Quasinormal modes of higher-derivative Kerr black holes

Pablo A. Cano

based on JHEP 05 (2019) w/ Alejandro Ruipérez
Phys. Rev. D 102 (2020), 044047 w/ Kwinten Fransen, Thomas Hertog Phys. Rev. D 105 (2022) 2, 024064 w/ KF, TH and Simon Maenaut arXiv: 2304.02663 and 23XX.XXXXX w/ KF, TH and SM

Journèes Relativistes de Tours, 2 June 2023

KU LEUVEN

Introduction

Gravitational waves \rightarrow probes of gravity

$$
\begin{aligned}
& R_{\mu \nu}=0 ? \\
& g_{\mu \nu}^{\mathrm{BH}}=g_{\mu \nu}^{\mathrm{Kerr}}(M, \mathrm{a}) ?
\end{aligned}
$$

Introduction

Gravitational waves \rightarrow probes of gravity

$$
\begin{aligned}
& R_{\mu \nu}=0 ? \\
& g_{\mu \nu}^{\mathrm{BH}}=g_{\mu \nu}^{\mathrm{Kerr}}(M, \mathrm{a}) ?
\end{aligned}
$$

Look for specific deviations from GR

Introduction

Gravitational waves \rightarrow probes of gravity

$$
\begin{aligned}
& R_{\mu \nu}=0 ? \\
& g_{\mu \nu}^{\mathrm{BH}}=g_{\mu \nu}^{\mathrm{Kerr}}(M, a) ?
\end{aligned}
$$

Look for specific deviations from GR \rightarrow higher-derivative corrections

$$
\mathcal{L}=R+\ell^{2} \mathcal{R}^{2}+\ell^{4} \mathcal{R}^{3}+\ldots
$$

Natural EFT extension of GR. Scale ℓ essentially unconstrained

Introduction

Can we really see higher-derivative corrections? Depends on the scale ℓ
The first corrections are $\sim \ell^{4}$ Riem ${ }^{3}$. The relative deviation Δ with respect to GR is of order

$$
\Delta \sim \frac{\ell^{4}(G M)^{2}}{r^{6}}
$$

Introduction

Can we really see higher-derivative corrections? Depends on the scale ℓ
The first corrections are $\sim \ell^{4}$ Riem ${ }^{3}$. The relative deviation Δ with respect to GR is of order

$$
\Delta \sim \frac{\ell^{4}(G M)^{2}}{r^{6}}
$$

$$
\Delta_{\text {Surf.Sun }} \sim\left(\frac{\ell}{5 \times 10^{8} \mathrm{~km}}\right)^{4}, \quad \Delta_{\text {Surf.Earth }} \sim\left(\frac{\ell}{2 \times 10^{8} \mathrm{~km}}\right)^{4}, \quad \Delta_{B H}\left(10 M_{\odot}\right) \sim\left(\frac{\ell}{40 \mathrm{~km}}\right)^{4}
$$

Improve constraints by a factor $\sim 10^{30}$

Introduction

Where to look for higher-derivative corrections?

Introduction

Where to look for higher-derivative corrections?

Ringdown: most powerful test of GR

Introduction

Where to look for higher-derivative corrections?

Ringdown: most powerful test of GR
Controlled by the quasinormal modes

$$
h=\sum_{n=0} c_{n} e^{-i \omega_{n} t}, \quad \operatorname{Im}\left(\omega_{n}\right)<0
$$

- QNMs only depend on the final black hole \rightarrow mass and angular momentum
- Studied through perturbation theory
- Depend on the photon-sphere physics \rightarrow small length scale \rightarrow sensitive to short-distance modifications of GR

Introduction

QNM frequencies of Kerr black holes: $\omega_{l, m, n}$

Introduction

QNM frequencies of Kerr black holes: $\omega_{l, m, n}$

What about modifications of GR?

$$
\mathcal{L}=R+\text { corrections } \Rightarrow \omega=\omega^{\text {Kerr }}+\delta \omega
$$

Computation of $\delta \omega$: crucial to test these theories, but remarkably challenging
[Gualtieri, Pierini '21, '22], [Wagle, Yunes, Silva '21], [Srivastava, Chen, Shankaranarayanan '21], [Li, Wagle, Chen, Yunes '22], [Hussain, Zimmerman '22]

Introduction

In this talk: general EFT extension of GR

$$
\begin{gathered}
S=\frac{1}{16 \pi G} \int d^{4} x \sqrt{|g|}\left\{R+\ell^{4}\left(\lambda_{\mathrm{ev}} R_{\mu \nu}{ }^{\rho \sigma} R_{\rho \sigma}{ }^{\delta \gamma} R_{\delta \gamma}{ }^{\mu v}+\lambda_{\mathrm{odd}} R_{\mu \nu}{ }^{\rho \sigma} R_{\rho \sigma}{ }^{\delta \gamma} \tilde{R}_{\delta \gamma}{ }^{\mu \nu}\right)\right. \\
\left.+\ell^{6}\left(\epsilon_{1} C^{2}+\epsilon_{2} \tilde{C}^{2}+\epsilon_{3} C \tilde{C}\right)+O\left(\ell^{8}\right)\right\}
\end{gathered}
$$

