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» Fundamentals of Lax—Phillips scattering
» Conformal scattering
» Maxwell potentials on curved spacetimes

» Decay rates

[based on arXiv:2211.14579 with J.-P. Nicolas & arXiv:2304.08270 with J.
Valiente Kroon]
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Lax—Phillips scattering

Consider on R**3

Rop—NDgp=0. (1)

Compare incoming states to outgoing states to extract summary of
interactions. Write

. (¢ _ (o001
0:® = —iH®, ¢_(at¢), H_—l(A 0).

Associate (1) with operator H which:
o is self-adjoint on H*(R®) @ L2(R®)
o has spectrum = R

o for each eigenvalue o € R\ {0} has a 2-sphere of generalized
eigenfunctions ' ‘
WO.(X7 w) — (e—IO'X‘L/J7I-O_e—I(TX‘LA))
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Lax—Phillips scattering

The H* ® L2 inner product with the eigenfunctions W, induces a map
S, : H}(R*) @ L*(R®) — L*(R x S?)
¢(X) — &9(0'700) = <W0(X7w)7 ¢(X)>FI1€9L2'
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Lax—Phillips scattering

The H* ® L2 inner product with the eigenfunctions W, induces a map
S, : H}(R*) @ L*(R®) — L*(R x S?)
¢(X) — &9(0'700) = <W0(X7w)7 ¢(X)>H1€9L2'

This map provides a spectral representation of H and its propagator:

S, : H¢i—>0'&>,

S, e — 0.

Taking the Fourier transform of ® in o, one obtains a new representation of ®,

THo = (F,08,)0.
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Lax—Phillips scattering

This new representation T+ satisfies

(™M) (r,w) = (TT)(r — t,w).
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Lax—Phillips scattering

This new representation T+ satisfies
TH™d)(r,w) = (T O)(r — t,w).

This is the famous Lax—Phillips future translation representation. It is an

isometry )
T HYR?) @ L(R?) — L*(R x S?).

existence of translation representation <= "“no scattering" condition

Evolution of ¢ is just translation in time of initial data.
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Lax—Phillips scattering

Construction for (—H) instead of H yields past translation representation T~ .
Then the scattering operator is

S =% o(T7)H

Explicit inversion of T+ gives

$(t,x) = % /Sz(‘frd))(x Wt w) dw

— this is Whittaker's formula (1903) for (1).

Upside: neat story;
Downside: heavy reliance on spectral theory; only valid on static backgrounds;
technical restriction;
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Friedlander's radiation field

Theorem (Friedlander 1967, 1980)

In Minkowski spacetime the solution ¢ to (1) can be recovered from either of
the “radiation fields”

¢ (u,w) = V1+ 2 lim rg(r +u,r,w),
b (v,w) = V14 v2 ILm rg(—r+ v, r,w).
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Friedlander's radiation field

Theorem (Friedlander 1967, 1980)

In Minkowski spacetime the solution ¢ to (1) can be recovered from either of
the “radiation fields”

¢ (u,w) = V1+ 2 lim rg(r +u,r,w),
b (v,w) = V14 v2 ILm rg(—r+ v, r,w).

Friedlander rephrased Lax—Phillips theory in terms of Penrose’s conformal
compactification: as the well-posedness of a characteristic Cauchy problem
from .#%, with data . Roughly,

translation representation at infinity <= radiation fields

Remark

In fact Friedlander considered curved, static backgrounds with strong decay at
i®, among which the only solution to Einstein's equations is Minkowski; seems
Friedlander was motivated by recovering the full richness of the Lax—Phillips

theory.
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Interlude: conformal compactification

(R**3, 1) can be smoothly embedded into R x S* using a conformal rescaling:
3Q > 0 smooth such that

=% =dr’ — ge.

A
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Conformal compactification

However, such a smooth embedding is only possible in the case of Minkowski
space.

If (M, g) asymptotically flat with non-zero ADM mass m # 0, then the
eigenvalues of the Weyl tensor of 2., = Q2g., are proportional to

m
r3Q2’

Therefore any compactification which brings i° to a finite distance is singular if

m # 0.

