe GR and its extensions. QNMs are a key feature to test these theories
- Calculation of QNMs of highly-rotating BHs in HDG is a highly difficult problem
- We have provided the first working approach to compute these QNMs
- Ongoing work: higher spin and higher order in EFT (quartic terms)
- Future challenges: comparison with other approaches, understanding nearextremal black holes
- Ultimate goal: phenomenological analysis and search for corrections to GR in GWs

Thank you for your attention!

Bonus

Universal s = +2 Teukolsky equation

$$O_2^{(0)}(\Psi_0) + O_2^{(1)}(\Psi_1) + O_2^{(2)}(\Psi_0) = 8\pi \left(\mathcal{T}_2^{(0)} + \mathcal{T}_2^{(1)} + \mathcal{T}_2^{(2)} \right)$$

where

$$\begin{split} &O_2^{(0)} &= 2\left[(\mathsf{P}-4\rho-\rho^*)(\mathsf{P}'-\rho')-(\eth-4\tau-\tau'^*)(\eth'-\tau')-3\Psi_2\right]\,,\\ &O_2^{(1)} &= 4\left[2\kappa\left(\mathsf{P}'-\rho'^*\right)-2\sigma\left(\eth'-\tau^*\right)+2\left(\mathsf{P}'\kappa\right)-2\left(\eth'\sigma\right)+5\Psi_1\right]\,,\\ &O_2^{(2)} &= 6\left[\kappa\kappa'-\sigma\sigma'\right]\,, \end{split}$$

$$\begin{split} \mathcal{T}_{2}^{(0)} &= (\delta - \tau'^{*} - 4\tau) [(\mathfrak{P} - 2\rho^{*})T_{lm} - (\delta - \tau'^{*})T_{ll}] \\ &+ (\mathfrak{P} - 4\rho - \rho^{*}) [(\delta - 2\tau'^{*})T_{lm} - (\mathfrak{P} - \rho^{*})T_{mm}], \\ \mathcal{T}_{2}^{(1)} &= \frac{1}{2} \left[\sigma \mathfrak{P} - \kappa \delta \right] T - \left[3\sigma \left(\mathfrak{P}' - \rho'^{*} \right) - \sigma'^{*} \left(\mathfrak{P} - 4\rho - \rho^{*} \right) - \mathfrak{P} \left(\sigma'^{*} \right) \right] T_{ll} \\ &- 2 \left[\sigma \left(\delta - \tau - \tau'^{*} \right) + \delta \left(\sigma \right) \right] T_{l\bar{m}} + \left[3\sigma \left(\delta' - 2\tau^{*} \right) + 3\kappa \left(\mathfrak{P}' - 2\rho'^{*} \right) \right] T_{lm} \\ &- \left[3\kappa \left(\delta' - \tau^{*} \right) - \kappa^{*} \left(\delta - 4\tau - \tau'^{*} \right) - \delta \left(\kappa^{*} \right) \right] T_{mm} \\ &+ \left[\kappa \delta + \sigma \left(\mathfrak{P} - 2\rho - 2\rho^{*} \right) + 2\mathfrak{P} \left(\sigma \right) - \Psi_{0} \right] \left(T_{ln} + T_{m\bar{m}} \right) \\ &- 2 \left[\kappa \left(\mathfrak{P} - \rho - \rho^{*} \right) + \mathfrak{P} \left(\kappa \right) \right] T_{nm} , \\ \mathcal{T}_{2}^{(2)} &= 3 \left[\kappa \kappa'^{*} T_{ll} + \sigma \sigma^{*} T_{mm} \right] . \end{split}$$