Introduction

In this talk: general EFT extension of GR

$$
\begin{gathered}
S=\frac{1}{16 \pi G} \int d^{4} x \sqrt{|g|}\left\{R+\ell^{4}\left(\lambda_{\mathrm{ev}} R_{\mu \nu}{ }^{\rho \sigma} R_{\rho \sigma}{ }^{\delta \gamma} R_{\delta \gamma}{ }^{\mu v}+\lambda_{\mathrm{odd}} R_{\mu \nu}{ }^{\rho \sigma} R_{\rho \sigma}{ }^{\delta \gamma} \tilde{R}_{\delta \gamma}{ }^{\mu v}\right)\right. \\
\left.+\ell^{6}\left(\epsilon_{1} C^{2}+\epsilon_{2} \tilde{C}^{2}+\epsilon_{3} C \tilde{C}\right)+O\left(\ell^{8}\right)\right\}
\end{gathered}
$$

Goal: obtain $\delta \omega$ at first order in the couplings

Perturbations of Kerr black holes

(1) Perturbations of Kerr black holes

2 Perturbations of rotating black holes beyond GR
(3) Corrections to the QNM frequencies
(4) Conclusions

Perturbations of Kerr black holes

Quasinormal modes of Kerr black holes in a nutshell

Perturbations of Kerr black holes

Quasinormal modes of Kerr black holes in a nutshell
Metric perturbations $g_{\mu \nu}=g_{\mu \nu}^{\mathrm{Kerr}}+h_{\mu \nu} \rightarrow$ not practical

Perturbations of Kerr black holes

Quasinormal modes of Kerr black holes in a nutshell
Metric perturbations $g_{\mu \nu}=g_{\mu \nu}^{\text {Kerr }}+h_{\mu \nu} \rightarrow$ not practical
Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

- Introduce null tetrad $\quad\left\{{ }_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\right\}, \quad I^{\mu} n_{\mu}=-1, \quad m^{\mu} \bar{m}_{\mu}=1$

Perturbations of Kerr black holes

Quasinormal modes of Kerr black holes in a nutshell
Metric perturbations $g_{\mu \nu}=g_{\mu \nu}^{\text {Kerr }}+h_{\mu \nu} \rightarrow$ not practical
Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

- Introduce null tetrad $\quad\left\{\jmath_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\right\}, \quad I^{\mu} n_{\mu}=-1, \quad m^{\mu} \bar{m}_{\mu}=1$
- Decompose Weyl tensor in the NP basis $\rightarrow \Psi_{0}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \Psi_{4}$

Perturbations of Kerr black holes

Quasinormal modes of Kerr black holes in a nutshell
Metric perturbations $g_{\mu \nu}=g_{\mu \nu}^{\text {Kerr }}+h_{\mu \nu} \rightarrow$ not practical
Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

- Introduce null tetrad $\quad\left\{{ }_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\right\}, \quad I^{\mu} n_{\mu}=-1, \quad m^{\mu} \bar{m}_{\mu}=1$
- Decompose Weyl tensor in the NP basis $\rightarrow \Psi_{0}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \Psi_{4}$
- Key property: the Kerr metric algebraically special (Petrov type D):

$$
\Psi_{0}^{(0)}=\Psi_{1}^{(0)}=\Psi_{3}^{(0)}=\Psi_{4}^{(0)}=0
$$

Perturbations of Kerr black holes

Quasinormal modes of Kerr black holes in a nutshell
Metric perturbations $g_{\mu \nu}=g_{\mu \nu}^{\mathrm{Kerr}}+h_{\mu \nu} \rightarrow$ not practical
Perturbations of Kerr BHs are studied using the Newman-Penrose formalism

- Introduce null tetrad $\quad\left\{{ }_{\mu}, n_{\mu}, m_{\mu}, \bar{m}_{\mu}\right\}, \quad I^{\mu} n_{\mu}=-1, \quad m^{\mu} \bar{m}_{\mu}=1$
- Decompose Weyl tensor in the NP basis $\rightarrow \Psi_{0}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \Psi_{4}$
- Key property: the Kerr metric algebraically special (Petrov type D):

$$
\Psi_{0}^{(0)}=\Psi_{1}^{(0)}=\Psi_{3}^{(0)}=\Psi_{4}^{(0)}=0
$$

- For perturbations around Kerr, $\delta \Psi_{0}$ and $\delta \Psi_{4}$ satisfy decoupled equations

$$
\mathcal{D}_{+2} \delta \Psi_{0}=0, \quad \mathcal{D}_{-2} \delta \Psi_{4}=0
$$

These are the Teukolsky equations. Arise as a combination of Bianchi identities $\nabla_{[\alpha} R_{\mu \nu] \rho \sigma}=0$