. use incomplete compactification which leaves /© at infinity; is
there a class of spacetimes for which this works?
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Corvino—Schoen—Chrusciel-Delay spacetimes

[cf. talk by P. LeFloch]

Theorem (Corvino '00, Chrusciel-Delay '02, '03, Corvino—Schoen '06)
There exists an infinite dimensional class of spacetimes (M, g) such that

o there exists a smooth function Q > 0 on M and another spacetime (M, ),
where g = Qgap, such that M\ OM is diffeomorphic to M, Q = 0 on
OM, and dQ # 0 on OM,

o every inextendible null geodesic acquires two distinct endpoints on OM,

0 OM = 7*U s~ Uit Ui~ , where #7F is the past (future) lightcone of i*,

o the rescaled metric g, is C at i* and F*F for any fixed k,

o the spacetime (M, g) satisfies Einstein’s equations R,, = 0,

o M is diffeomorphic to the Schwarzschild solution outside the domain of
influence of a given compact subset K of a Cauchy surface *
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Corvino—Schoen—Chrusciel-Delay spacetimes
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Assumptions on the physical spacetime

In general for our scattering theory we require:
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Assumptions on the physical spacetime

In general for our scattering theory we require:

>

>

the physical stress-energy tensor decays like O(Q?) towards It =

PRARGrRTRYRTXO

the rescaled Weyl tensor vanishes on .#%; = kills some components of
the Ricci curvature (P22 ~ 0 & ®21)

these two assumptions allow us to construct a conformal factor Q in which
J* is essentially “flat" (analogue of r~* in Minkowski, and here Q = r*
near i%)

also assume that there exists a Cauchy surface X on which
20"
|Ir°Rics ||t~ < C
for some constant 0 < C < 1 (more later)
"small" matter is allowed; spacetime not stationary
do not expect "no-scattering" condition to hold (.. no translation

representation)
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Construction for Maxwell potentials

Maxwell's equations conformally invariant:

VoF, =0 < VF., =0,

where Fab = Fab-
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Construction for Maxwell potentials
Maxwell's equations conformally invariant:

VoF., =0 < V?F,, =0,

where F.p = Fap. In terms of the potential F = dA, where A, = A, and

OA, — V(V.A?) + RpA = 0. 2)

Seek to construct isomorphisms T+ between function spaces on initial surface
Y and #*. Need:

P energy estimates
» gauge choice ((2) not hyperbolic a priori)

» solve characteristic Cauchy problem without loss of regularity
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Construction for Maxwell potentials

Energy estimates

Schwarzschild near i® == most natural setting is finite energy spaces with
respect to 0.
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Construction for Maxwell potentials

Energy estimates

Schwarzschild near i® == most natural setting is finite energy spaces with
respect to 0.

Theorem

We have the estimate

/ B2 dv e ~ /(E2+ B?)dvs,
B T

where F> = F.,m?A°.

Proof.
Energy integrals conformally invariant = can work with different conformal
factors in different regions.

1. Near i° use the timelike Killing vector 0 of the Schwarzschild solution as
multiplier; immediate

2. Near iT construct a conformal factor such that i* is finite and regular,
Rap(it) =0, R=0= AR on £, and —VQ is timelike; use —V?Q as
multiplier

3. Can patch these together as a result of A ~ 0 ~ » (always true on .#7)
O

14 /28



Construction for Maxwell potentials

Gauge choice

Nontrivial problem; need to satisfy:

15 /28



Construction for Maxwell potentials

Gauge choice

Nontrivial problem; need to satisfy:

o (2) becomes hyperbolic and non-singular on M

15 /28



Construction for Maxwell potentials

Gauge choice

Nontrivial problem; need to satisfy:

o (2) becomes hyperbolic and non-singular on M

o spaces defined by finite energies for F., become Hilbert spaces for A,

15 /28



Construction for Maxwell potentials

Gauge choice
Nontrivial problem; need to satisfy:
o (2) becomes hyperbolic and non-singular on M
o spaces defined by finite energies for F., become Hilbert spaces for A,

o defines full set of scattering data on .#* and full set of initial data on T

15 /28



Construction for Maxwell potentials

Gauge choice
Nontrivial problem; need to satisfy:
o (2) becomes hyperbolic and non-singular on M
o spaces defined by finite energies for F., become Hilbert spaces for A,
o defines full set of scattering data on .#* and full set of initial data on T
This works:

[
O': Lorenz and 14[11] ~0

It It

=)

O°: Lorenz and a|s = 0=V -Alg
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Construction for Maxwell potentials

Gauge near "

Physical Lorenz gauge V,A? = 0 has expansion in powers of  near .#™:

Q2V.A = 2Q7 A,
+ pA;L — 241 Re(p) + b Ao — 2 Re(8A2)
+0(9).

