Black holes and wormholes in semiclassical gravity

Debajyoti Sarkar

IIT Indore

Tours 2023

Based on 1712.09914, 2112.03855, 2212.13208 and ongoing work with Sergey Solodukhin and Yohan Potaux

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Broad motivation

- Almost every aspect of a black hole (BH) is fascinating!
- In classical general relativity (GR), Horizons are a key feature and provides a playground for deep theoretical questions.
- These classical solutions can be modified in various ways:
 - Backreactions from quantized matter fields (semiclassical regime)
 - Effects from quantizing geometry itself (quantum gravity)
- We will try to understand the non-perturbative fate of BH horizons within semiclassical GR.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

The Hawking paradox was modernized and sharpened by arguing that the following statements can't all be simultaneously true

AMPSS 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Unitarity,

- Validity of semiclassical physics near and outside horizon, (locality)
- Black hole being a quantum system with discrete spectrum and
- Validity of equivalence principle near the horizon. (no firewall)

The Hawking paradox was modernized and sharpened by arguing that the following statements can't all be simultaneously true

AMPSS 2013

- Unitarity,
- Validity of semiclassical physics near and outside horizon, (locality)
- Black hole being a quantum system with discrete spectrum and
- Validity of equivalence principle near the horizon. (no firewall)
- For a BH of finite entropy S, obeying unitary evolution
 - Either locality should breakdown (Complementarity) or

The Hawking paradox was modernized and sharpened by arguing that the following statements can't all be simultaneously true

AMPSS 2013

- Unitarity,
- Validity of semiclassical physics near and outside horizon, (locality)
- Black hole being a quantum system with discrete spectrum and
- Validity of equivalence principle near the horizon. (no firewall)
- For a BH of finite entropy S, obeying unitary evolution
 - Either locality should breakdown (Complementarity) or
 - Due to firewall, one can't construct a local operator inside a BH horizon.

The Hawking paradox was modernized and sharpened by arguing that the following statements can't all be simultaneously true

AMPSS 2013

- Unitarity,
- Validity of semiclassical physics near and outside horizon, (locality)
- Black hole being a quantum system with discrete spectrum and
- Validity of equivalence principle near the horizon. (no firewall)
- ▶ For a BH of finite entropy *S*, obeying unitary evolution
 - Either locality should breakdown (Complementarity) or
 - Due to firewall, one can't construct a local operator inside a BH horizon.
- Another option is a 'soft' near-horizon modification leading to a wormhole type geometry. Along the lines of this talk.

The Hawking paradox was modernized and sharpened by arguing that the following statements can't all be simultaneously true

AMPSS 2013

- Unitarity,
- Validity of semiclassical physics near and outside horizon, (locality)
- Black hole being a quantum system with discrete spectrum and
- Validity of equivalence principle near the horizon. (no firewall)
- For a BH of finite entropy S, obeying unitary evolution
 - Either locality should breakdown (Complementarity) or
 - Due to firewall, one can't construct a local operator inside a BH horizon.
- Another option is a 'soft' near-horizon modification leading to a wormhole type geometry. Along the lines of this talk.
- A recent series of works also deal with derivation of Page curve by considering quantum corrections within semiclassical gravity.

Damour-Solodukhin wormholes

Replace black holes by wormholes via

$$-g_{tt} \rightarrow -g_{tt} + \epsilon^2 \quad \text{with} \quad \epsilon^2 \ll 1$$
$$ds_{wh}^2 = -(g(r) + \epsilon^2)dt^2 + g(r)^{-1}dr^2 + r^2 d\Omega_{d-2}^2$$

Has the features of reproducing late-time quasi-periodic oscillations in two-point functions, instead of an exponential decay indicative of information loss.

