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2 / 28



Lax–Phillips scattering

Consider on R1+3

∂2
t φ−∆φ = 0. (1)

3 / 28



Lax–Phillips scattering

Consider on R1+3

∂2
t φ−∆φ = 0. (1)

Compare incoming states to outgoing states to extract summary of
interactions. Write

∂tΦ = −iHΦ, Φ =

󰀕
φ
∂tφ

󰀖
, H = −i

󰀕
0 1
∆ 0

󰀖
.

3 / 28



Lax–Phillips scattering

Consider on R1+3

∂2
t φ−∆φ = 0. (1)

Compare incoming states to outgoing states to extract summary of
interactions. Write

∂tΦ = −iHΦ, Φ =

󰀕
φ
∂tφ

󰀖
, H = −i

󰀕
0 1
∆ 0

󰀖
.

Associate (1) with operator H which:

3 / 28



Lax–Phillips scattering

Consider on R1+3

∂2
t φ−∆φ = 0. (1)

Compare incoming states to outgoing states to extract summary of
interactions. Write

∂tΦ = −iHΦ, Φ =

󰀕
φ
∂tφ

󰀖
, H = −i

󰀕
0 1
∆ 0

󰀖
.

Associate (1) with operator H which:

o is self-adjoint on Ḣ1(R3)⊕ L2(R3)
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Consider on R1+3

∂2
t φ−∆φ = 0. (1)

Compare incoming states to outgoing states to extract summary of
interactions. Write

∂tΦ = −iHΦ, Φ =

󰀕
φ
∂tφ

󰀖
, H = −i

󰀕
0 1
∆ 0

󰀖
.

Associate (1) with operator H which:

o is self-adjoint on Ḣ1(R3)⊕ L2(R3)

o has spectrum = R
o for each eigenvalue σ ∈ R \ {0} has a 2-sphere of generalized

eigenfunctions
Wσ(x ,ω) = (e−iσx·ω, iσe−iσx·ω)
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Lax–Phillips scattering

The Ḣ1 ⊕ L2 inner product with the eigenfunctions Wσ induces a map
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Φ(x) 󰀁−→ Φ̃(σ,ω) = 〈Wσ(x ,ω), Φ(x)〉Ḣ1⊕L2 .
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Sσ : Ḣ1(R3)⊕ L2(R3) −→ L2(R× S2)

Φ(x) 󰀁−→ Φ̃(σ,ω) = 〈Wσ(x ,ω), Φ(x)〉Ḣ1⊕L2 .

This map provides a spectral representation of H and its propagator:

Sσ : HΦ 󰀁−→ σΦ̃,

Sσ : e itHΦ 󰀁−→ e itσΦ̃.

Taking the Fourier transform of Φ̃ in σ, one obtains a new representation of Φ,

T+Φ = (Fσ ◦ Sσ)Φ.
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Lax–Phillips scattering

This new representation T+Φ satisfies

T+(e itHΦ)(r ,ω) = (T+Φ)(r − t,ω).
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This new representation T+Φ satisfies

T+(e itHΦ)(r ,ω) = (T+Φ)(r − t,ω).

This is the famous Lax–Phillips future translation representation. It is an

isometry
T+ : Ḣ1(R3)⊕ L2(R3) −→ L2(R× S2).

existence of translation representation ⇐⇒ “no scattering" condition

Evolution of φ is just translation in time of initial data.
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Lax–Phillips scattering

Construction for (−H) instead of H yields past translation representation T−.
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Lax–Phillips scattering

Construction for (−H) instead of H yields past translation representation T−.
Then the scattering operator is

S = T+ ◦ (T−)−1.

Explicit inversion of T+ gives

φ(t, x) =
1
2π

󰁝

S2
(T+Φ)(x · ω + t,ω) d2ω

— this is Whittaker’s formula (1903) for (1).

