Conformal Scattering of Maxwell Potentials

G. Taujanskas
University of Cambridge

Journées Relativistes de Tours

1 June 2023

Outline

Outline

- Fundamentals of Lax-Phillips scattering
- Conformal scattering
- Maxwell potentials on curved spacetimes
- Decay rates

Outline

- Fundamentals of Lax-Phillips scattering
- Conformal scattering
- Maxwell potentials on curved spacetimes
- Decay rates
[based on arXiv:2211.14579 with J.-P. Nicolas \& arXiv:2304.08270 with J. Valiente Kroon]

Lax-Phillips scattering

Consider on \mathbb{R}^{1+3}

$$
\begin{equation*}
\partial_{t}^{2} \phi-\Delta \phi=0 \tag{1}
\end{equation*}
$$

Lax-Phillips scattering

Consider on \mathbb{R}^{1+3}

$$
\begin{equation*}
\partial_{t}^{2} \phi-\Delta \phi=0 \tag{1}
\end{equation*}
$$

Compare incoming states to outgoing states to extract summary of interactions. Write

$$
\partial_{t} \Phi=-i H \Phi, \quad \Phi=\binom{\phi}{\partial_{t} \phi}, \quad H=-i\left(\begin{array}{cc}
0 & 1 \\
\Delta & 0
\end{array}\right) .
$$

Lax-Phillips scattering

Consider on \mathbb{R}^{1+3}

$$
\begin{equation*}
\partial_{t}^{2} \phi-\Delta \phi=0 \tag{1}
\end{equation*}
$$

Compare incoming states to outgoing states to extract summary of interactions. Write

$$
\partial_{t} \Phi=-i H \Phi, \quad \Phi=\binom{\phi}{\partial_{t} \phi}, \quad H=-i\left(\begin{array}{cc}
0 & 1 \\
\Delta & 0
\end{array}\right) .
$$

Associate (1) with operator H which:

Lax-Phillips scattering

Consider on \mathbb{R}^{1+3}

$$
\begin{equation*}
\partial_{t}^{2} \phi-\Delta \phi=0 . \tag{1}
\end{equation*}
$$

Compare incoming states to outgoing states to extract summary of interactions. Write

$$
\partial_{t} \Phi=-i H \Phi, \quad \Phi=\binom{\phi}{\partial_{t} \phi}, \quad H=-i\left(\begin{array}{cc}
0 & 1 \\
\Delta & 0
\end{array}\right) .
$$

Associate (1) with operator H which:

- is self-adjoint on $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)$

Lax-Phillips scattering

Consider on \mathbb{R}^{1+3}

$$
\begin{equation*}
\partial_{t}^{2} \phi-\Delta \phi=0 . \tag{1}
\end{equation*}
$$

Compare incoming states to outgoing states to extract summary of interactions. Write

$$
\partial_{t} \Phi=-i H \Phi, \quad \Phi=\binom{\phi}{\partial_{t} \phi}, \quad H=-i\left(\begin{array}{cc}
0 & 1 \\
\Delta & 0
\end{array}\right) .
$$

Associate (1) with operator H which:

- is self-adjoint on $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)$
- has spectrum $=\mathbb{R}$

Lax-Phillips scattering

Consider on \mathbb{R}^{1+3}

$$
\begin{equation*}
\partial_{t}^{2} \phi-\Delta \phi=0 \tag{1}
\end{equation*}
$$

Compare incoming states to outgoing states to extract summary of interactions. Write

$$
\partial_{t} \Phi=-i H \Phi, \quad \Phi=\binom{\phi}{\partial_{t} \phi}, \quad H=-i\left(\begin{array}{cc}
0 & 1 \\
\Delta & 0
\end{array}\right) .
$$

Associate (1) with operator H which:
o is self-adjoint on $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)$

- has spectrum $=\mathbb{R}$
- for each eigenvalue $\sigma \in \mathbb{R} \backslash\{0\}$ has a 2-sphere of generalized eigenfunctions

$$
W_{\sigma}(x, \omega)=\left(e^{-i \sigma x \cdot \omega}, i \sigma e^{-i \sigma x \cdot \omega}\right)
$$

Lax-Phillips scattering

The $\dot{H}^{1} \oplus L^{2}$ inner product with the eigenfunctions W_{σ} induces a map

$$
\begin{aligned}
S_{\sigma}: \dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) & \longrightarrow L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \\
\Phi(x) & \longmapsto \tilde{\Phi}(\sigma, \omega)=\left\langle W_{\sigma}(x, \omega), \Phi(x)\right\rangle_{\dot{H}^{1} \oplus L^{2}}
\end{aligned}
$$

The $\dot{H}^{1} \oplus L^{2}$ inner product with the eigenfunctions W_{σ} induces a map

$$
\begin{aligned}
S_{\sigma}: \dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) & \longrightarrow L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \\
\Phi(x) & \longmapsto \tilde{\Phi}(\sigma, \omega)=\left\langle W_{\sigma}(x, \omega), \Phi(x)\right\rangle_{\dot{H}^{1} \oplus L^{2}}
\end{aligned}
$$

This map provides a spectral representation of H and its propagator:

Lax-Phillips scattering

The $\dot{H}^{1} \oplus L^{2}$ inner product with the eigenfunctions W_{σ} induces a map

$$
\begin{aligned}
S_{\sigma}: \dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) & \longrightarrow L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \\
\Phi(x) & \longmapsto \tilde{\Phi}(\sigma, \omega)=\left\langle W_{\sigma}(x, \omega), \Phi(x)\right\rangle_{\dot{H}^{1} \oplus L^{2}}
\end{aligned}
$$

This map provides a spectral representation of H and its propagator:

$$
\begin{gathered}
S_{\sigma}: H \Phi \longmapsto \sigma \tilde{\Phi}, \\
S_{\sigma}: e^{i t H} \Phi \longmapsto e^{i t \sigma} \tilde{\Phi} .
\end{gathered}
$$

Lax-Phillips scattering

The $\dot{H}^{1} \oplus L^{2}$ inner product with the eigenfunctions W_{σ} induces a map

$$
\begin{aligned}
S_{\sigma}: \dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) & \longrightarrow L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \\
\Phi(x) & \longmapsto \tilde{\Phi}(\sigma, \omega)=\left\langle W_{\sigma}(x, \omega), \Phi(x)\right\rangle_{\dot{H}^{1} \oplus L^{2}}
\end{aligned}
$$

This map provides a spectral representation of H and its propagator:

$$
\begin{gathered}
S_{\sigma}: H \Phi \longmapsto \sigma \tilde{\Phi}, \\
S_{\sigma}: e^{i t H} \Phi \longmapsto e^{i t \sigma} \tilde{\Phi} .
\end{gathered}
$$

Taking the Fourier transform of $\tilde{\Phi}$ in σ, one obtains a new representation of Φ,

$$
\mathfrak{T}^{+} \Phi=\left(\mathcal{F}_{\sigma} \circ S_{\sigma}\right) \Phi .
$$

Lax-Phillips scattering

This new representation $\mathfrak{T}^{+} \Phi$ satisfies

$$
\mathfrak{T}^{+}\left(e^{i t h} \Phi\right)(r, \omega)=\left(\mathfrak{T}^{+} \Phi\right)(r-t, \omega)
$$

Lax-Phillips scattering

This new representation $\mathfrak{T}^{+} \Phi$ satisfies

$$
\mathfrak{T}^{+}\left(e^{i t h} \Phi\right)(r, \omega)=\left(\mathfrak{T}^{+} \Phi\right)(r-t, \omega)
$$

This is the famous Lax-Phillips future translation representation.