Damour-Solodukhin 2005

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of BHs (especially, near-horizons) in classical GR

- Properties of BHs (especially, near-horizons) in classical GR
- Studying these properties in semiclassical GR, especially depending on the choice of the quantum state

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Properties of BHs (especially, near-horizons) in classical GR
- Studying these properties in semiclassical GR, especially depending on the choice of the quantum state

Conclusions

Static, spherically symmetric and asymptotically flat BHs in 4 spacetime dimensions. Later on, black holes in 2D RST model (will be elaborated on the talk by Yohan Potaux in the afternoon).

- Static, spherically symmetric and asymptotically flat BHs in 4 spacetime dimensions. Later on, black holes in 2D RST model (will be elaborated on the talk by Yohan Potaux in the afternoon).
- Consider backreaction from quantized scalar, gauge and fermion fields on non-quantized background.

- Static, spherically symmetric and asymptotically flat BHs in 4 spacetime dimensions. Later on, black holes in 2D RST model (will be elaborated on the talk by Yohan Potaux in the afternoon).
- Consider backreaction from quantized scalar, gauge and fermion fields on non-quantized background.

- ロ ト - 4 回 ト - 4 □ - 4

 Non-perturbative handle is due to the study of conformal anomaly. However, the analysis is near-horizon.

- Static, spherically symmetric and asymptotically flat BHs in 4 spacetime dimensions. Later on, black holes in 2D RST model (will be elaborated on the talk by Yohan Potaux in the afternoon).
- Consider backreaction from quantized scalar, gauge and fermion fields on non-quantized background.
- Non-perturbative handle is due to the study of conformal anomaly. However, the analysis is near-horizon.
- In 4D, the effective action of semiclassical GR is fixed up to a conformal factor. We will fix this factor by casting the spacetime in a conformal form.
 Fradkin-Tseytlin '84, Dowker-Schofield '90, Mazur-Motola '01

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Start with a general ansatz for static, spherically symmetric metric

$$ds^{2} = \Omega^{2}(z) g_{\mu\nu} dx^{\mu} dx^{\nu} = e^{2\sigma(z)} \left(dt^{2} + N^{2}(z) dz^{2} + R^{2}(z) (d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Start with a general ansatz for static, spherically symmetric metric

$$ds^{2} = \Omega^{2}(z) g_{\mu\nu} dx^{\mu} dx^{\nu} = e^{2\sigma(z)} \left(dt^{2} + N^{2}(z) dz^{2} + R^{2}(z) (d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right)$$

▶ In the gauge $N(z) = 1/\Omega(z)$, the two independent Einstein equations then take the form $(r(z) = R(z)\Omega(z))$

$$2rr'' + r'^2 - 1 = 0,$$

$$\Omega(r'^2 - 1) + 2rr'\Omega' = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Start with a general ansatz for static, spherically symmetric metric

$$ds^{2} = \Omega^{2}(z) g_{\mu\nu} dx^{\mu} dx^{\nu} = e^{2\sigma(z)} \left(dt^{2} + N^{2}(z) dz^{2} + R^{2}(z) (d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right)$$

• In the gauge $N(z) = 1/\Omega(z)$, the two independent Einstein equations then take the form $(r(z) = R(z)\Omega(z))$

$$2rr'' + r'^2 - 1 = 0,$$

$$\Omega(r'^2 - 1) + 2rr'\Omega' = 0.$$

Aspect A: If at $\rho = z = \rho_h$, the corresponding 2-sphere is a minimal area surface, i.e. r' = 0, then it is necessarily a horizon. $\Omega = 0$.

Cruściel; Morris-Thorne '88

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

▶ In N(z) = 1 gauge, assuming that there exists a horizon at Schwarzschild radial coordinate $r = r_h$ with a finite temperature $T = 1/\beta$, one finds the generic near-horizon behavior as (horizon located at $z \to \infty$)

$$\Omega(z) = e^{-2\pi z/\beta} + \ldots, \quad R(z) = r_h e^{2\pi z/\beta} + \ldots.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▶ In N(z) = 1 gauge, assuming that there exists a horizon at Schwarzschild radial coordinate $r = r_h$ with a finite temperature $T = 1/\beta$, one finds the generic near-horizon behavior as (horizon located at $z \to \infty$)

$$\Omega(z) = e^{-2\pi z/\beta} + \ldots, \quad R(z) = r_h e^{2\pi z/\beta} + \ldots.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Aspect B: This provides an exact solution to the classical Einstein equations (with or without cosmological constant) for any β .