16 / 28



Construction for Maxwell potentials

Gauge near &+
Physical Lorenz gauge V,A? = 0 has expansion in powers of  near .#™:
Q2V.A = 2Q7 A
+ pA;L — 241 Re(p) + b Ao — 2 Re(8A2)
+ 0(Q).

At order O(Q™!) obtain:

16 / 28



Construction for Maxwell potentials

Gauge near &+
Physical Lorenz gauge V,A? = 0 has expansion in powers of  near .#™:
Q2V.A = 2Q7 A
+ pA;L — 241 Re(p) + b Ao — 2 Re(8A2)
+ 0(Q).

At order O(Q™!) obtain:

Follows that

16 / 28



Construction for Maxwell potentials

Gauge near &+
Physical Lorenz gauge V,A? = 0 has expansion in powers of  near .#™:
Q2V.A = 2Q7 A
+ pA;L — 241 Re(p) + b Ao — 2 Re(8A2)
+ 0(Q).

At order O(Q™!) obtain:

Follows that

and (2) becomes

DA, — 63(2)‘[\[11]) + R.bA® =0 = hyperbolic, non-singular.

16 / 28



Construction for Maxwell potentials

Gauge near &+
Physical Lorenz gauge V,A? = 0 has expansion in powers of  near .#™:
Q2V.A = 2Q7 A
+ pA;L — 241 Re(p) + b Ao — 2 Re(8A2)
+ 0(Q).

At order O(Q™!) obtain:

Follows that

and (2) becomes
DA, — 63(2)‘[\[11]) + R.,A” =0 = hyperbolic, non-singular.

At order O(1) then obtain:

—FAM 1 B Ay — 2Re(8A,) ~ 0.
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Construction for Maxwell potentials

Gauge near "

e There is enough residual gauge freedom to set A[lll ~ 0.

Then recover Ag from

AAO ~ / ng . AAz du,

whence

/ |Fol> du A dvge = / |0uA2|? du A dvsa.

g+ T+

Definition

The space of scattering data for the Maxwell potential is

HYIT) = {(AO,O,Az) € H*(R; HH(S?)) x C°(# ) x HY(R; L2(s2))} / ~
~ HY(R; L*(S?)).

The equivalence relation ~ identifies A;'s that differ by a constant on .#*.
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Construction for Maxwell potentials
Gauge near ©

e There is enough residual gauge freedom in V,A? = 0 to set
Cl|)::0:V'A‘):7

where a = T?A,, A is the projection of A, to ¥, and V is the connection on X.

Subtlety: this is incompatible with condition near .#", so we break Lorenz
gauge in the bulk.

Get

/[E2 + B?|dvy = / [|VTA —A-k*+|VAP - R,-,-A"Af] dvy.
x x

-: not manifestly positive definite for A;

[SBIEEBAN: show (E, B) € L2(¥)? in one-to-one correspondence with (A, V1 A)
in suitable Hilbert space; this will be the space of initial data.
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Construction for Maxwell potentials

Space of initial data

Need to solve B =V x A for A when B € L*(%).

19 /28



Construction for Maxwell potentials

Space of initial data

Need to solve B = V x A for A when B € L*(X). Equivalent to solving

AA; + RGA = —(V x B),
with B € L*(X).

19 /28



Construction for Maxwell potentials
Space of initial data

Need to solve B = V x A for A when B € L*(X). Equivalent to solving
DA, + RyA = —(V x B)

with B € L*(X).

-: The operator

P:HY(X) — H (%)

(PA)k = AA, + Rijj

is not coercive;

19 /28



Construction for Maxwell potentials

Space of initial data

Need to solve B = V x A for A when B € L*(X). Equivalent to solving
AA; + RGA = —(V x B),

with B € L*(X).

-: The operator

P:HY(X) — H (%)

(PA)k = AA, + Rijj

is not coercive; in Schwarzschild

19 /28



Construction for Maxwell potentials
Space of initial data

Need to solve B = V x A for A when B € L*(X). Equivalent to solving

AA; + RGA = —(V x B),
with B € L*(X).