Lax-Phillips scattering

This new representation $\mathfrak{T}^{+} \Phi$ satisfies

$$
\mathfrak{T}^{+}\left(e^{i t H} \Phi\right)(r, \omega)=\left(\mathfrak{T}^{+} \Phi\right)(r-t, \omega)
$$

This is the famous Lax-Phillips future translation representation. It is an isometry

$$
\mathfrak{T}^{+}: \dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) \longrightarrow L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}\right)
$$

Lax-Phillips scattering

This new representation $\mathfrak{T}^{+} \Phi$ satisfies

$$
\mathfrak{T}^{+}\left(e^{i t H} \Phi\right)(r, \omega)=\left(\mathfrak{T}^{+} \Phi\right)(r-t, \omega)
$$

This is the famous Lax-Phillips future translation representation. It is an isometry

$$
\mathfrak{T}^{+}: \dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) \longrightarrow L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}\right)
$$

existence of translation representation \Longleftrightarrow "no scattering" condition

Lax-Phillips scattering

This new representation $\mathfrak{T}^{+} \Phi$ satisfies

$$
\mathfrak{T}^{+}\left(e^{i t H} \Phi\right)(r, \omega)=\left(\mathfrak{T}^{+} \Phi\right)(r-t, \omega)
$$

This is the famous Lax-Phillips future translation representation. It is an isometry

$$
\mathfrak{T}^{+}: \dot{H}^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right) \longrightarrow L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}\right)
$$

existence of translation representation \Longleftrightarrow "no scattering" condition

Evolution of ϕ is just translation in time of initial data.

Lax-Phillips scattering

Construction for $(-H)$ instead of H yields past translation representation \mathfrak{T}^{-}.

Lax-Phillips scattering

Construction for $(-H)$ instead of H yields past translation representation \mathfrak{T}^{-}. Then the scattering operator is

$$
\mathscr{S}=\mathfrak{T}^{+} \circ\left(\mathfrak{T}^{-}\right)^{-1}
$$

Lax-Phillips scattering

Construction for $(-H)$ instead of H yields past translation representation \mathfrak{T}^{-}. Then the scattering operator is

$$
\mathscr{S}=\mathfrak{T}^{+} \circ\left(\mathfrak{T}^{-}\right)^{-1}
$$

Explicit inversion of \mathfrak{T}^{+}gives

$$
\phi(t, x)=\frac{1}{2 \pi} \int_{\mathbb{S}^{2}}\left(\mathfrak{T}^{+} \Phi\right)(x \cdot \omega+t, \omega) \mathrm{d}^{2} \omega
$$

Construction for $(-H)$ instead of H yields past translation representation \mathfrak{T}^{-}. Then the scattering operator is

$$
\mathscr{S}=\mathfrak{T}^{+} \circ\left(\mathfrak{T}^{-}\right)^{-1}
$$

Explicit inversion of \mathfrak{T}^{+}gives

$$
\phi(t, x)=\frac{1}{2 \pi} \int_{\mathbb{S}^{2}}\left(\mathfrak{T}^{+} \Phi\right)(x \cdot \omega+t, \omega) \mathrm{d}^{2} \omega
$$

— this is Whittaker's formula (1903) for (1).

Lax-Phillips scattering

Construction for $(-H)$ instead of H yields past translation representation \mathfrak{T}^{-}. Then the scattering operator is

$$
\mathscr{S}=\mathfrak{T}^{+} \circ\left(\mathfrak{T}^{-}\right)^{-1}
$$

Explicit inversion of \mathfrak{T}^{+}gives

$$
\phi(t, x)=\frac{1}{2 \pi} \int_{\mathbb{S}^{2}}\left(\mathfrak{T}^{+} \Phi\right)(x \cdot \omega+t, \omega) \mathrm{d}^{2} \omega
$$

— this is Whittaker's formula (1903) for (1).

Upside: neat story;
Downside: heavy reliance on spectral theory; only valid on static backgrounds; technical restriction;

Friedlander's radiation field

Theorem (Friedlander 1967, 1980)
In Minkowski spacetime the solution ϕ to (1) can be recovered from either of the "radiation fields"

$$
\begin{aligned}
& \hat{\phi}^{+}(u, \omega)=\sqrt{1+u^{2}} \lim _{r \rightarrow \infty} r \phi(r+u, r, \omega), \\
& \hat{\phi}^{-}(v, \omega)=\sqrt{1+v^{2}} \lim _{r \rightarrow \infty} r \phi(-r+v, r, \omega)
\end{aligned}
$$

Friedlander's radiation field

Theorem (Friedlander 1967, 1980)
In Minkowski spacetime the solution ϕ to (1) can be recovered from either of the "radiation fields"

$$
\begin{aligned}
& \hat{\phi}^{+}(u, \omega)=\sqrt{1+u^{2}} \lim _{r \rightarrow \infty} r \phi(r+u, r, \omega), \\
& \hat{\phi}^{-}(v, \omega)=\sqrt{1+v^{2}} \lim _{r \rightarrow \infty} r \phi(-r+v, r, \omega) .
\end{aligned}
$$

Friedlander rephrased Lax-Phillips theory in terms of Penrose's conformal compactification: as the well-posedness of a characteristic Cauchy problem from $\mathscr{I}^{ \pm}$, with data $\hat{\phi}^{ \pm}$.

Friedlander's radiation field

Theorem (Friedlander 1967, 1980)

In Minkowski spacetime the solution ϕ to (1) can be recovered from either of the "radiation fields"

$$
\begin{aligned}
& \hat{\phi}^{+}(u, \omega)=\sqrt{1+u^{2}} \lim _{r \rightarrow \infty} r \phi(r+u, r, \omega), \\
& \hat{\phi}^{-}(v, \omega)=\sqrt{1+v^{2}} \lim _{r \rightarrow \infty} r \phi(-r+v, r, \omega) .
\end{aligned}
$$

Friedlander rephrased Lax-Phillips theory in terms of Penrose's conformal compactification: as the well-posedness of a characteristic Cauchy problem from $\mathscr{I}^{ \pm}$, with data $\hat{\phi}^{ \pm}$. Roughly,
translation representation at infinity \Longleftrightarrow radiation fields

Friedlander's radiation field

Theorem (Friedlander 1967, 1980)

In Minkowski spacetime the solution ϕ to (1) can be recovered from either of the "radiation fields"

$$
\begin{aligned}
& \hat{\phi}^{+}(u, \omega)=\sqrt{1+u^{2}} \lim _{r \rightarrow \infty} r \phi(r+u, r, \omega), \\
& \hat{\phi}^{-}(v, \omega)=\sqrt{1+v^{2}} \lim _{r \rightarrow \infty} r \phi(-r+v, r, \omega) .
\end{aligned}
$$

Friedlander rephrased Lax-Phillips theory in terms of Penrose's conformal compactification: as the well-posedness of a characteristic Cauchy problem from $\mathscr{I}^{ \pm}$, with data $\hat{\phi}^{ \pm}$. Roughly,
translation representation at infinity \Longleftrightarrow radiation fields

Remark

In fact Friedlander considered curved, static backgrounds with strong decay at i^{0}, among which the only solution to Einstein's equations is Minkowski; seems Friedlander was motivated by recovering the full richness of the Lax-Phillips theory.