▶ In N(z) = 1 gauge, assuming that there exists a horizon at Schwarzschild radial coordinate $r = r_h$ with a finite temperature $T = 1/\beta$, one finds the generic near-horizon behavior as (horizon located at $z \to \infty$)

$$\Omega(z) = e^{-2\pi z/\beta} + \ldots, \quad R(z) = r_h e^{2\pi z/\beta} + \ldots.$$

Aspect B: This provides an exact solution to the classical Einstein equations (with or without cosmological constant) for any β .

 We will test the validity of these two aspects (starting with aspect B) within semiclassical physics where a non-perturbative result can be expected.

In semiclassical gravity, the classical Einstein-Hilbert action W_{EH}[G] is supplemented by a quantum effective action Γ[G] obtained by integrating out the quantum matter fields.

- In semiclassical gravity, the classical Einstein-Hilbert action W_{EH}[G] is supplemented by a quantum effective action Γ[G] obtained by integrating out the quantum matter fields.
- In 4D, for conformally coupled matter, the conformal anomaly fixes the effective action up to a conformal factor.

Dowker-Schofield '89

- In semiclassical gravity, the classical Einstein-Hilbert action W_{EH}[G] is supplemented by a quantum effective action Γ[G] obtained by integrating out the quantum matter fields.
- In 4D, for conformally coupled matter, the conformal anomaly fixes the effective action up to a conformal factor.

Dowker-Schofield '89

• However, the difference between the effective actions for conformally related metrics, $\Gamma[\Omega^2 g] - \Gamma_0[g]$, is completely determined by the conformal anomaly.

- In semiclassical gravity, the classical Einstein-Hilbert action W_{EH}[G] is supplemented by a quantum effective action Γ[G] obtained by integrating out the quantum matter fields.
- In 4D, for conformally coupled matter, the conformal anomaly fixes the effective action up to a conformal factor.

Dowker-Schofield '89

- However, the difference between the effective actions for conformally related metrics, Γ[Ω²g] − Γ₀[g], is completely determined by the conformal anomaly.
- For metrics of the form $G_{\mu\nu} = e^{2\sigma}g_{\mu\nu}$, we want to compute

$$W_{grav}[G] = W_{EH}[G] + \Gamma[G],$$

- In semiclassical gravity, the classical Einstein-Hilbert action W_{EH}[G] is supplemented by a quantum effective action Γ[G] obtained by integrating out the quantum matter fields.
- In 4D, for conformally coupled matter, the conformal anomaly fixes the effective action up to a conformal factor.

Dowker-Schofield '89

- However, the difference between the effective actions for conformally related metrics, $\Gamma[\Omega^2 g] \Gamma_0[g]$, is completely determined by the conformal anomaly.
- For metrics of the form $G_{\mu\nu} = e^{2\sigma}g_{\mu\nu}$, we want to compute

$$W_{grav}[G] = W_{EH}[G] + \Gamma[G],$$

whereas conformal anomaly fixes

$$W_{EH}[G] + \Gamma[G] - \Gamma_0[g]$$

A careful calculation gives:

$$\begin{split} &(4\pi\beta)^{-1}W_{grav} = \\ &\frac{1}{\kappa}\int dz \, \frac{e^{2\sigma}}{N^2} \Big(R'^2 N + 6RR' N\sigma' + 3R^2 N(\sigma'^2 + \sigma'') + 2RR'' N - N^3 - 2RR' N' - 3R^2 N'\sigma' \\ &- \frac{4a}{3(4\pi)^2}\int dz \, \frac{\sigma}{R^2 N^5} \left(N^3 + RR'' N - RR' N' - R'^2 N \right)^2 \\ &- \frac{4b}{(4\pi)^2}\int dz \left[\frac{1}{N} \left(\frac{R'^2}{N^2} - 1 \right) \, \sigma'^2 + \frac{R^2 \sigma'^2}{N^3} \left(\sigma'' + 2\frac{R'}{R} \sigma' - \frac{N'}{N} \sigma' \right) + \frac{R^2 \sigma'^4}{2N^3} \right] \\ &+ (4\pi\beta)^{-1} \Gamma_0[g_{\mu\nu}], \end{split}$$

... Birrell-Davies, Riegert '84 ...

A careful calculation gives:

$$\begin{split} &(4\pi\beta)^{-1}W_{grav} = \\ &\frac{1}{\kappa}\int dz \, \frac{e^{2\sigma}}{N^2} \Big(R'^2 N + 6RR' N\sigma' + 3R^2 N(\sigma'^2 + \sigma'') + 2RR'' N - N^3 - 2RR' N' - 3R^2 N'\sigma' \\ &- \frac{4a}{3(4\pi)^2}\int dz \, \frac{\sigma}{R^2 N^5} \left(N^3 + RR'' N - RR' N' - R'^2 N \right)^2 \\ &- \frac{4b}{(4\pi)^2}\int dz \left[\frac{1}{N} \left(\frac{R'^2}{N^2} - 1 \right) \, \sigma'^2 + \frac{R^2 \sigma'^2}{N^3} \left(\sigma'' + 2\frac{R'}{R} \sigma' - \frac{N'}{N} \sigma' \right) + \frac{R^2 \sigma'^4}{2N^3} \right] \\ &+ (4\pi\beta)^{-1} \Gamma_0[g_{\mu\nu}], \end{split}$$

... Birrell-Davies, Riegert '84 ...

Here,

$$\begin{array}{rcl} a & = & \displaystyle \frac{n_0}{120} + \frac{n_{1/2}}{20} + \frac{n_1}{10} \, , \\ \\ b & = & \displaystyle \frac{n_0}{360} + \frac{11n_{1/2}}{360} + \frac{31n_1}{180} \, , \end{array}$$

 $\kappa = 8\pi G_N$ and n_s is number of fields of spin s.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Γ_0 on $S^1 imes \mathbb{M}_3$ to $S^1 imes \mathbb{H}_3$

However, in order to study the above-mentioned aspects, we need to know $\Gamma_0[g]$ to be computed in

$$ds^{2}(g) = dt^{2} + ds^{2}(\gamma), \quad ds^{2}(\gamma) = N^{2}(z)dz^{2} + R^{2}(z)(d\theta^{2} + \sin^{2}\theta d\phi^{2}),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Γ_0 on $S^1 imes \mathbb{M}_3$ to $S^1 imes \mathbb{H}_3$

However, in order to study the above-mentioned aspects, we need to know $\Gamma_0[g]$ to be computed in

$$ds^{2}(g) = dt^{2} + ds^{2}(\gamma), \ ds^{2}(\gamma) = N^{2}(z)dz^{2} + R^{2}(z)(d\theta^{2} + \sin^{2}\theta d\phi^{2}),$$

$$\begin{split} \Gamma_0[S_1^\beta \times \mathbb{M}_3] &= -\frac{\pi^2}{90\beta^3} \left(n_0 + \frac{7}{2} n_{1/2} + 2n_1 \right) \int_{\mathcal{M}_3} 1 + \frac{1}{144\beta} \left(n_{1/2} + 4n_1 \right) \int_{\mathcal{M}_3} \mathcal{R}_{\mathbb{M}} + \dots \\ &= -\frac{2\pi^3}{45} \frac{c_H}{\beta^3} \int dz \mathcal{N}(z) \mathcal{R}^2(z) + \frac{\pi}{18} \frac{\lambda_H}{\beta} \int dz (\mathcal{N}(z) + \mathcal{R}'^2 \mathcal{N}^{-1}) |_{\text{near horizon}} \end{split}$$