Perturbations of Kerr black holes

Teukolsky equations are decoupled, homogeneous second-order equations
Furthermore, they are separable

$$
\delta \Psi_{0}=e^{-i \omega t+i m \phi} R_{2}(r) S_{2}(x), \quad \delta \Psi_{4}=e^{-i \omega t+i m \phi}(r-i a x)^{-4} R_{-2}(r) S_{-2}(x)
$$

Perturbations of Kerr black holes

Teukolsky equations are decoupled, homogeneous second-order equations
Furthermore, they are separable

$$
\begin{array}{r}
\delta \Psi_{0}=e^{-i \omega t+i m \phi} R_{2}(r) S_{2}(x), \quad \delta \Psi_{4}=e^{-i \omega t+i m \phi}(r-i a x)^{-4} R_{-2}(r) S_{-2}(x) \\
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d S_{s}}{d x}\right]+\left[(a \omega)^{2} x^{2}-2 s a \omega x+B_{l m}-\frac{(m+s x)^{2}}{1-x^{2}}\right] S_{s}=0 \\
\Delta^{-s+1} \frac{d}{d r}\left[\Delta^{s+1} \frac{d R_{s}}{d r}\right]+V R_{s}=0
\end{array}
$$

where $x=\cos \theta, \Delta=r^{2}-2 M r+a^{2}$

Perturbations of Kerr black holes

Teukolsky equations are decoupled, homogeneous second-order equations
Furthermore, they are separable

$$
\begin{array}{r}
\delta \Psi_{0}=e^{-i \omega t+i m \phi} R_{2}(r) S_{2}(x), \quad \delta \Psi_{4}=e^{-i \omega t+i m \phi}(r-i a x)^{-4} R_{-2}(r) S_{-2}(x) \\
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d S_{s}}{d x}\right]+\left[(a \omega)^{2} x^{2}-2 s a \omega x+B_{l m}-\frac{(m+s x)^{2}}{1-x^{2}}\right] S_{s}=0 \\
\Delta^{-s+1} \frac{d}{d r}\left[\Delta^{s+1} \frac{d R_{s}}{d r}\right]+V R_{s}=0
\end{array}
$$

where $x=\cos \theta, \Delta=r^{2}-2 M r+a^{2}$
\rightarrow 1-dim. Schrödinger equation

$$
\begin{aligned}
& \frac{d^{2} \varphi}{d \rho_{*}^{2}}+\left(\omega^{2}-V\left(\rho_{*}, \omega\right)\right) \varphi=0 \\
& \varphi \propto R_{S}, \quad \rho_{*}=\rho_{*}(r)
\end{aligned}
$$

Perturbations of rotating black holes beyond GR

© Perturbations of Kerr black holes

2. Perturbations of rotating black holes beyond GR
(3) Corrections to the QNM frequencies
(9) Conclusions

Perturbations of rotating black holes beyond GR

QNMs of BHs in higher-derivative gravity

Challenges

Perturbations of rotating black holes beyond GR

QNMs of BHs in higher-derivative gravity
Challenges

- Background black hole not known analytically

Perturbations of rotating black holes beyond GR

QNMs of BHs in higher-derivative gravity
Challenges

- Background black hole not known analytically
- No Petrov type D \rightarrow no Teukolsky equations

Perturbations of rotating black holes beyond GR

QNMs of BHs in higher-derivative gravity
Challenges

- Background black hole not known analytically
- No Petrov type D \rightarrow no Teukolsky equations
- Non-separabiity

Perturbations of rotating black holes beyond GR

QNMs of BHs in higher-derivative gravity
Challenges

- Background black hole not known analytically
- No Petrov type D \rightarrow no Teukolsky equations
- Non-separabiity
- EOM of higher order in derivatives

Perturbations of rotating black holes beyond GR

Universal Teukolsky equation Kwinten Fransen; Li, Wagle, Chen, Yunes; Hussain, Zimmerman

$$
\mathcal{E}_{ \pm 2}\left(\Psi_{i}, \Phi\right)=0, \quad \text { where } \quad \Phi=\left\{e_{\mu}^{a}, \gamma_{a b c}, R_{a b}\right\}
$$

Perturbations of rotating black holes beyond GR

Universal Teukolsky equation Kwinten Fransen; Li, Wagle, Chen, Yunes; Hussain, Zimmerman

$$
\mathcal{E}_{ \pm 2}\left(\Psi_{i}, \Phi\right)=0, \quad \text { where } \quad \Phi=\left\{e_{\mu}^{a}, \gamma_{a b c}, R_{a b}\right\}
$$

- For Ricci-flat Petrov type D it reduces to Teukolsky

$$
\mathcal{D}_{ \pm 2}\left(\delta \Psi_{0,4}\right)=0
$$

Perturbations of rotating black holes beyond GR

Universal Teukolsky equation Kwinten Fransen; Li, Wagle, Chen, Yunes; Hussain, Zimmerman

$$
\mathcal{E}_{ \pm 2}\left(\Psi_{i}, \Phi\right)=0, \quad \text { where } \quad \Phi=\left\{e_{\mu}^{a}, \gamma_{a b c}, R_{a b}\right\}
$$