Interlude: conformal compactification

$\left(\mathbb{R}^{1+3}, \eta\right)$ can be smoothly embedded into $\mathbb{R} \times \mathbb{S}^{3}$ using a conformal rescaling:

Interlude: conformal compactification
$\left(\mathbb{R}^{1+3}, \eta\right)$ can be smoothly embedded into $\mathbb{R} \times \mathbb{S}^{3}$ using a conformal rescaling: $\exists \Omega>0$ smooth such that

$$
\hat{\eta}=\Omega^{2} \eta=\mathrm{d} \tau^{2}-g_{\mathbb{S}^{3}}
$$

Conformal compactification

However, such a smooth embedding is only possible in the case of Minkowski space.

Conformal compactification

However, such a smooth embedding is only possible in the case of Minkowski space.

Problem :

If (M, g) asymptotically flat with non-zero ADM mass $m \neq 0$, then the eigenvalues of the Weyl tensor of $\hat{g}_{a b}=\Omega^{2} g_{a b}$ are proportional to

$$
\frac{m}{r^{3} \Omega^{2}}
$$

Conformal compactification

However, such a smooth embedding is only possible in the case of Minkowski space.

Problem :

If (M, g) asymptotically flat with non-zero ADM mass $m \neq 0$, then the eigenvalues of the Weyl tensor of $\hat{g}_{a b}=\Omega^{2} g_{a b}$ are proportional to

$$
\frac{m}{r^{3} \Omega^{2}}
$$

Therefore any compactification which brings i^{0} to a finite distance is singular if $m \neq 0$.

Conformal compactification

However, such a smooth embedding is only possible in the case of Minkowski space.

Problem :

If (M, g) asymptotically flat with non-zero ADM mass $m \neq 0$, then the eigenvalues of the Weyl tensor of $\hat{g}_{a b}=\Omega^{2} g_{a b}$ are proportional to

$$
\frac{m}{r^{3} \Omega^{2}}
$$

Therefore any compactification which brings i^{0} to a finite distance is singular if $m \neq 0$.

Workaround : use incomplete compactification which leaves i^{0} at infinity;

Conformal compactification

However, such a smooth embedding is only possible in the case of Minkowski space.

Problem :

If (M, g) asymptotically flat with non-zero ADM mass $m \neq 0$, then the eigenvalues of the Weyl tensor of $\hat{g}_{a b}=\Omega^{2} g_{a b}$ are proportional to

$$
\frac{m}{r^{3} \Omega^{2}}
$$

Therefore any compactification which brings i^{0} to a finite distance is singular if $m \neq 0$.

Workaround : use incomplete compactification which leaves i^{0} at infinity; is there a class of spacetimes for which this works?

Corvino-Schoen-Chruściel-Delay spacetimes

[cf. talk by P. LeFloch]
Theorem (Corvino '00, Chruściel-Delay '02, '03, Corvino-Schoen '06)
There exists an infinite dimensional class of spacetimes (M, g) such that

- there exists a smooth function $\Omega>0$ on M and another spacetime (\hat{M}, \hat{g}), where $\hat{g}_{a b}=\Omega^{2} g_{a b}$, such that $\hat{M} \backslash \partial \hat{M}$ is diffeomorphic to $M, \Omega=0$ on $\partial \hat{M}$, and $\mathrm{d} \Omega \neq 0$ on $\partial \hat{M}$,
- every inextendible null geodesic acquires two distinct endpoints on $\partial \hat{M}$,
- $\partial \hat{M}=\mathscr{I}^{+} \cup \mathscr{I}^{-} \cup i^{+} \cup i^{-}$, where $\mathscr{I}^{ \pm}$is the past (future) lightcone of $i^{ \pm}$,
- the rescaled metric $\hat{g}_{a b}$ is C^{k} at $i^{ \pm}$and $\mathscr{I}^{ \pm}$for any fixed k,
- the spacetime (M, g) satisfies Einstein's equations $R_{a b}=0$,
- M is diffeomorphic to the Schwarzschild solution outside the domain of influence of a given compact subset K of a Cauchy surface Σ

Corvino-Schoen-Chruściel-Delay spacetimes

Theorem (Penrose, 1965)
For CSCD spacetimes the topology of $\mathscr{I}^{ \pm}$is given by

$$
\mathscr{I}^{+} \simeq \mathscr{I}^{-} \simeq \mathbb{R} \times \mathbb{S}^{2},
$$

and the \mathbb{R} factors correspond to the rays generating $\mathscr{I}^{ \pm}$.

Assumptions on the physical spacetime

In general for our scattering theory we require:

Assumptions on the physical spacetime

In general for our scattering theory we require:

- the physical stress-energy tensor decays like $\mathcal{O}\left(\Omega^{2}\right)$ towards $\mathscr{I}^{ \pm} ; \Longrightarrow$ $\hat{\nu} \approx \hat{\lambda} \approx \hat{\mu} \approx \hat{\pi} \approx \hat{\gamma} \approx \hat{\tau} \approx 0$
- the rescaled Weyl tensor vanishes on $\mathscr{I}^{+} ; \Longrightarrow$ kills some components of the Ricci curvature ($\hat{\Phi}_{22} \approx 0 \approx \hat{\Phi}_{21}$)
- these two assumptions allow us to construct a conformal factor Ω in which $\mathscr{I}^{ \pm}$is essentially "flat" (analogue of r^{-1} in Minkowski, and here $\Omega=r^{-1}$ near i^{0})
- also assume that there exists a Cauchy surface Σ on which

$$
\left\|r^{2} \operatorname{Ric}_{\Sigma}\right\|_{L \infty}<C
$$

for some constant $0<C<1$ (more later)

- "small" matter is allowed; spacetime not stationary
- do not expect "no-scattering" condition to hold (\therefore no translation representation)

Construction for Maxwell potentials

Maxwell's equations conformally invariant:

$$
\nabla^{a} F_{a b}=0 \Longleftrightarrow \hat{\nabla}^{a} \hat{F}_{a b}=0
$$

where $\hat{F}_{a b}=F_{a b}$.

Construction for Maxwell potentials

Maxwell's equations conformally invariant:

$$
\nabla^{a} F_{a b}=0 \Longleftrightarrow \hat{\nabla}^{a} \hat{F}_{a b}=0
$$

where $\hat{F}_{a b}=F_{a b}$. In terms of the potential $F=\mathrm{d} A$, where $A_{a}=\hat{A}_{a}$, and

Construction for Maxwell potentials

Maxwell's equations conformally invariant:

$$
\nabla^{a} F_{a b}=0 \Longleftrightarrow \hat{\nabla}^{a} \hat{F}_{a b}=0
$$

where $\hat{F}_{a b}=F_{a b}$. In terms of the potential $F=\mathrm{d} A$, where $A_{a}=\hat{A}_{a}$, and

$$
\begin{equation*}
\widehat{\square} \hat{A}_{b}-\hat{\nabla}_{b}\left(\hat{\nabla}_{a} \hat{A}^{a}\right)+\hat{R}_{a b} \hat{A}^{a}=0 \tag{2}
\end{equation*}
$$

Construction for Maxwell potentials

Maxwell's equations conformally invariant:

$$
\nabla^{a} F_{a b}=0 \Longleftrightarrow \hat{\nabla}^{a} \hat{F}_{a b}=0
$$

where $\hat{F}_{a b}=F_{a b}$. In terms of the potential $F=\mathrm{d} A$, where $A_{a}=\hat{A}_{a}$, and

$$
\begin{equation*}
\widehat{\square} \hat{A}_{b}-\hat{\nabla}_{b}\left(\hat{\nabla}_{a} \hat{A}^{a}\right)+\hat{R}_{a b} \hat{A}^{a}=0 \tag{2}
\end{equation*}
$$

Seek to construct isomorphisms $\mathfrak{T}^{ \pm}$between function spaces on initial surface Σ and $\mathscr{I}^{ \pm}$. Need:

- energy estimates
- gauge choice ((2) not hyperbolic a priori)
- solve characteristic Cauchy problem without loss of regularity

Construction for Maxwell potentials

Energy estimates

Schwarzschild near $i^{0} \Longrightarrow$ most natural setting is finite energy spaces with respect to ∂_{t}.