where

$$\begin{aligned} \mathcal{R}_{\mathbb{M}} &= -\frac{2}{R^2 N^3} \left(2RNR'' - 2RR'N' - N^3 + NR'^2 \right), \\ c_{\mathcal{H}} &= n_0 + \frac{7}{2}n_{1/2} + 2n_1, \ \lambda_{\mathcal{H}} &= n_{1/2} + 4n_1 \end{aligned}$$

Gusev-Zelnikov '98, Hung-Myers-Smolkin '14

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

For the near-horizon $(z \rightarrow \infty)$ ansatz

$$\Omega(z) = e^{-2\pi z/\beta} + \ldots, \quad R(z) = r_h e^{2\pi z/\beta} + \ldots,$$

the semiclassical equations give

$$\begin{split} \delta_{\sigma} W_{grav} : & 0 &= \mathcal{O}\left(e^{-4\pi z/\beta}\right), \\ \delta_{N} W_{grav} : & 0 &= (360b - 2c_{H} - 10\lambda_{H}) \frac{\pi^{2}}{180\beta^{4}} R^{2}(z) \\ &= -\left(n_{0} + 6n_{1/2} - 18n_{1}\right) \frac{\pi^{2}}{180\beta^{4}} R^{2}(z). \end{split}$$

For the near-horizon $(z \rightarrow \infty)$ ansatz

$$\Omega(z) = e^{-2\pi z/\beta} + \ldots, \quad R(z) = r_h e^{2\pi z/\beta} + \ldots,$$

the semiclassical equations give

$$\begin{split} \delta_{\sigma} W_{grav} &: \quad 0 &= \mathcal{O}\left(e^{-4\pi z/\beta}\right), \\ \delta_{N} W_{grav} &: \quad 0 &= (360b - 2c_{H} - 10\lambda_{H}) \, \frac{\pi^{2}}{180\beta^{4}} R^{2}(z) \\ &= -\left(n_{0} + 6n_{1/2} - 18n_{1}\right) \frac{\pi^{2}}{180\beta^{4}} R^{2}(z) \end{split}$$

- Curiously, the equations are satisfied for $\mathcal{N}=4$ SYM theory.

- The above statement remains true even at subleading orders.

• What happens to the minimal surface? How is Ω modified?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- What happens to the minimal surface? How is Ω modified?
- To study the semiclassical EOMs in a simplified way, we impose that the G_{tt} component of the metric is also a minimum at horizon and is non-zero outside.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- What happens to the minimal surface? How is Ω modified?
- To study the semiclassical EOMs in a simplified way, we impose that the G_{tt} component of the metric is also a minimum at horizon and is non-zero outside.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Hence we impose $r' = \Omega' = 0$ and perform a local analysis of the semiclassical equations near the turning point.

- What happens to the minimal surface? How is Ω modified?
- To study the semiclassical EOMs in a simplified way, we impose that the G_{tt} component of the metric is also a minimum at horizon and is non-zero outside.
- Hence we impose r' = Ω' = 0 and perform a local analysis of the semiclassical equations near the turning point.

• The equations are (
$$N = 1/\Omega$$
 gauge)

$$\delta_{\sigma} W_{grav} : \frac{2\Omega}{\kappa} \left(1 - 2rr'' - r^2 \frac{\Omega''}{\Omega} \right) + \frac{\bar{a}}{r^2 \Omega} \left(\Omega + \Omega rr'' - r^2 \Omega'' \right)^2 + \bar{b} \Omega'' = 0 \,,$$

$$\delta_N W_{grav} : -\frac{\Omega^2}{\kappa} - \frac{\bar{a}}{r^2} \ln \Omega^{-1} \left[(\Omega r r'' - r^2 \Omega'')^2 - \Omega^2 \right] - \frac{\gamma r^2}{\beta^4 \Omega^2} + \frac{\lambda}{\beta^2} = 0,$$

where $\bar{a} = a/12\pi^2$, $\bar{b} = b/2\pi^2$, $\gamma = c_H \pi^2/90$ and $\lambda = \lambda_H/72$.