Upside: neat story;
Downside: heavy reliance on spectral theory; only valid on static backgrounds;
technical restriction;
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Friedlander’s radiation field

Theorem (Friedlander 1967, 1980)
In Minkowski spacetime the solution φ to (1) can be recovered from either of
the “radiation fields”

φ̂+(u,ω) =
󰁳

1 + u2 lim
r→∞

rφ(r + u, r ,ω),

φ̂−(v ,ω) =
󰁳

1 + v2 lim
r→∞

rφ(−r + v , r ,ω).
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the “radiation fields”

φ̂+(u,ω) =
󰁳

1 + u2 lim
r→∞

rφ(r + u, r ,ω),

φ̂−(v ,ω) =
󰁳

1 + v2 lim
r→∞

rφ(−r + v , r ,ω).

Friedlander rephrased Lax–Phillips theory in terms of Penrose’s conformal
compactification: as the well-posedness of a characteristic Cauchy problem
from I ±, with data φ̂±. Roughly,

translation representation at infinity ⇐⇒ radiation fields

Remark
In fact Friedlander considered curved, static backgrounds with strong decay at
i0, among which the only solution to Einstein’s equations is Minkowski; seems
Friedlander was motivated by recovering the full richness of the Lax–Phillips
theory.
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Interlude: conformal compactification
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Interlude: conformal compactification

(R1+3, η) can be smoothly embedded into R× S3 using a conformal rescaling:
∃Ω > 0 smooth such that

η̂ = Ω2η = dτ2 − gS3 .

I +

I −

i0
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Conformal compactification
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However, such a smooth embedding is only possible in the case of Minkowski
space.

Problem :
If (M, g) asymptotically flat with non-zero ADM mass m ∕= 0, then the
eigenvalues of the Weyl tensor of ĝab = Ω2gab are proportional to

m

r3Ω2 .

Therefore any compactification which brings i0 to a finite distance is singular if
m ∕= 0.

Workaround : use incomplete compactification which leaves i0 at infinity; is
there a class of spacetimes for which this works?
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Corvino–Schoen–Chruściel–Delay spacetimes

[cf. talk by P. LeFloch]

Theorem (Corvino ’00, Chruściel–Delay ’02, ’03, Corvino–Schoen ’06)
There exists an infinite dimensional class of spacetimes (M, g) such that

o there exists a smooth function Ω > 0 on M and another spacetime (M̂, ĝ),
where ĝab = Ω2gab, such that M̂ \ ∂M̂ is diffeomorphic to M, Ω = 0 on
∂M̂, and dΩ ∕= 0 on ∂M̂,

o every inextendible null geodesic acquires two distinct endpoints on ∂M̂,

o ∂M̂ = I + ∪I − ∪ i+ ∪ i− , where I ± is the past (future) lightcone of i±,

o the rescaled metric ĝab is C k at i± and I ± for any fixed k,

o the spacetime (M, g) satisfies Einstein’s equations Rab = 0,

o M is diffeomorphic to the Schwarzschild solution outside the domain of
influence of a given compact subset K of a Cauchy surface Σ
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Corvino–Schoen–Chruściel–Delay spacetimes

Theorem (Penrose, 1965)
For CSCD spacetimes the topology of I ± is given by

I + ≃ I − ≃ R× S2,

and the R factors correspond to the rays generating I ±.

I +

I −

i0

Schwarzschild
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Assumptions on the physical spacetime

In general for our scattering theory we require:
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Assumptions on the physical spacetime

In general for our scattering theory we require:

◮ the physical stress-energy tensor decays like O(Ω2) towards I ±; =⇒
ν̂ ≈ λ̂ ≈ µ̂ ≈ π̂ ≈ γ̂ ≈ τ̂ ≈ 0

◮ the rescaled Weyl tensor vanishes on I +; =⇒ kills some components of
the Ricci curvature (Φ̂22 ≈ 0 ≈ Φ̂21)

o these two assumptions allow us to construct a conformal factor Ω in which
I ± is essentially “flat" (analogue of r−1 in Minkowski, and here Ω = r−1

near i0)

◮ also assume that there exists a Cauchy surface Σ on which

󰀂r2RicΣ󰀂L∞ < C

for some constant 0 < C < 1 (more later)

o "small" matter is allowed; spacetime not stationary

o do not expect "no-scattering" condition to hold (∴ no translation
representation)
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Construction for Maxwell potentials