Construction for Maxwell potentials

Energy estimates

Schwarzschild near $i^{0} \Longrightarrow$ most natural setting is finite energy spaces with respect to ∂_{t}.
Theorem
We have the estimate

$$
\int_{\mathscr{I}+}\left|\hat{F}_{2}\right|^{2} \widehat{\mathrm{dv}}_{\mathscr{I}+} \simeq \int_{\Sigma}\left(E^{2}+B^{2}\right) \mathrm{dv}_{\Sigma}
$$

where $\hat{F}_{2}=\hat{F}_{a b} \overline{\hat{m}}^{a} \hat{n}^{b}$.

Construction for Maxwell potentials

Energy estimates

Schwarzschild near $i^{0} \Longrightarrow$ most natural setting is finite energy spaces with respect to ∂_{t}.
Theorem
We have the estimate

$$
\int_{\mathscr{I}+}\left|\hat{F}_{2}\right|^{2} \widehat{\mathrm{dv}}_{\mathscr{I}+} \simeq \int_{\Sigma}\left(E^{2}+B^{2}\right) \mathrm{dv}_{\Sigma}
$$

where $\hat{F}_{2}=\hat{F}_{a b} \overline{\hat{m}}^{a} \hat{n}^{b}$.
Proof.
Energy integrals conformally invariant \Longrightarrow can work with different conformal factors in different regions.

Construction for Maxwell potentials

Energy estimates

Schwarzschild near $i^{0} \Longrightarrow$ most natural setting is finite energy spaces with respect to ∂_{t}.
Theorem
We have the estimate

$$
\int_{\mathscr{I}^{+}}\left|\hat{F}_{2}\right|^{2} \widehat{\mathrm{dv}}_{\mathscr{I}+} \simeq \int_{\Sigma}\left(E^{2}+B^{2}\right) \mathrm{dv}_{\Sigma}
$$

where $\hat{F}_{2}=\hat{F}_{a b} \overline{\hat{m}}^{a} \hat{n}^{b}$.

Proof.

Energy integrals conformally invariant \Longrightarrow can work with different conformal factors in different regions.

1. Near i^{0} use the timelike Killing vector ∂_{t} of the Schwarzschild solution as multiplier; immediate

Construction for Maxwell potentials

Energy estimates

Schwarzschild near $i^{0} \Longrightarrow$ most natural setting is finite energy spaces with respect to ∂_{t}.
Theorem
We have the estimate

$$
\int_{\mathscr{I}+}\left|\hat{F}_{2}\right|^{2} \widehat{\mathrm{dv}}_{\mathscr{I}+} \simeq \int_{\Sigma}\left(E^{2}+B^{2}\right) \mathrm{dv}_{\Sigma}
$$

where $\hat{F}_{2}=\hat{F}_{a b} \overline{\hat{m}}^{a} \hat{n}^{b}$.

Proof.

Energy integrals conformally invariant \Longrightarrow can work with different conformal factors in different regions.

1. Near i^{0} use the timelike Killing vector ∂_{t} of the Schwarzschild solution as multiplier; immediate
2. Near i^{+}construct a conformal factor such that i^{+}is finite and regular, $\hat{R}_{a b}\left(i^{+}\right)=0, \hat{R}=0=\hat{n}^{a} \hat{R}_{a b}$ on \mathscr{I}^{+}, and $-\hat{\nabla}^{a} \Omega$ is timelike; use $-\hat{\nabla}^{a} \Omega$ as multiplier

Construction for Maxwell potentials

Energy estimates

Schwarzschild near $i^{0} \Longrightarrow$ most natural setting is finite energy spaces with respect to ∂_{t}.
Theorem
We have the estimate

$$
\int_{\mathscr{I}+}\left|\hat{F}_{2}\right|^{2} \widehat{\mathrm{dv}}_{\mathscr{I}+} \simeq \int_{\Sigma}\left(E^{2}+B^{2}\right) \mathrm{dv}_{\Sigma}
$$

where $\hat{F}_{2}=\hat{F}_{a b} \overline{\hat{m}}^{a} \hat{n}^{b}$.

Proof.

Energy integrals conformally invariant \Longrightarrow can work with different conformal factors in different regions.

1. Near i^{0} use the timelike Killing vector ∂_{t} of the Schwarzschild solution as multiplier; immediate
2. Near i^{+}construct a conformal factor such that i^{+}is finite and regular, $\hat{R}_{a b}\left(i^{+}\right)=0, \hat{R}=0=\hat{n}^{a} \hat{R}_{a b}$ on \mathscr{I}^{+}, and $-\hat{\nabla}^{a} \Omega$ is timelike; use $-\hat{\nabla}^{a} \Omega$ as multiplier
3. Can patch these together as a result of $\hat{\lambda} \approx 0 \approx \hat{\nu}$ (always true on \mathscr{I}^{+})

Construction for Maxwell potentials Gauge choice

Nontrivial problem; need to satisfy:

Construction for Maxwell potentials

Gauge choice
Nontrivial problem; need to satisfy:

- (2) becomes hyperbolic and non-singular on \hat{M}

Construction for Maxwell potentials

Gauge choice

Nontrivial problem; need to satisfy:

- (2) becomes hyperbolic and non-singular on \hat{M}
o spaces defined by finite energies for $\hat{F}_{a b}$ become Hilbert spaces for \hat{A}_{a}

Construction for Maxwell potentials

Gauge choice
Nontrivial problem; need to satisfy:

- (2) becomes hyperbolic and non-singular on \hat{M}
- spaces defined by finite energies for $\hat{F}_{a b}$ become Hilbert spaces for \hat{A}_{a}
o defines full set of scattering data on \mathscr{I}^{+}and full set of initial data on Σ

Construction for Maxwell potentials

Gauge choice

Nontrivial problem; need to satisfy:

- (2) becomes hyperbolic and non-singular on \hat{M}
o spaces defined by finite energies for $\hat{F}_{a b}$ become Hilbert spaces for \hat{A}_{a}
o defines full set of scattering data on \mathscr{I}^{+}and full set of initial data on Σ
This works:

Construction for Maxwell potentials

Gauge near \mathscr{I}^{+}
Physical Lorenz gauge $\nabla_{a} A^{a}=0$ has expansion in powers of Ω near \mathscr{I}^{+}:

$$
\begin{aligned}
\Omega^{-2} \nabla_{a} A^{a}= & -2 \Omega^{-1} f \hat{A}_{1} \\
& +\hat{\mathrm{p}} \hat{A}_{1}-2 \hat{A}_{1} \operatorname{Re}(\hat{\rho})+\hat{\mathrm{p}}^{\prime} \hat{A}_{0}-2 \operatorname{Re}\left(\hat{\jmath} \overline{\hat{A}}_{2}\right) \\
& +\mathcal{O}(\Omega)
\end{aligned}
$$