・ロト・西ト・モート 一日・ 今々で

> It's when either only scalar field backreacts or when we neglect the subleading term in Γ_0 .

- > It's when either only scalar field backreacts or when we neglect the subleading term in Γ_0 .
- The best way to proceed is by defining a new variable y such that

$$\begin{split} & \left(\Omega r r'' - r^2 \Omega''\right)^2 = y^2 \Omega^2 \,, \\ & y^2 = 1 - \frac{r^2}{\kappa \bar{a} \ln \Omega^{-1}} \left(\frac{\gamma \kappa r^2}{\beta^4 \Omega^4} - \frac{\lambda \kappa}{\beta^2 \Omega^2} + 1\right) \,. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- > It's when either only scalar field backreacts or when we neglect the subleading term in Γ_0 .
- The best way to proceed is by defining a new variable y such that

$$\begin{split} & \left(\Omega r r'' - r^2 \Omega''\right)^2 = y^2 \Omega^2 \,, \\ & y^2 = 1 - \frac{r^2}{\kappa \bar{a} \ln \Omega^{-1}} \left(\frac{\gamma \kappa r^2}{\beta^4 \Omega^4} - \frac{\lambda \kappa}{\beta^2 \Omega^2} + 1\right) \end{split}$$

The positivity condition y² ≥ 0 imposes important constraints on possible values of Ω and β. One can show that this choice is consistent with other constraints.

- > It's when either only scalar field backreacts or when we neglect the subleading term in Γ_0 .
- The best way to proceed is by defining a new variable y such that

$$\begin{split} & \left(\Omega r r'' - r^2 \Omega''\right)^2 = y^2 \Omega^2 \,, \\ & y^2 = 1 - \frac{r^2}{\kappa \bar{a} \ln \Omega^{-1}} \left(\frac{\gamma \kappa r^2}{\beta^4 \Omega^4} - \frac{\lambda \kappa}{\beta^2 \Omega^2} + 1\right) \,, \end{split}$$

- The positivity condition y² ≥ 0 imposes important constraints on possible values of Ω and β. One can show that this choice is consistent with other constraints.
- Since a > 0, b > 0, γ > 0, the positivity condition y² > 0 can be rewritten in the form of an inequality

$$\Omega^4 \ln \frac{\Omega_0}{\Omega} > \frac{\gamma r^4}{\bar{a}\beta^4} > 0 \,, \quad \text{with} \quad \Omega_0 = e^{-\frac{r^2}{\bar{a}\kappa}}$$

The above equation signifies

$$\Omega < \Omega_0 = e^{-\frac{r^2}{\bar{a}\kappa}} \sim e^{-S}.$$

The above equation signifies

$$\Omega < \Omega_0 = e^{-rac{r^2}{ar{a}\kappa}} \sim e^{-S}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

> Thus we find a "non-perturbatively" small modification of the classical horizon such that 0 < Ω < 1.