Maxwell’s equations conformally invariant:

∇aFab = 0 ⇐⇒ ∇̂aF̂ab = 0,

where F̂ab = Fab.
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a) + R̂abÂ
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Construction for Maxwell potentials

Maxwell’s equations conformally invariant:

∇aFab = 0 ⇐⇒ ∇̂aF̂ab = 0,

where F̂ab = Fab. In terms of the potential F = dA, where Aa = Âa, and

󰁥□Âb − ∇̂b(∇̂aÂ
a) + R̂abÂ

a = 0. (2)

Seek to construct isomorphisms T± between function spaces on initial surface
Σ and I ±. Need:

◮ energy estimates

◮ gauge choice ((2) not hyperbolic a priori)

◮ solve characteristic Cauchy problem without loss of regularity
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Construction for Maxwell potentials
Energy estimates

Schwarzschild near i0 =⇒ most natural setting is finite energy spaces with
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Theorem
We have the estimate
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where F̂2 = F̂ab
¯̂man̂b.

Proof.
Energy integrals conformally invariant =⇒ can work with different conformal
factors in different regions.

1. Near i0 use the timelike Killing vector ∂t of the Schwarzschild solution as
multiplier; immediate

2. Near i+ construct a conformal factor such that i+ is finite and regular,
R̂ab(i

+) = 0, R̂ = 0 = n̂aR̂ab on I +, and −∇̂aΩ is timelike; use −∇̂aΩ as
multiplier

3. Can patch these together as a result of λ̂ ≈ 0 ≈ ν̂ (always true on I +)
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Construction for Maxwell potentials
Gauge choice

Nontrivial problem; need to satisfy:

o (2) becomes hyperbolic and non-singular on M̂

o spaces defined by finite energies for F̂ab become Hilbert spaces for Âa

o defines full set of scattering data on I + and full set of initial data on Σ

This works:
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Construction for Maxwell potentials
Gauge near I +

Physical Lorenz gauge ∇aA
a = 0 has expansion in powers of Ω near I +:

Ω−2∇aA
a = −2Ω−1f Â1

+ þ̂Â1 − 2Â1 Re(ρ̂) + þ̂
′
Â0 − 2Re(ð̂ ¯̂A2)

+O(Ω).
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Â0 − 2Re(ð̂ ¯̂A2)

+O(Ω).

At order O(Ω−1) obtain:
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+ þ̂Â1 − 2Â1 Re(ρ̂) + þ̂
′
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At order O(Ω−1) obtain:
Â1 ≈ 0.

Follows that
Â1 = ΩÂ

[1]
1 , F̂2 ≈ −∂u

¯̂A2.

and (2) becomes

󰁥□Âa − ∇̂a(2f Â
[1]
1 ) + R̂abÂ

b = 0 =⇒ hyperbolic, non-singular.

At order O(1) then obtain:

−f Â
[1]
1 + þ̂

′
Â0 − 2Re(ð̂ ¯̂A2) ≈ 0.

16 / 28



Construction for Maxwell potentials
Gauge near I +

• There is enough residual gauge freedom to set Â
[1]
1 ≈ 0.
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Construction for Maxwell potentials
Gauge near I +

• There is enough residual gauge freedom to set Â
[1]
1 ≈ 0.

Then recover Â0 from

Â0 ≈
󰁝 u

−∞
∇S2 · Â2 du,

whence 󰁝

I+

|F̂2|2 du ∧ dvS2 =

󰁝

I+

|∂uÂ2|2 du ∧ dvS2 .

Definition
The space of scattering data for the Maxwell potential is

Ḣ1(I +) =
󰁱
(Â0, 0, Â2) ∈ Ḣ2(R;H−1(S2))× C∞

c (I +)× Ḣ1(R; L2(S2))
󰁲
/ ∼

≃ Ḣ1(R; L2(S2)).

The equivalence relation ∼ identifies Â2’s that differ by a constant on I +.
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• There is enough residual gauge freedom in ∇aA
a = 0 to set

a|Σ = 0 = ∇ · A|Σ,

where a = T aAa, A is the projection of Aa to Σ, and ∇ is the connection on Σ.