Construction for Maxwell potentials

Physical Lorenz gauge $\nabla_{a} A^{a}=0$ has expansion in powers of Ω near \mathscr{I}^{+}:

$$
\begin{aligned}
\Omega^{-2} \nabla_{a} A^{a}= & -2 \Omega^{-1} f \hat{A}_{1} \\
& +\hat{\mathrm{p}} \hat{A}_{1}-2 \hat{A}_{1} \operatorname{Re}(\hat{\rho})+\hat{\mathrm{p}}^{\prime} \hat{A}_{0}-2 \operatorname{Re}\left(\hat{\mathrm{\delta}} \overline{\hat{A}}_{2}\right) \\
& +\mathcal{O}(\Omega)
\end{aligned}
$$

At order $\mathcal{O}\left(\Omega^{-1}\right)$ obtain:

$$
\hat{A}_{1} \approx 0
$$

Construction for Maxwell potentials

Gauge near \mathscr{I}^{+}
Physical Lorenz gauge $\nabla_{a} A^{a}=0$ has expansion in powers of Ω near \mathscr{I}^{+}:

$$
\begin{aligned}
\Omega^{-2} \nabla_{a} A^{a}= & -2 \Omega^{-1} f \hat{A}_{1} \\
& +\hat{\mathrm{p}} \hat{A}_{1}-2 \hat{A}_{1} \operatorname{Re}(\hat{\rho})+\hat{\mathrm{p}}^{\prime} \hat{A}_{0}-2 \operatorname{Re}\left(\hat{\mathrm{\delta}} \overline{\hat{A}}_{2}\right) \\
& +\mathcal{O}(\Omega)
\end{aligned}
$$

$\underline{\text { At order } \mathcal{O}\left(\Omega^{-1}\right) \text { obtain: }}$

$$
\hat{A}_{1} \approx 0
$$

Follows that

$$
\hat{A}_{1}=\Omega \hat{A}_{1}^{[1]}, \quad \hat{F}_{2} \approx-\partial_{u} \overline{\hat{A}}_{2}
$$

Construction for Maxwell potentials

Gauge near \mathscr{I}^{+}

Physical Lorenz gauge $\nabla_{a} A^{a}=0$ has expansion in powers of Ω near \mathscr{I}^{+}:

$$
\begin{aligned}
\Omega^{-2} \nabla_{a} A^{a}= & -2 \Omega^{-1} f \hat{A}_{1} \\
& +\hat{\mathrm{p}} \hat{A}_{1}-2 \hat{A}_{1} \operatorname{Re}(\hat{\rho})+\hat{\mathrm{p}}^{\prime} \hat{A}_{0}-2 \operatorname{Re}\left(\hat{\mathrm{\delta}} \overline{\hat{A}}_{2}\right) \\
& +\mathcal{O}(\Omega)
\end{aligned}
$$

At order $\mathcal{O}\left(\Omega^{-1}\right)$ obtain:

$$
\hat{A}_{1} \approx 0
$$

Follows that

$$
\hat{A}_{1}=\Omega \hat{A}_{1}^{[1]}, \quad \hat{F}_{2} \approx-\partial_{u} \overline{\hat{A}}_{2}
$$

and (2) becomes

$$
\widehat{\square} \hat{A}_{a}-\hat{\nabla}_{a}\left(2 f \hat{A}_{1}^{[1]}\right)+\hat{R}_{a b} \hat{A}^{b}=0 \Longrightarrow \text { hyperbolic, non-singular. }
$$

Construction for Maxwell potentials

Gauge near \mathscr{I}^{+}

Physical Lorenz gauge $\nabla_{a} A^{a}=0$ has expansion in powers of Ω near \mathscr{I}^{+}:

$$
\begin{aligned}
\Omega^{-2} \nabla_{a} A^{a}= & -2 \Omega^{-1} f \hat{A}_{1} \\
& +\hat{\mathrm{p}} \hat{A}_{1}-2 \hat{A}_{1} \operatorname{Re}(\hat{\rho})+\hat{\mathrm{p}}^{\prime} \hat{A}_{0}-2 \operatorname{Re}\left(\hat{\mathrm{\delta}} \overline{\hat{A}}_{2}\right) \\
& +\mathcal{O}(\Omega)
\end{aligned}
$$

$\underline{\text { At order } \mathcal{O}\left(\Omega^{-1}\right) \text { obtain: }}$

$$
\hat{A}_{1} \approx 0
$$

Follows that

$$
\hat{A}_{1}=\Omega \hat{A}_{1}^{[1]}, \quad \hat{F}_{2} \approx-\partial_{u} \overline{\hat{A}}_{2}
$$

and (2) becomes

$$
\hat{\square} \hat{A}_{a}-\hat{\nabla}_{a}\left(2 f \hat{A}_{1}^{[1]}\right)+\hat{R}_{a b} \hat{A}^{b}=0 \Longrightarrow \text { hyperbolic, non-singular. }
$$

At order $\mathcal{O}(1)$ then obtain:

$$
-f \hat{A}_{1}^{[1]}+\hat{\mathrm{p}}^{\prime} \hat{A}_{0}-2 \operatorname{Re}\left(\hat{\partial} \overline{\hat{A}}_{2}\right) \approx 0
$$

Construction for Maxwell potentials
Gauge near \mathscr{I}^{+}

- There is enough residual gauge freedom to set $\hat{A}_{1}^{[1]} \approx 0$.

Construction for Maxwell potentials

Gauge near \mathscr{I}^{+}

- There is enough residual gauge freedom to set $\hat{A}_{1}^{[1]} \approx 0$.

Then recover \hat{A}_{0} from

$$
\hat{A}_{0} \approx \int_{-\infty}^{u} \nabla_{\mathbb{S}^{2}} \cdot \hat{A}_{2} \mathrm{~d} u
$$

whence

$$
\int_{\mathscr{I}+}\left|\hat{F}_{2}\right|^{2} \mathrm{~d} u \wedge \mathrm{dv}_{\mathbb{S}^{2}}=\int_{\mathscr{I}+}\left|\partial_{u} \hat{A}_{2}\right|^{2} \mathrm{~d} u \wedge \mathrm{dv}_{\mathbb{S}^{2}}
$$

Construction for Maxwell potentials

Gauge near \mathscr{I}^{+}

- There is enough residual gauge freedom to set $\hat{A}_{1}^{[1]} \approx 0$.

Then recover \hat{A}_{0} from

$$
\hat{A}_{0} \approx \int_{-\infty}^{u} \nabla_{\mathbb{S}^{2}} \cdot \hat{A}_{2} \mathrm{~d} u
$$

whence

$$
\int_{\mathscr{I}+}\left|\hat{F}_{2}\right|^{2} \mathrm{~d} u \wedge \mathrm{dv}_{\mathbb{S}^{2}}=\int_{\mathscr{I}+}\left|\partial_{u} \hat{A}_{2}\right|^{2} \mathrm{~d} u \wedge \mathrm{dv}_{\mathbb{S}^{2}}
$$

Definition

The space of scattering data for the Maxwell potential is

$$
\begin{aligned}
\dot{\mathcal{H}}^{1}\left(\mathscr{I}^{+}\right) & =\left\{\left(\hat{A}_{0}, 0, \hat{A}_{2}\right) \in \dot{H}^{2}\left(\mathbb{R} ; H^{-1}\left(\mathbb{S}^{2}\right)\right) \times \mathcal{C}_{c}^{\infty}\left(\mathscr{I}^{+}\right) \times \dot{H}^{1}\left(\mathbb{R} ; L^{2}\left(\mathbb{S}^{2}\right)\right)\right\} / \sim \\
& \simeq \dot{H}^{1}\left(\mathbb{R} ; L^{2}\left(\mathbb{S}^{2}\right)\right) .
\end{aligned}
$$

The equivalence relation \sim identifies \hat{A}_{2} 's that differ by a constant on \mathscr{I}^{+}.