The above equation signifies

$$\Omega < \Omega_0 = e^{-\frac{r^2}{\bar{a}\kappa}} \sim e^{-S}$$

- > Thus we find a "non-perturbatively" small modification of the classical horizon such that $0 < \Omega < 1$.
- In turn, this can be viewed as a bound on the possible 'temperature',

$$T^4 = rac{1}{eta^4} < rac{ar{a}}{\gamma r^4} \Omega^4 \ln rac{\Omega_0}{\Omega} < rac{1}{4} rac{ar{a}}{\gamma r^4} \Omega_0^4 \,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where in the last inequality we used that $\Omega^4 \ln \Omega_0 / \Omega \leqslant \Omega_0^4 / (4e) \leqslant \Omega_0^4 / 4.$

The above equation signifies

$$\Omega < \Omega_0 = e^{-\frac{r^2}{\bar{a}\kappa}} \sim e^{-S}$$

- > Thus we find a "non-perturbatively" small modification of the classical horizon such that 0 < Ω < 1.
- In turn, this can be viewed as a bound on the possible 'temperature',

$$T^4 = rac{1}{eta^4} < rac{ar{a}}{\gamma r^4} \Omega^4 \ln rac{\Omega_0}{\Omega} < rac{1}{4} rac{ar{a}}{\gamma r^4} \Omega_0^4 \,,$$

where in the last inequality we used that $\Omega^4 \ln \Omega_0 / \Omega \leqslant \Omega_0^4 / (4e) \leqslant \Omega_0^4 / 4$.

 Temperature of the semiclassical geometry that replaces the classical black hole is much less than the Hawking temperature.

Non-perturbative, wormhole-type modification.

- Non-perturbative, wormhole-type modification.
- Bound on temperature. Experimental signatures for early universe black holes. Lower temperature with longer life span.

- Non-perturbative, wormhole-type modification.
- Bound on temperature. Experimental signatures for early universe black holes. Lower temperature with longer life span.
- All the results boil down to the known black hole case in the classical limit.

- Non-perturbative, wormhole-type modification.
- Bound on temperature. Experimental signatures for early universe black holes. Lower temperature with longer life span.
- All the results boil down to the known black hole case in the classical limit.
- Analytic and exact results for 2D Dilaton gravity. Static cases yield no horizon scenarios for Boulware state. Dynamic case provides a framework to pose information loss problem for the hybrid state, where a Page curve can be analytically obtained.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you for your attention!

・ロト・日本・ヨト・ヨー うへの

Backup slides

(ロ)、(型)、(E)、(E)、 E) の(()

The old version of information problem due to Hawking (pure state \Rightarrow mixed state) can be restated by considering BH complementarity, which demands that the early Hawking radiations are *not* independent of the sub-horizon modes. However, 'nice-slice' physics demand otherwise.

 $|\psi\rangle$: State of the infalling information at various spaeclike nice slices.

I and *O*: Ingoing and outgoing modes inside horizon.

B: Modes just outside the horizon.

R: Modes in early Hawking radiation which are maximally entangled with *O* after Page time t_P .

Equations of motion (EOM)

 $\delta_{\sigma} W_{grav}$:

$$\begin{split} &\frac{2e^{2\sigma}}{\kappa} \left[\frac{2RR''}{N} + \frac{6RR'\sigma'}{N} - \frac{2RR'N'}{N^2} + \frac{R'^2}{N} + \frac{3R^2\sigma''}{N} - \frac{3R^2\sigma'N'}{N^2} + \frac{3R^2\sigma'^2}{N} - N \right] \\ &+ \frac{a}{6\pi^2} \left[-\frac{R''}{RN} - \frac{R''^2}{2N^3} - \frac{R'^3N'}{RN^4} - \frac{R'^2N'^2}{2N^5} + \frac{R'N'}{RN^2} - \frac{R'^4}{2R^2N^3} + \frac{R'^2}{R^2N} + \frac{R'R''N'}{N^4} + \frac{R'^2}{R^2N} \right] \\ &- \frac{N}{2R^2} \right] + \frac{b}{\pi^2 N^4} \left[RNR''\sigma'^2 + \frac{1}{2}NR'^2\sigma'' - 3RR'\sigma'^2N' - \frac{3}{2}R'^2\sigma'N' + RNR'\sigma'^3 + NR'^2\sigma' + 2RNR'\sigma'\sigma'' + NR'R''\sigma' - \frac{3}{2}R^2\sigma'^3N' + \frac{3}{2}R^2N\sigma'^2\sigma'' - \frac{1}{2}N^3\sigma'' + \frac{1}{2}N^2\sigma'N' \right] = 0 \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Equations of motion (EOM)