- For Ricci-flat Petrov type D it reduces to Teukolsky

$$
\mathcal{D}_{ \pm 2}\left(\delta \Psi_{0,4}\right)=0
$$

- For departures from that we have

$$
\mathcal{D}_{ \pm 2}\left(\delta \Psi_{0,4}\right)=\lambda F\left(\delta \Psi_{i}, \delta \Phi\right)
$$

Perturbations of rotating black holes beyond GR

Universal Teukolsky equation Kwinten Fransen; Li, Wagle, Chen, Yunes; Hussain, Zimmerman

$$
\mathcal{E}_{ \pm 2}\left(\Psi_{i}, \Phi\right)=0, \quad \text { where } \quad \Phi=\left\{e_{\mu}^{a}, \gamma_{a b c}, R_{a b}\right\}
$$

- For Ricci-flat Petrov type D it reduces to Teukolsky

$$
\mathcal{D}_{ \pm 2}\left(\delta \Psi_{0,4}\right)=0
$$

- For departures from that we have

$$
\mathcal{D}_{ \pm 2}\left(\delta \Psi_{0,4}\right)=\lambda F\left(\delta \Psi_{i}, \delta \Phi\right)
$$

There are still outstanding challenges
How to decouple this? How to obtain radial equations?

Perturbations of rotating black holes beyond GR

From Universal Teukolsky to master radial equations

(1. Evaluate the Universal Teukolsky equations \rightarrow needs background geometry

Perturbations of rotating black holes beyond GR

From Universal Teukolsky to master radial equations
(1) Evaluate the Universal Teukolsky equations \rightarrow needs background geometry
(2) Express the equations only in terms of $\delta \Psi_{0,4} \rightarrow$ Metric reconstruction $h_{\mu \nu}\left(\delta \Psi_{0,4}\right)$

Perturbations of rotating black holes beyond GR

From Universal Teukolsky to master radial equations
(1) Evaluate the Universal Teukolsky equations \rightarrow needs background geometry
(2) Express the equations only in terms of $\delta \Psi_{0,4} \rightarrow$ Metric reconstruction $h_{\mu \nu}\left(\delta \Psi_{0,4}\right)$

- Effective separation of the equation

$$
\text { Assume } \delta \Psi_{0}=e^{-i \omega t+i m \phi} R_{s}^{l m}(r) S_{s}^{l m}(x) \quad \rightarrow \quad \text { project on } S_{s}^{l m}(x)
$$

Perturbations of rotating black holes beyond GR

(1) Rotating black hole solutions PAC, Ruipérez ' 19 :

$$
\begin{aligned}
d s^{2} & =-\left(1-\frac{2 M r}{\Sigma}-H_{1}\right) d t^{2}-\left(1+H_{2}\right) \frac{4 M a r\left(1-x^{2}\right)}{\Sigma} d t d \phi \\
& +\left(1+H_{3}\right) \Sigma\left(\frac{d r^{2}}{\Delta}+\frac{d x^{2}}{1-x^{2}}\right)+\left(1+H_{4}\right)\left(r^{2}+a^{2}+\frac{2 M r a^{2}\left(1-x^{2}\right)}{\Sigma}\right)\left(1-x^{2}\right) d \phi^{2}
\end{aligned}
$$

where Σ and Δ are given by

$$
\Sigma=r^{2}+a^{2} x^{2}, \quad \Delta=r^{2}-2 M r+a^{2}, \quad x=\cos \theta
$$

Perturbations of rotating black holes beyond GR

(1) Rotating black hole solutions PAC, Ruipérez ' 19 :

$$
\begin{aligned}
d s^{2} & =-\left(1-\frac{2 M r}{\Sigma}-H_{1}\right) d t^{2}-\left(1+H_{2}\right) \frac{4 M a r\left(1-x^{2}\right)}{\Sigma} d t d \phi \\
& +\left(1+H_{3}\right) \Sigma\left(\frac{d r^{2}}{\Delta}+\frac{d x^{2}}{1-x^{2}}\right)+\left(1+H_{4}\right)\left(r^{2}+a^{2}+\frac{2 M r a^{2}\left(1-x^{2}\right)}{\Sigma}\right)\left(1-x^{2}\right) d \phi^{2}
\end{aligned}
$$

where Σ and Δ are given by

$$
\Sigma=r^{2}+a^{2} x^{2}, \quad \Delta=r^{2}-2 M r+a^{2}, \quad x=\cos \theta
$$

Power series in χ : analytic solution

$$
H_{i}=\sum_{n=0}^{\infty} \chi^{n} \sum_{p=0}^{n} \sum_{k=0}^{k_{\max }} H_{i}^{(n, p, k)} \frac{x^{p}}{r^{k}}
$$