Subtlety: this is incompatible with condition near I +, so we break Lorenz
gauge in the bulk.

Get
󰁝

Σ

[E 2 + B2] dvΣ =

󰁝

Σ

󰁫
|∇TA − A · κ|2 + |∇A|2 − R ijAiAj

󰁬
dvΣ.

18 / 28



Construction for Maxwell potentials
Gauge near Σ

• There is enough residual gauge freedom in ∇aA
a = 0 to set

a|Σ = 0 = ∇ · A|Σ,

where a = T aAa, A is the projection of Aa to Σ, and ∇ is the connection on Σ.

Subtlety: this is incompatible with condition near I +, so we break Lorenz
gauge in the bulk.

Get
󰁝

Σ

[E 2 + B2] dvΣ =

󰁝

Σ

󰁫
|∇TA − A · κ|2 + |∇A|2 − R ijAiAj

󰁬
dvΣ.

Problem : not manifestly positive definite for A;

18 / 28



Construction for Maxwell potentials
Gauge near Σ

• There is enough residual gauge freedom in ∇aA
a = 0 to set

a|Σ = 0 = ∇ · A|Σ,

where a = T aAa, A is the projection of Aa to Σ, and ∇ is the connection on Σ.

Subtlety: this is incompatible with condition near I +, so we break Lorenz
gauge in the bulk.

Get
󰁝

Σ

[E 2 + B2] dvΣ =

󰁝

Σ

󰁫
|∇TA − A · κ|2 + |∇A|2 − R ijAiAj

󰁬
dvΣ.

Problem : not manifestly positive definite for A;

Solution : show (E ,B) ∈ L2(Σ)2 in one-to-one correspondence with (A,∇TA)
in suitable Hilbert space; this will be the space of initial data.
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Construction for Maxwell potentials
Space of initial data

Need to solve B = ∇× A for A when B ∈ L2(Σ). Equivalent to solving

∆Ak + RkjAj = −(∇× B)k

with B ∈ L2(Σ).

Problem : The operator

P : Ḣ1(Σ) −→ Ḣ−1(Σ)

(PA)k = ∆Ak + RkjAj

is not coercive; in Schwarzschild

R i
j =

m

r3

󰀳

󰁃
−2

1
1

󰀴

󰁄 .

So cannot easily use standard elliptic theory. [Σ unbounded, so Ḣ1(Σ) does not
compactly embed into Ḣ−1(Σ). Do not understand kerP.]
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Construction for Maxwell potentials
Space of initial data

Workaround :

For
∆Ak + RkjAj = −(∇× B)k

have the estimate

󰀂A󰀂2
Ḣ1 󰃑 󰀂B󰀂2

L2 +

󰁝

Σ

|R ijAiAj | dvΣ 󰃑 󰀂B󰀂2
L2 + Cδ󰀂A󰀂2

Ḣ1

using Hardy’s inequality:
󰁝

Σ

|A|2

r2 dvΣ 󰃑 C

󰁝

Σ

|∇A|2 dvΣ

where δ = 󰀂r2R󰀂L∞(Σ).
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|R ijAiAj | dvΣ 󰃑 󰀂B󰀂2
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Ḣ1

using Hardy’s inequality:
󰁝

Σ

|A|2

r2 dvΣ 󰃑 C

󰁝

Σ

|∇A|2 dvΣ

where δ = 󰀂r2R󰀂L∞(Σ).

Assumption:
δ < C−1.

“Globally not-too-large Ricci curvature”. OK for Schwarzschild.
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Construction for Maxwell potentials
Space of initial data

With this assumption P : Ḣ1(Σ) → Ḣ−1(Σ),

(PA)k = ∆Ak + RkjAj

becomes coercive and kerP = {0}.
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Space of initial data

With this assumption P : Ḣ1(Σ) → Ḣ−1(Σ),

(PA)k = ∆Ak + RkjAj

becomes coercive and kerP = {0}.

Definition
The space of initial data (A,∇TA) on Σ is given by

Ḣ1
df (Σ)⊕ L2(Σ),

where
Ḣ1

df (Σ) = {A ∈ Ḣ1(Σ) : ∇ · A = 0, ∇× A ∈ L2(Σ)}.