Construction for Maxwell potentials

Gauge near Σ

Construction for Maxwell potentials

Gauge near Σ

- There is enough residual gauge freedom in $\nabla_{\mathrm{a}} A^{a}=0$ to set

$$
\left.\mathfrak{a}\right|_{\Sigma}=0=\left.\boldsymbol{\nabla} \cdot \boldsymbol{A}\right|_{\Sigma},
$$

where $\mathfrak{a}=T^{a} A_{a}, \boldsymbol{A}$ is the projection of A_{a} to Σ, and $\boldsymbol{\nabla}$ is the connection on Σ.

Construction for Maxwell potentials

- There is enough residual gauge freedom in $\nabla_{a} A^{a}=0$ to set

$$
\left.\mathfrak{a}\right|_{\Sigma}=0=\left.\boldsymbol{\nabla} \cdot \boldsymbol{A}\right|_{\Sigma},
$$

where $\mathfrak{a}=T^{a} A_{a}, \boldsymbol{A}$ is the projection of A_{a} to Σ, and $\boldsymbol{\nabla}$ is the connection on Σ. Subtlety: this is incompatible with condition near \mathscr{I}^{+}, so we break Lorenz gauge in the bulk.

Construction for Maxwell potentials

Gauge near Σ

- There is enough residual gauge freedom in $\nabla_{a} A^{a}=0$ to set

$$
\left.\mathfrak{a}\right|_{\Sigma}=0=\left.\boldsymbol{\nabla} \cdot \boldsymbol{A}\right|_{\Sigma},
$$

where $\mathfrak{a}=T^{a} A_{a}, \boldsymbol{A}$ is the projection of A_{a} to Σ, and ∇ is the connection on Σ.
Subtlety: this is incompatible with condition near \mathscr{I}^{+}, so we break Lorenz gauge in the bulk.

Get

$$
\int_{\Sigma}\left[\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right] \mathrm{dv}_{\Sigma}=\int_{\Sigma}\left[\left|\nabla_{T} \boldsymbol{A}-\boldsymbol{A} \cdot \kappa\right|^{2}+|\boldsymbol{\nabla} \boldsymbol{A}|^{2}-\boldsymbol{R}_{i j} \boldsymbol{A}^{i} \boldsymbol{A}^{j}\right] \operatorname{dv}_{\Sigma}
$$

Construction for Maxwell potentials

Gauge near Σ

- There is enough residual gauge freedom in $\nabla_{a} A^{a}=0$ to set

$$
\left.\mathfrak{a}\right|_{\Sigma}=0=\left.\boldsymbol{\nabla} \cdot \boldsymbol{A}\right|_{\Sigma},
$$

where $\mathfrak{a}=T^{a} A_{a}, \boldsymbol{A}$ is the projection of A_{a} to Σ, and $\boldsymbol{\nabla}$ is the connection on Σ.
Subtlety: this is incompatible with condition near \mathscr{I}^{+}, so we break Lorenz gauge in the bulk.

Get

$$
\int_{\Sigma}\left[\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right] \operatorname{dv}_{\Sigma}=\int_{\Sigma}\left[\left|\nabla_{T} \boldsymbol{A}-\boldsymbol{A} \cdot \kappa\right|^{2}+|\nabla \boldsymbol{A}|^{2}-\boldsymbol{R}_{i j} \boldsymbol{A}^{i} \boldsymbol{A}^{j}\right] \operatorname{dv}_{\Sigma}
$$

Problem : not manifestly positive definite for \boldsymbol{A};

Construction for Maxwell potentials

Gauge near Σ

- There is enough residual gauge freedom in $\nabla_{a} A^{a}=0$ to set

$$
\left.\mathfrak{a}\right|_{\Sigma}=0=\left.\boldsymbol{\nabla} \cdot \boldsymbol{A}\right|_{\Sigma},
$$

where $\mathfrak{a}=T^{a} A_{a}, \boldsymbol{A}$ is the projection of A_{a} to Σ, and $\boldsymbol{\nabla}$ is the connection on Σ.
Subtlety: this is incompatible with condition near \mathscr{I}^{+}, so we break Lorenz gauge in the bulk.

Get

$$
\int_{\Sigma}\left[\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right] \operatorname{dv}_{\Sigma}=\int_{\Sigma}\left[\left|\nabla_{T} \boldsymbol{A}-\boldsymbol{A} \cdot \kappa\right|^{2}+|\boldsymbol{\nabla} \boldsymbol{A}|^{2}-\boldsymbol{R}_{i j} \boldsymbol{A}^{i} \boldsymbol{A}^{j}\right] \operatorname{dv}_{\Sigma}
$$

Problem : not manifestly positive definite for \boldsymbol{A};
Solution: show $(\boldsymbol{E}, \boldsymbol{B}) \in L^{2}(\Sigma)^{2}$ in one-to-one correspondence with $\left(\boldsymbol{A}, \nabla_{T} \boldsymbol{A}\right)$ in suitable Hilbert space; this will be the space of initial data.

Construction for Maxwell potentials

Space of initial data

Need to solve $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ for \boldsymbol{A} when $\boldsymbol{B} \in L^{2}(\Sigma)$.

Construction for Maxwell potentials

Space of initial data

Need to solve $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ for \boldsymbol{A} when $\boldsymbol{B} \in L^{2}(\Sigma)$. Equivalent to solving

$$
\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\boldsymbol{\nabla} \times \boldsymbol{B})_{k}
$$

with $B \in L^{2}(\Sigma)$.

Construction for Maxwell potentials

Space of initial data

Need to solve $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ for \boldsymbol{A} when $\boldsymbol{B} \in L^{2}(\Sigma)$. Equivalent to solving

$$
\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\boldsymbol{\nabla} \times \boldsymbol{B})_{k}
$$

with $B \in L^{2}(\Sigma)$.
Problem: The operator

$$
\begin{aligned}
& \boldsymbol{P}: \dot{H}^{1}(\Sigma) \longrightarrow \dot{H}^{-1}(\Sigma) \\
& (\boldsymbol{P A})_{k}=\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}
\end{aligned}
$$

is not coercive;

Construction for Maxwell potentials

Space of initial data

Need to solve $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ for \boldsymbol{A} when $\boldsymbol{B} \in L^{2}(\Sigma)$. Equivalent to solving

$$
\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\boldsymbol{\nabla} \times \boldsymbol{B})_{k}
$$

with $B \in L^{2}(\Sigma)$.
Problem: The operator

$$
\begin{aligned}
& P: \dot{H}^{1}(\Sigma) \longrightarrow \dot{H}^{-1}(\Sigma) \\
& (P A)_{k}=\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}
\end{aligned}
$$

is not coercive; in Schwarzschild

$$
\boldsymbol{R}_{j}^{i}=\frac{m}{r^{3}}\left(\begin{array}{ccc}
-2 & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

Construction for Maxwell potentials

Space of initial data

Need to solve $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ for \boldsymbol{A} when $\boldsymbol{B} \in L^{2}(\Sigma)$. Equivalent to solving

$$
\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\boldsymbol{\nabla} \times \boldsymbol{B})_{k}
$$

with $B \in L^{2}(\Sigma)$.
Problem: The operator

$$
\begin{aligned}
& \boldsymbol{P}: \dot{H}^{1}(\Sigma) \longrightarrow \dot{H}^{-1}(\Sigma) \\
& (P A)_{k}=\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}
\end{aligned}
$$

is not coercive; in Schwarzschild

$$
\boldsymbol{R}_{j}^{i}=\frac{m}{r^{3}}\left(\begin{array}{ccc}
-2 & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

So cannot easily use standard elliptic theory. [Σ unbounded, so $\dot{H}^{1}(\Sigma)$ does not compactly embed into $\dot{H}^{-1}(\Sigma)$. Do not understand $\operatorname{ker} P$.]