$n=14$ accurate for $\chi \sim 0.7$

Perturbations of rotating black holes beyond GR

(2) Metric reconstruction Dolan, Kavanagh, Wardell ' 21

$$
\begin{aligned}
& C_{\mu \alpha v \beta}=4\left(\psi_{0} n_{[\mu} \bar{m}_{\alpha]} n_{[v} \bar{m}_{\beta]}+\psi_{4} \int_{[\mu} m_{\alpha]}{ }_{[v} m_{\beta]}\right) \\
& \bar{C}_{\mu \alpha v \beta}=4\left(\psi_{0}^{*} n_{[\mu} m_{\alpha]} n_{[v} m_{\beta]}+\psi_{4}^{*} l_{[\mu} \bar{m}_{\alpha]} l_{[\nu} \bar{m}_{\beta]}\right)
\end{aligned}
$$

Perturbations of rotating black holes beyond GR

(2) Metric reconstruction Dolan, Kavanagh, Wardell ' 21

$$
\begin{aligned}
& h_{\mu v}=-\frac{i}{3 M \omega} \nabla_{\beta}\left[\zeta^{4} \nabla_{\alpha} C_{\left(\begin{array}{ll}
\mu & \alpha
\end{array}\right)}{ }^{\alpha} \beta-\frac{i}{3 M \omega} \nabla_{\beta}\left[\left(\zeta^{*}\right)^{4} \nabla_{\alpha} \bar{C}_{\left(\begin{array}{ll}
\mu & \alpha
\end{array}\right)}{ }^{\alpha} \beta\right.\right. \\
& C_{\mu \alpha v \beta}=4\left(\psi_{0} n_{[\mu} \bar{m}_{\alpha]} n_{[v} \bar{m}_{\beta]}+\psi_{4} \int_{[\mu} m_{\alpha]}{ }_{[v} m_{\beta]}\right) \\
& \bar{C}_{\mu \alpha v \beta}=4\left(\psi_{0}^{*} n_{[\mu} m_{\alpha]} n_{[v} m_{\beta]}+\psi_{4}^{*} l_{[\mu} \bar{m}_{\alpha]} l_{[\nu} \bar{m}_{\beta]}\right) \\
& \psi_{0}=e^{-i \omega t+i m \phi} R_{2}(r) S_{2}(x) \\
& \psi_{0}^{*}=e^{-i \omega t+i m \phi} R_{2}^{*}(r) S_{-2}(x) \\
& \psi_{4}=e^{-i \omega t+i m \phi} \zeta^{-4} R_{-2}(r) S_{-2}(x) \quad \psi_{4}^{*}=e^{-i \omega t+i m \phi}\left(\zeta^{*}\right)^{-4} R_{-2}^{*}(r) S_{2}(x)
\end{aligned}
$$

Perturbations of rotating black holes beyond GR

(2) Metric reconstruction Dolan, Kavanagh, Wardell '21

$$
\begin{aligned}
& \left.\left.h_{\mu v}=-\frac{i}{3 M \omega} \nabla_{\beta}\left[\zeta^{4} \nabla_{\alpha} C_{(\mu}{ }^{\alpha} \quad{ }^{\beta}\right)\right]-\frac{i}{3 M \omega} \nabla_{\beta}\left[\left(\zeta^{*}\right)^{4} \nabla_{\alpha} \bar{C}_{(\mu}{ }^{\alpha} v^{\beta}\right)\right] \\
& C_{\mu \alpha v \beta}=4\left(\psi_{0} n_{[\mu} \bar{m}_{\alpha]} n_{[v} \bar{m}_{\beta]}+\psi_{4} \Lambda_{[\mu} m_{\alpha]} l_{[v} m_{\beta]}\right) \\
& \bar{C}_{\mu \alpha v \beta}=4\left(\psi_{0}^{*} n_{[\mu} m_{\alpha]} n_{[v} m_{\beta]}+\psi_{4}^{*} l_{[\mu} \bar{m}_{\alpha]} l_{[v} \bar{m}_{\beta]}\right) \\
& \psi_{0}=e^{-i \omega t+i m \phi} R_{2}(r) S_{2}(x) \\
& \psi_{0}^{*}=e^{-i \omega t+i m \phi} R_{2}^{*}(r) S_{-2}(x) \\
& \psi_{4}=e^{-i \omega t+i m \phi} \zeta^{-4} R_{-2}(r) S_{-2}(x) \quad \psi_{4}^{*}=e^{-i \omega t+i m \phi}\left(\zeta^{*}\right)^{-4} R_{-2}^{*}(r) S_{2}(x)
\end{aligned}
$$

The radial functions can be related by

$$
\begin{array}{ll}
R_{+2}^{*}=q_{+2} R_{+2} & R_{-2}=C_{+2} \Delta^{2}\left(\mathcal{D}_{0}\right)^{4}\left(\Delta^{2} R_{+2}\right) \\
R_{-2}^{*}=q_{-2} R_{-2} & R_{+2}=C_{-2}\left(\mathcal{D}_{0}^{\dagger}\right)^{4} R_{-2}
\end{array}
$$

$q_{ \pm 2} \rightarrow$ polarization, $C_{ \pm 2} \rightarrow$ Starobinsky-Teukolsky constants, $C_{+2} C_{-2}=\mathcal{K}^{-2}$