Problem : The operator

P:HY(X) — H (%)

(PA)k = AA, + Rijj

is not coercive; in Schwarzschild

1

So cannot easily use standard elliptic theory. [X unbounded, so H*(Z) does not
compactly embed into H™*(Z). Do not understand ker P.]
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Construction for Maxwell potentials

Space of initial data

For _
AA, + RijJ = —(V X B)k

have the estimate
A7 < [IB]|Z2 +/ |R;A'A| dvs < ||B|)?2 + CO||A||7
by

using Hardy's inequality:

/ dvs < / VA2 dvs
>

where § = || R)| o0 (x)
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Construction for Maxwell potentials
Space of initial data

For _
AA, + RijJ = —(V X B)k

have the estimate
Mﬁﬁﬂmm+/mMWMw<WﬁﬁfﬂM%
by

using Hardy's inequality:

/ dvs < / VA2 dvs
>

where § = || R)| o0 (x)

Assumption:
s<Ch

"“Globally not-too-large Ricci curvature”. OK for Schwarzschild.
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Construction for Maxwell potentials

Space of initial data

With this assumption P : H*(X) — H™(Z),
(PA), = AA, + RjA

becomes coercive and ker P = {0}.
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With this assumption P : H*(X) — H™(Z),
(PA), = AA, + RjA
becomes coercive and ker P = {0}.

Definition
The space of initial data (A, VrA) on X is given by

Hir(£) ® L*(%),

where ] )
Hi(Z)={AcH (X) : V-A=0, VxAc [*(%)}.
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Construction for Maxwell potentials
Space of initial data

With this assumption P : HY(X) — H1(X),
(PA), = AA, + RjA
becomes coercive and ker P = {0}.
Definition
The space of initial data (A, VrA) on X is given by
Hir(£) ® L*(%),

where ] )
Hi(Z)={AcH (X) : V-A=0, VxAc [*(%)}.

Remark
For unrestricted § do not fully understand the space of initial data.
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Construction for Maxwell potentials

Trace operators

We therefore have bounded linear maps
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Construction for Maxwell potentials

Trace operators
We therefore have bounded linear maps
T (T @ LA(T) — 1),

(A,VTA)|): — (AAo,Al,AAz) = (/ VSZ . AA2 du, O7 AA2> .

Invertibility:

Theorem (Hérmander '90, Bar-Wafo '15)

For M a globally hyperbolic Lorentzian manifold agd S C M a characteristic
(partial) Cauchy hypersurface, for any f € Ly, (M) and any uo € H(S) there
exists a unique solution

u € Co.(t(M); H*(S,)) N Co(t(M); L*(S.))

to
Pu=f,

where P is a linear wave operator on M.
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Construction for Maxwell potentials

Scattering operator

Remark

Applies to systems of hyperbolic equations and non-compact S with possibly
Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of
regularity.
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Construction for Maxwell potentials

Scattering operator

Remark

Applies to systems of hyperbolic equations and non-compact S with possibly
Lipschitz singularities (e.g. lightcone or intersection of null planes). No loss of
regularity.

With some bookkeeping, can apply the Theorem to
FlA, — V.(2fA) + RuA® = 0
= %* invertible.

We therefore obtain the scattering operator
S =% o (T) T HY(IT) — HY(IT)

which is an isomorphism of Hilbert spaces.
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Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF 0; in
Schwarzschild sector.
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Construction for Maxwell potentials

Minkowski: role of symmetries

On CSCD spacetimes construction predicated on multiplier VF 0; in
Schwarzschild sector. In Minkowski also have "inverted time translations", i.e.
Morawetz VF

Ko = (£° + r*)0: + 2trd,.

CKF, exactly Killing wrt rfznab. Then

VF=08, — T+ Hi(D)®  L13(X) —  HY ()
VF =Ko = Ti i r "Hi(E) @ r '3 (X)) — v "’ (IF)

S, i Ay = O(log|v]) ~ A=0O(r" "), A= O(r ?) ~ A} = O(log |ul)
Fko Ay =O(W ) A=0(r2),A=0(r"3) ~ A = 0@u™).
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Decay rates obtained using J; as multiplier
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Decay rates obtained using Ky as multiplier
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Weaker decay towards i©
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Thank you !
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