Construction for Maxwell potentials

Space of initial data

Workaround

For

$$
\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\nabla \times B)_{k}
$$

have the estimate

$$
\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+\int_{\Sigma}\left|\boldsymbol{R}_{i j} \boldsymbol{A}^{i} \boldsymbol{A}^{j}\right| \mathrm{dv}_{\Sigma} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+C \delta\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2}
$$

using Hardy's inequality:

$$
\int_{\Sigma} \frac{|\boldsymbol{A}|^{2}}{r^{2}} \mathrm{dv}_{\Sigma} \leqslant C \int_{\Sigma}|\nabla \boldsymbol{A}|^{2} \mathrm{dv}_{\Sigma}
$$

where $\delta=\left\|r^{2} \boldsymbol{R}\right\|_{L^{\infty}(\Sigma)}$.

Construction for Maxwell potentials

Space of initial data

Workaround

For

$$
\Delta A_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\nabla \times B)_{k}
$$

have the estimate

$$
\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+\int_{\Sigma}\left|\boldsymbol{R}_{i j} \boldsymbol{A}^{i} \boldsymbol{A}^{j}\right| \mathrm{dv}_{\Sigma} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+C \delta\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2}
$$

using Hardy's inequality:

$$
\int_{\Sigma} \frac{|\boldsymbol{A}|^{2}}{r^{2}} \mathrm{dv}_{\Sigma} \leqslant C \int_{\Sigma}|\nabla \boldsymbol{A}|^{2} \mathrm{dv}_{\Sigma}
$$

where $\delta=\left\|r^{2} \boldsymbol{R}\right\|_{L^{\infty}(\Sigma)}$.
Assumption:

$$
\delta<C^{-1}
$$

Construction for Maxwell potentials

Space of initial data

Workaround

For

$$
\Delta A_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\nabla \times B)_{k}
$$

have the estimate

$$
\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+\int_{\Sigma}\left|\boldsymbol{R}_{i j} \boldsymbol{A}^{i} \boldsymbol{A}^{j}\right| \mathrm{dv}_{\Sigma} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+C \delta\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2}
$$

using Hardy's inequality:

$$
\int_{\Sigma} \frac{|\boldsymbol{A}|^{2}}{r^{2}} \mathrm{dv}_{\Sigma} \leqslant C \int_{\Sigma}|\nabla \boldsymbol{A}|^{2} \mathrm{dv}_{\Sigma}
$$

where $\delta=\left\|r^{2} \boldsymbol{R}\right\|_{L^{\infty}(\Sigma)}$.
Assumption:

$$
\delta<C^{-1}
$$

"Globally not-too-large Ricci curvature".

Construction for Maxwell potentials

Space of initial data

Workaround

For

$$
\Delta A_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}=-(\nabla \times B)_{k}
$$

have the estimate

$$
\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+\int_{\Sigma}\left|\boldsymbol{R}_{i j} \boldsymbol{A}^{i} \boldsymbol{A}^{j}\right| \mathrm{dv}_{\Sigma} \leqslant\|\boldsymbol{B}\|_{L^{2}}^{2}+C \delta\|\boldsymbol{A}\|_{\dot{H}^{1}}^{2}
$$

using Hardy's inequality:

$$
\int_{\Sigma} \frac{|\boldsymbol{A}|^{2}}{r^{2}} \mathrm{dv}_{\Sigma} \leqslant C \int_{\Sigma}|\nabla \boldsymbol{A}|^{2} \mathrm{dv}_{\Sigma}
$$

where $\delta=\left\|r^{2} \boldsymbol{R}\right\|_{L^{\infty}(\Sigma)}$.
Assumption:

$$
\delta<C^{-1}
$$

"Globally not-too-large Ricci curvature". OK for Schwarzschild.

Construction for Maxwell potentials

Space of initial data

With this assumption $P: \dot{H}^{1}(\Sigma) \rightarrow \dot{H}^{-1}(\Sigma)$,

$$
(P A)_{k}=\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}
$$

becomes coercive and ker $\boldsymbol{P}=\{0\}$.

Construction for Maxwell potentials

Space of initial data

With this assumption $\boldsymbol{P}: \dot{H}^{1}(\Sigma) \rightarrow \dot{H}^{-1}(\Sigma)$,

$$
(P A)_{k}=\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}
$$

becomes coercive and ker $\boldsymbol{P}=\{0\}$.

Definition

The space of initial data $\left(\boldsymbol{A}, \nabla_{T} \boldsymbol{A}\right)$ on Σ is given by

$$
\dot{H}_{d f}^{1}(\Sigma) \oplus L^{2}(\Sigma)
$$

where

$$
\dot{H}_{d f}^{1}(\Sigma)=\left\{\boldsymbol{A} \in \dot{H}^{1}(\Sigma): \nabla \cdot \boldsymbol{A}=0, \boldsymbol{\nabla} \times \boldsymbol{A} \in L^{2}(\Sigma)\right\} .
$$

Construction for Maxwell potentials

Space of initial data

With this assumption $P: \dot{H}^{1}(\Sigma) \rightarrow \dot{H}^{-1}(\Sigma)$,

$$
(P A)_{k}=\Delta \boldsymbol{A}_{k}+\boldsymbol{R}_{k j} \boldsymbol{A}^{j}
$$

becomes coercive and ker $\boldsymbol{P}=\{0\}$.

Definition

The space of initial data $\left(\boldsymbol{A}, \nabla_{T} \boldsymbol{A}\right)$ on Σ is given by

$$
\dot{H}_{d f}^{1}(\Sigma) \oplus L^{2}(\Sigma)
$$

where

$$
\dot{H}_{d f}^{1}(\Sigma)=\left\{\boldsymbol{A} \in \dot{H}^{1}(\Sigma): \nabla \cdot \boldsymbol{A}=0, \nabla \times \boldsymbol{A} \in L^{2}(\Sigma)\right\} .
$$

Remark

For unrestricted δ do not fully understand the space of initial data.

Construction for Maxwell potentials

Trace operators

We therefore have bounded linear maps

Construction for Maxwell potentials

Trace operators

We therefore have bounded linear maps

$$
\begin{aligned}
& \mathfrak{T}^{ \pm}: \dot{H}_{d f}^{1}(\Sigma) \oplus L^{2}(\Sigma) \longrightarrow \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{ \pm}\right), \\
&\left.\quad\left(\boldsymbol{A}, \nabla_{T} \boldsymbol{A}\right)\right|_{\Sigma} \longmapsto\left(\hat{A}_{0}, \hat{A}_{1}, \hat{A}_{2}\right)=\left(\int_{-\infty}^{u} \nabla_{\mathbb{S}^{2}} \cdot \hat{A}_{2} \mathrm{~d} u, 0, \hat{A}_{2}\right) .
\end{aligned}
$$

Construction for Maxwell potentials

Trace operators

We therefore have bounded linear maps

$$
\begin{aligned}
& \mathfrak{T}^{ \pm}: \dot{H}_{d f}^{1}(\Sigma) \oplus L^{2}(\Sigma) \longrightarrow \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{ \pm}\right), \\
&\left.\quad\left(\boldsymbol{A}, \nabla_{T} \boldsymbol{A}\right)\right|_{\Sigma} \longmapsto\left(\hat{A}_{0}, \hat{A}_{1}, \hat{A}_{2}\right)=\left(\int_{-\infty}^{u} \nabla_{\mathbb{S}^{2}} \cdot \hat{A}_{2} \mathrm{~d} u, 0, \hat{A}_{2}\right) .
\end{aligned}
$$