Perturbations of rotating black holes beyond GR

(2) Metric reconstruction

The Teukolsky variables are proportional to the metric variables

$$
\delta \Psi_{s}=P_{s} \psi_{s}, \quad \delta \Psi_{s}^{*}=P_{s}^{*} \psi_{s}^{*}
$$

The constants P_{s}, P_{s}^{*} depend on the polarization parameters q_{s} and ST constants C_{s} and are given by

$$
\begin{aligned}
& P_{ \pm 2}=\frac{1}{2} \pm \frac{i D_{2} q_{ \pm 2}}{24 M \omega} \mp \frac{i C_{ \pm 2} q_{\mp 2} \mathcal{K}^{2}}{6 M \omega}, \\
& P_{ \pm 2}^{*}=\frac{1}{2} \pm \frac{i D_{2}}{24 M \omega q_{ \pm 2}} \mp \frac{i C_{ \pm 2} \mathcal{K}^{2}}{6 M \omega q_{ \pm 2}}
\end{aligned}
$$

Perturbations of rotating black holes beyond GR

(3) Decoupling and separation of the equation
(1) Start with

$$
\delta \Psi_{s}=e^{-i \omega t+i m \phi} \zeta^{s-2} \sum_{l} R_{s}^{l m}(r) S_{s}^{l m}(x)
$$

Perturbations of rotating black holes beyond GR

(3) Decoupling and separation of the equation
(1) Start with

$$
\delta \Psi_{s}=e^{-i \omega t+i m \phi} \zeta^{s-2} \sum_{l} R_{s}^{l m}(r) S_{s}^{l m}(x)
$$

(2) Find $h_{\mu v}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation

Perturbations of rotating black holes beyond GR

(3) Decoupling and separation of the equation
(1) Start with

$$
\delta \Psi_{s}=e^{-i \omega t+i m \phi} \zeta^{s-2} \sum_{l} R_{s}^{l m}(r) S_{s}^{l m}(x)
$$

(2) Find $h_{\mu \nu}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation
(3) Project the equation onto the spheroidal harmonics

$$
\mathcal{D}_{s}^{2} R_{s}^{\prime m}=\lambda \sum_{l^{\prime}, s^{\prime}} \mathcal{D}_{s^{\prime}}^{l I^{\prime}} R_{s^{\prime}}^{\prime^{\prime m}}+\text { c.c. }
$$

Perturbations of rotating black holes beyond GR

(3) Decoupling and separation of the equation
(1) Start with

$$
\delta \Psi_{s}=e^{-i \omega t+i m \phi} \zeta^{s-2} \sum_{l} R_{s}^{l m}(r) S_{s}^{l m}(x)
$$

(2) Find $h_{\mu v}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation
(0) Project the equation onto the spheroidal harmonics

$$
\mathfrak{D}_{s}^{2} R_{s}^{\prime m}=\lambda \sum_{l^{\prime}, s^{\prime}} \mathcal{D}_{s^{\prime}}^{\prime \prime^{\prime}} R_{s^{\prime}}^{\prime^{\prime m}}+\text { c.c. }
$$

(1) QNMs are composed of leading harmonic $R_{s}^{\prime 0 m}=O(1), R_{s}^{\prime \prime m}=O(\lambda)$. Leading harmonic satisfies decoupled equation

$$
\mathfrak{D}_{s}^{2} R_{s}^{\prime m}=\lambda \sum_{s^{\prime}} \mathcal{D}_{s^{\prime}}^{\prime \prime} R_{s^{\prime}}^{\prime m}+\text { c.c. }+O\left(\lambda^{2}\right)
$$

Perturbations of rotating black holes beyond GR

(3) Decoupling and separation of the equation
(1) Start with

$$
\delta \Psi_{s}=e^{-i \omega t+i m \phi} \zeta^{s-2} \sum_{l} R_{s}^{l m}(r) S_{s}^{l m}(x)
$$

(2) Find $h_{\mu v}$ for Einstein gravity. Use this + background metric to evaluate the Teukolsky equation

- Project the equation onto the spheroidal harmonics

$$
\mathfrak{D}_{s}^{2} R_{s}^{\prime m}=\lambda \sum_{l^{\prime}, s^{\prime}} \mathcal{D}_{s^{\prime}}^{l I^{\prime}} R_{s^{\prime}}^{\prime^{\prime m}}+\text { c.c. }
$$

(1) QNMs are composed of leading harmonic $R_{s}^{\prime 0 m}=O(1), R_{s}^{\prime \prime m}=O(\lambda)$. Leading harmonic satisfies decoupled equation

$$
\mathfrak{D}_{s}^{2} R_{s}^{\prime m}=\lambda \sum_{s^{\prime}} \mathcal{D}_{s^{\prime}}^{\prime \prime} R_{s^{\prime}}^{\prime m}+\text { c.c. }+O\left(\lambda^{2}\right)
$$

(0. Decouple $s= \pm 2$ and conjugates by using $q_{ \pm 2}$ and ST identities

Perturbations of rotating black holes beyond GR

Result: corrected radial Teukolsky equations

$$
\Delta^{-s+1} \frac{d}{d r}\left[\Delta^{s+1} \frac{d R_{s}}{d r}\right]+(V+\lambda \delta V) R_{s}=0, \quad \delta V=\sum_{n=-2}^{4} A_{n} r^{n}
$$