Remark
For unrestricted δ do not fully understand the space of initial data.
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Construction for Maxwell potentials
Trace operators

We therefore have bounded linear maps

T± : Ḣ1
df (Σ)⊕ L2(Σ) −→ Ḣ1(I ±),

(A,∇TA)|Σ 󰀁−→ (Â0, Â1, Â2) =

󰀕󰁝 u

−∞
∇S2 · Â2 du, 0, Â2

󰀖
.

Invertibility:

Theorem (Hörmander ’90, Bär–Wafo ’15)
For M̂ a globally hyperbolic Lorentzian manifold and S ⊂ M̂ a characteristic
(partial) Cauchy hypersurface, for any f ∈ L2

loc,sc(M̂) and any u0 ∈ H1
c (S) there

exists a unique solution

u ∈ C0
sc(t(M̂);H1(S◦)) ∩ C1

sc(t(M̂); L2(S◦))

to
Pu = f ,

where P is a linear wave operator on M̂.
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Construction for Maxwell potentials
Scattering operator

Remark
Applies to systems of hyperbolic equations and non-compact S with possibly
Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of
regularity.

23 / 28



Construction for Maxwell potentials
Scattering operator

Remark
Applies to systems of hyperbolic equations and non-compact S with possibly
Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of
regularity.

With some bookkeeping, can apply the Theorem to
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Construction for Maxwell potentials
Scattering operator

Remark
Applies to systems of hyperbolic equations and non-compact S with possibly
Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of
regularity.

With some bookkeeping, can apply the Theorem to

󰁥□Âa − ∇̂a(2f Â
[1]
1 ) + R̂abÂ

b = 0

=⇒ T± invertible.

We therefore obtain the scattering operator

S = T+ ◦ (T−)−1 : Ḣ1(I −) −→ Ḣ1(I +)

which is an isomorphism of Hilbert spaces.
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Construction for Maxwell potentials
Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂t in
Schwarzschild sector.
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CKF, exactly Killing wrt r−2ηab. Then

VF = ∂t =⇒ T± : Ḣ1
df (Σ)⊕ L2

df (Σ) −→ Ḣ1(I ±)

VF = K0 =⇒ T±
K0 : r−1Ḣ1

df (Σ)⊕ r−1L2
df (Σ) −→ u−1Ḣ1(I ±)
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Construction for Maxwell potentials
Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF ∂t in
Schwarzschild sector. In Minkowski also have "inverted time translations", i.e.
Morawetz VF

K0 = (t2 + r2)∂t + 2tr∂r .

CKF, exactly Killing wrt r−2ηab. Then

VF = ∂t =⇒ T± : Ḣ1
df (Σ)⊕ L2

df (Σ) −→ Ḣ1(I ±)

VF = K0 =⇒ T±
K0 : r−1Ḣ1

df (Σ)⊕ r−1L2
df (Σ) −→ u−1Ḣ1(I ±)

i.e.

S∂t : Â
−
2 = O(log |v |) ⇝ A = O(r−1), Ȧ = O(r−2) ⇝ Â+

2 = O(log |u|)

SK0 : Â−
2 = O(v−1) ⇝ A = O(r−2), Ȧ = O(r−3) ⇝ Â+

2 = O(u−1).
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Decay rates obtained using ∂t as multiplier

I +

I −

i0

i−

i+

A0
∼
r
−2

A1
∼
r
−2

A2
∼
r
−1

rA
2 ∼

log |u|

r Ā
2
∼
lo
g |
v |

A ∼ r−1

Ȧ ∼ r−2
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Decay rates obtained using K0 as multiplier

i0

i−

i+

A0
∼
r
−2

A1
∼
r
−2

A2
∼
r
−1

rA
2 ∼

u −
1

r Ā
2
∼
v
−1

A ∼ r−2

Ȧ ∼ r−3
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Weaker decay towards i0

i0

i−

i+

φ2
∼
r
−1 lo

g
|u|

r

rφ
0
∼

1
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Thank you !

28 / 28