Invertibility:

Construction for Maxwell potentials

Trace operators

We therefore have bounded linear maps

$$
\begin{aligned}
& \mathfrak{T}^{ \pm}: \dot{H}_{d f}^{1}(\Sigma) \oplus L^{2}(\Sigma) \longrightarrow \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{ \pm}\right), \\
&\left.\quad\left(\boldsymbol{A}, \nabla_{T} \boldsymbol{A}\right)\right|_{\Sigma} \longmapsto\left(\hat{A}_{0}, \hat{A}_{1}, \hat{A}_{2}\right)=\left(\int_{-\infty}^{u} \nabla_{\mathbb{S}^{2}} \cdot \hat{A}_{2} \mathrm{~d} u, 0, \hat{A}_{2}\right) .
\end{aligned}
$$

Invertibility:

Theorem (Hörmander '90, Bär-Wafo '15)

For \hat{M} a globally hyperbolic Lorentzian manifold and $\mathcal{S} \subset \hat{M}$ a characteristic (partial) Cauchy hypersurface, for any $f \in L_{\text {loc,sc }}^{2}(\hat{M})$ and any $u_{0} \in H_{c}^{1}(\mathcal{S})$ there exists a unique solution

$$
u \in \mathcal{C}_{s c}^{0}\left(t(\hat{M}) ; H^{1}\left(\mathcal{S}_{\circ}\right)\right) \cap \mathcal{C}_{s c}^{1}\left(t(\hat{M}) ; L^{2}\left(\mathcal{S}_{\circ}\right)\right)
$$

to

$$
P u=f,
$$

where P is a linear wave operator on \hat{M}.

Construction for Maxwell potentials

Scattering operator

Remark

Applies to systems of hyperbolic equations and non-compact \mathcal{S} with possibly Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of regularity.

Construction for Maxwell potentials

Scattering operator

Remark

Applies to systems of hyperbolic equations and non-compact \mathcal{S} with possibly Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of regularity.

With some bookkeeping, can apply the Theorem to

$$
\hat{\square}_{\hat{A}}^{a}-\hat{\nabla}_{a}\left(2 f \hat{A}_{1}^{[1]}\right)+\hat{R}_{a b} \hat{A}^{b}=0
$$

Construction for Maxwell potentials

Scattering operator

Remark

Applies to systems of hyperbolic equations and non-compact \mathcal{S} with possibly Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of regularity.

With some bookkeeping, can apply the Theorem to

$$
\hat{\square}_{\hat{A}}^{a}-\hat{\nabla}_{a}\left(2 f \hat{A}_{1}^{[1]}\right)+\hat{R}_{a b} \hat{A}^{b}=0
$$

$\Longrightarrow \mathfrak{T}^{ \pm}$invertible.

Construction for Maxwell potentials

Scattering operator

Remark

Applies to systems of hyperbolic equations and non-compact \mathcal{S} with possibly Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of regularity.

With some bookkeeping, can apply the Theorem to

$$
\hat{\square}_{\hat{A}}^{a}-\hat{\nabla}_{a}\left(2 f \hat{A}_{1}^{[1]}\right)+\hat{R}_{a b} \hat{A}^{b}=0
$$

$\Longrightarrow \mathfrak{T}^{ \pm}$invertible.
We therefore obtain the scattering operator

$$
\mathscr{S}=\mathfrak{T}^{+} \circ\left(\mathfrak{T}^{-}\right)^{-1}: \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{-}\right) \longrightarrow \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{+}\right)
$$

which is an isomorphism of Hilbert spaces.

Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂_{t} in Schwarzschild sector.

Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂_{t} in Schwarzschild sector. In Minkowski also have "inverted time translations",

Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂_{t} in Schwarzschild sector. In Minkowski also have "inverted time translations", i.e. Morawetz VF

$$
K_{0}=\left(t^{2}+r^{2}\right) \partial_{t}+2 t r \partial_{r} .
$$

Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂_{t} in Schwarzschild sector. In Minkowski also have "inverted time translations", i.e. Morawetz VF

$$
K_{0}=\left(t^{2}+r^{2}\right) \partial_{t}+2 t r \partial_{r} .
$$

CKF, exactly Killing wrt $r^{-2} \eta_{a b}$. Then

Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂_{t} in Schwarzschild sector. In Minkowski also have "inverted time translations", i.e. Morawetz VF

$$
K_{0}=\left(t^{2}+r^{2}\right) \partial_{t}+2 t r \partial_{r} .
$$

CKF, exactly Killing wrt $r^{-2} \eta_{a b}$. Then

$$
\begin{aligned}
& \mathrm{VF}=\partial_{t} \Longrightarrow \mathfrak{T}^{ \pm}: \quad \dot{H}_{d f}^{1}(\Sigma) \oplus \quad L_{d f}^{2}(\Sigma) \longrightarrow \quad \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{ \pm}\right) \\
& \mathrm{VF}=K_{0} \Longrightarrow \mathfrak{T}_{K_{0}}^{ \pm}: r^{-1} \dot{H}_{d f}^{1}(\Sigma) \oplus r^{-1} L_{d f}^{2}(\Sigma) \longrightarrow u^{-1} \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{ \pm}\right)
\end{aligned}
$$

i.e.

Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂_{t} in Schwarzschild sector. In Minkowski also have "inverted time translations", i.e. Morawetz VF

$$
K_{0}=\left(t^{2}+r^{2}\right) \partial_{t}+2 t r \partial_{r}
$$

CKF, exactly Killing wrt $r^{-2} \eta_{a b}$. Then

$$
\begin{aligned}
& \mathrm{VF}=\partial_{t} \Longrightarrow \mathfrak{T}^{ \pm}: \quad \dot{H}_{d f}^{1}(\Sigma) \oplus \quad L_{d f}^{2}(\Sigma) \longrightarrow \quad \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{ \pm}\right) \\
& \mathrm{VF}=K_{0} \Longrightarrow \mathfrak{T}_{K_{0}}^{ \pm}: r^{-1} \dot{H}_{d f}^{1}(\Sigma) \oplus r^{-1} L_{d f}^{2}(\Sigma) \longrightarrow u^{-1} \dot{\mathcal{H}}^{1}\left(\mathscr{I}^{ \pm}\right)
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& \mathscr{S}_{\partial_{t}}: \hat{A}_{2}^{-}=\mathcal{O}(\log |v|) \rightsquigarrow \boldsymbol{A}=\mathcal{O}\left(r^{-1}\right), \dot{\boldsymbol{A}}=\mathcal{O}\left(r^{-2}\right) \rightsquigarrow \hat{A}_{2}^{+}=\mathcal{O}(\log |u|) \\
& \mathscr{S}_{K_{0}}: \hat{A}_{2}^{-}=\mathcal{O}\left(v^{-1}\right) \rightsquigarrow \boldsymbol{A}=\mathcal{O}\left(r^{-2}\right), \dot{\boldsymbol{A}}=\mathcal{O}\left(r^{-3}\right) \rightsquigarrow \hat{A}_{2}^{+}=\mathcal{O}\left(u^{-1}\right)
\end{aligned}
$$

Decay rates obtained using ∂_{t} as multiplier

Decay rates obtained using K_{0} as multiplier

Weaker decay towards i^{0}

Thank you !