Coefficients A_{n} analytic power series in $\chi: A_{n}=\sum_{k=0}^{\infty} \chi^{k} A_{n, k}$

Perturbations of rotating black holes beyond GR

Result: corrected radial Teukolsky equations

$$
\Delta^{-s+1} \frac{d}{d r}\left[\Delta^{s+1} \frac{d R_{s}}{d r}\right]+(V+\lambda \delta V) R_{s}=0, \quad \delta V=\sum_{n=-2}^{4} A_{n} r^{n}
$$

Coefficients A_{n} analytic power series in $\chi: A_{n}=\sum_{k=0}^{\infty} \chi^{k} A_{n, k}$
In total 4 equations ($s= \pm 2$ and the conjugates)
For each harmonic numbers (I, m) these equations depend on

- Frequency ω
- Polarization $q_{ \pm 2}$
- Starobinsky-Teukolsky constants $C_{ \pm 2}$ ("gauge" freedom)

Observe: for a QNM, all the equations are solved by the same frequency

Corrections to the QNM frequencies

(1) Perturbations of Kerr black holes
© Perturbations of rotating black holes beyond GR
(3) Corrections to the QNM frequencies
(1) Conclusions

Corrections to the QNM frequencies

Parity-preserving corrections

$$
\omega=\omega^{\text {Kerr }}+\frac{\ell^{4} \lambda_{\mathrm{ev}}}{M^{5}} \delta \omega(\chi)
$$

- Modes of even and odd parity decouple: $q_{+2}=q_{-2}= \pm 1$
- We can compute $\delta \omega$ either from the $s=+2$ or $s=-2$ equations
- The result should also be independent of $C_{ \pm 2}$

Corrections to the QNM frequencies

Parity-preserving corrections

$$
\omega=\omega^{\text {Kerr }}+\frac{\ell^{4} \lambda_{\mathrm{ev}}}{M^{5}} \delta \omega(\chi)
$$

- Modes of even and odd parity decouple: $q_{+2}=q_{-2}= \pm 1$
- We can compute $\delta \omega$ either from the $s=+2$ or $s=-2$ equations
- The result should also be independent of $C_{ \pm 2}$

We consider four different estimations of $\delta \omega$

$$
\left.\delta \omega_{+2}\right|_{C_{+2}=0},\left.\quad \delta \omega_{+2}\right|_{C_{+2}=\infty},\left.\quad \delta \omega_{-2}\right|_{C_{-2}=0},\left.\quad \delta \omega_{-2}\right|_{C_{-2}=\infty}
$$

Consistency test: they should all agree

Corrections to the QNM frequencies

Result: $(I, m)=(2,2)$ modes at $O\left(\chi^{6}\right)$

Corrections to the QNM frequencies

Result: $(I, m)=(2,2)$ modes at $O\left(\chi^{6}\right)$

Corrections to the QNM frequencies

Remarks

- Consistency tests are satisfied
(1) The $s=+2$ and $s=-2$ yield the same results
(2) Results independent of $C_{ \pm 2}$
(3) Reproduce results at linear order in the spin

Corrections to the QNM frequencies

Remarks

- Consistency tests are satisfied
(1) The $s=+2$ and $s=-2$ yield the same results
(2) Results independent of $C_{ \pm 2}$
(3) Reproduce results at linear order in the spin
- Results converge for higher χ if we increase the order of the expansion
- The $s=-2$ equation converges much faster than $s=+2$

Corrections to the QNM frequencies

Larger spins: expansion $O\left(\chi^{12}\right)$

Corrections to the QNM frequencies

Larger spins: expansion $O\left(\chi^{12}\right)$

Corrections to the QNM frequencies

Parity-breaking corrections

$$
\omega=\omega^{\mathrm{Kerr}}+\frac{\ell^{4} \lambda_{\mathrm{odd}}}{M^{5}} \delta \omega(\chi)
$$

- Modes of even and odd parity are coupled \rightarrow obtain $q_{ \pm 2}$ together with ω by solving all the equations
- The result should also be independent of $C_{ \pm 2}$

Corrections to the QNM frequencies

Parity-breaking corrections

$$
\omega=\omega^{\mathrm{Kerr}}+\frac{\ell^{4} \lambda_{\mathrm{odd}}}{M^{5}} \delta \omega(\chi)
$$

- Modes of even and odd parity are coupled \rightarrow obtain $q_{ \pm 2}$ together with ω by solving all the equations
- The result should also be independent of $C_{ \pm 2}$

Again we consider four different estimations of $\delta \omega$

$$
\left.\delta \omega_{+2}\right|_{C_{+2}=0},\left.\quad \delta \omega_{+2}\right|_{C_{+2}=\infty},\left.\quad \delta \omega_{-2}\right|_{C_{-2}=0},\left.\quad \delta \omega_{-2}\right|_{C_{-2}=\infty}
$$

finding agreement
We use the $s=-2$ equation to find the results at higher χ

Corrections to the QNM frequencies

Parity-breaking corrections: $(I, m)=(2,2)$ mode at $O\left(\chi^{12}\right)$

Observe: for the two different polarizations $\delta \omega^{+}=-\delta \omega^{-}$

Conclusions

(1) Perturbations of Kerr black holes

2 Perturbations of rotating black holes beyond GR
(3) Corrections to the QNM frequencies
(4) Conclusions

Conclusions

Neẁ era of experimental gravity. We can probe GR and its extensions. QNMs are a key feature to test these theories

- Calculation of QNMs of highly-rotating BH゙s in HDG is a highly difficult problem

We have provided the first working approach to compute these QNMs

- Ongoing work: higher spin and higher order in EFT (quartic terms)

Future challenges: comparison with other approaches, understanding nearextremal black holes

- Ultimate goal: phenomenological analysis and search for corrections to GR in GWs

Conclusions

. New era of experimental gravity. We can probe GR and its extensions. QNMs are a key feature to test these theories

- Calculation of QNMs of highly-rotating BH's in HDG is a highly difficult problem

We have provided the first working approach to compute these QNMs

- Ongoing work: higher spin and higher order in EFT (quartic terms)
of Future challenges: comparison with other approaches, understanding nearextremal black holes
- Ultimate goal: phenomenological analysis and search for corrections to GR in GWs

Thank you for your attention!

Bonus

Universal $s=+2$ Teukolsky equation

$$
O_{2}^{(0)}\left(\Psi_{0}\right)+O_{2}^{(1)}\left(\Psi_{1}\right)+O_{2}^{(2)}\left(\Psi_{0}\right)=8 \pi\left(\mathcal{T}_{2}^{(0)}+\mathcal{T}_{2}^{(1)}+\mathcal{T}_{2}^{(2)}\right)
$$

where

$$
\begin{aligned}
& O_{2}^{(0)}=2\left[\left(P-4 \rho-\rho^{*}\right)\left(\mathrm{P}^{\prime}-\rho^{\prime}\right)-\left(\bar{\partial}-4 \tau-\tau^{\prime *}\right)\left(\chi^{\prime}-\tau^{\prime}\right)-3 \Psi_{2}\right] \text {, } \\
& O_{2}^{(1)}=4\left[2 \kappa\left(\mathrm{P}^{\prime}-\rho^{\prime *}\right)-2 \sigma\left(\chi^{\prime}-\tau^{*}\right)+2\left(\mathrm{P}^{\prime} \kappa\right)-2\left(\partial^{\prime} \sigma\right)+5 \Psi_{1}\right] \text {, } \\
& O_{2}^{(2)}=6\left[\kappa \kappa^{\prime}-\sigma \sigma^{\prime}\right] \text {, } \\
& \mathcal{T}_{2}^{(0)}=\left(\mathrm{\partial}-\tau^{\prime *}-4 \tau\right)\left[\left(\mathrm{P}-2 \rho^{*}\right) T_{l m}-\left(\mathrm{\partial}-\tau^{\prime *}\right) T_{I I}\right] \\
& +\left(\mathrm{P}-4 \rho-\rho^{*}\right)\left[\left(\mathrm{\delta}-2 \tau^{\prime *}\right) T_{l m}-\left(\mathrm{P}-\rho^{*}\right) T_{m m}\right] \text {, } \\
& \mathcal{T}_{2}^{(1)}=\frac{1}{2}[\sigma \mathrm{P}-\kappa ð] T-\left[3 \sigma\left(\mathrm{P}^{\prime}-\rho^{\prime *}\right)-\sigma^{\prime *}\left(\mathrm{P}-4 \rho-\rho^{*}\right)-\mathrm{P}\left(\sigma^{\prime *}\right)\right] T_{\|} \\
& -2\left[\sigma\left(\partial-\tau-\tau^{\prime *}\right)+\varnothing(\sigma)\right] T_{I \bar{m}}+\left[3 \sigma\left(\partial^{\prime}-2 \tau^{*}\right)+3 \kappa\left(\mathrm{P}^{\prime}-2 \rho^{\prime *}\right)\right] T_{l m} \\
& \text { - }\left[3 \kappa\left(\partial^{\prime}-\tau^{*}\right)-\kappa^{*}\left(\partial-4 \tau-\tau^{\prime *}\right)-ð\left(\kappa^{*}\right)\right] T_{m m} \\
& +\left[\kappa \check{\partial}+\sigma\left(\mathrm{P}-2 \rho-2 \rho^{*}\right)+2 \mathrm{P}(\sigma)-\Psi_{0}\right]\left(T_{l n}+T_{m \bar{m}}\right) \\
& -2\left[\kappa\left(\mathrm{P}-\rho-\rho^{*}\right)+\mathrm{P}(\kappa)\right] T_{n m} \text {, } \\
& \mathcal{T}_{2}^{(2)}=3\left[\kappa \kappa^{\prime *} T_{\| l}+\sigma \sigma^{*} T_{m m}\right] .
\end{aligned}
$$