 $\delta_{\sigma} W_{grav}$:

$$\begin{aligned} \frac{2e^{2\sigma}}{\kappa} \left[\frac{2RR''}{N} + \frac{6RR'\sigma'}{N} - \frac{2RR'N'}{N^2} + \frac{R'^2}{N} + \frac{3R^2\sigma''}{N} - \frac{3R^2\sigma'N'}{N^2} + \frac{3R^2\sigma'^2}{N} - N \right] \\ + \frac{a}{6\pi^2} \left[-\frac{R''}{RN} - \frac{R''^2}{2N^3} - \frac{R'^3N'}{RN^4} - \frac{R'^2N'^2}{2N^5} + \frac{R'N'}{RN^2} - \frac{R'^4}{2R^2N^3} + \frac{R'^2}{R^2N} + \frac{R'R''N'}{N^4} + \frac{R'^2}{RN^4} \right] \\ - \frac{N}{2R^2} \right] + \frac{b}{\pi^2N^4} \left[RNR''\sigma'^2 + \frac{1}{2}NR'^2\sigma'' - 3RR'\sigma'^2N' - \frac{3}{2}R'^2\sigma'N' + RNR'\sigma'^3 + NR'^2\sigma'' + 2RNR'\sigma'\sigma'' + NR'R''\sigma' - \frac{3}{2}R^2\sigma'^3N' + \frac{3}{2}R^2N\sigma'^2\sigma'' - \frac{1}{2}N^3\sigma'' + \frac{1}{2}N^2\sigma'N' \right] = 0 \end{aligned}$$

 $\delta_N W_{grav}$:

$$0 = \frac{1}{4\pi\beta} \delta_{N} \Gamma_{0} + \frac{e^{2\sigma}}{\kappa N^{2}} \left[\left(R' + R\sigma' \right) \left(R' + 3R\sigma' \right) - N^{2} \right] \\ + \frac{b\sigma'^{2}}{8\pi^{2}N^{4}} \left[-2N^{2} + 8RR'\sigma' + 6R'^{2} + 3R^{2}\sigma'^{2} \right] \\ + \frac{a}{12\pi^{2}R^{2}} \left[\frac{R^{2}\sigma R''^{2}}{N^{4}} + \frac{2R^{2}R'^{2}\sigma'N'}{N^{5}} + \frac{2RR'^{3}\sigma'}{N^{4}} - \frac{2RR'\sigma'}{N^{2}} + \frac{2R^{2}\sigma R'^{2}N''}{N^{5}} \\ - \frac{5R^{2}\sigma R'^{2}N'^{2}}{N^{6}} + \frac{\sigma R'^{4}}{N^{4}} - \frac{2R^{2}R'''\sigma R'}{N^{4}} - \frac{2R^{2}R'R''\sigma'}{N^{4} + \sigma} + \frac{4R^{2}\sigma R'R''N'}{N^{5} + \sigma} - \sigma_{\text{R}} \right]$$

• Case 2: $\Omega^2 > \frac{\gamma}{\lambda} \frac{r^2}{\beta^2}$. In this case, the ratio Ω_0/Ω can either be larger or smaller than 1.

- Case 2: $\Omega^2 > \frac{\gamma}{\lambda} \frac{r^2}{\beta^2}$. In this case, the ratio Ω_0/Ω can either be larger or smaller than 1.
 - **Case 2.1**: If we assume $\Omega \leq \Omega_0$, previous analysis yields

$$T^2 = rac{1}{eta^2} < rac{\lambda}{\gamma} rac{\Omega_0^2}{r^2}$$

- Case 2: Ω² > ^γ/_λ r²/_{β²}. In this case, the ratio Ω₀/Ω can either be larger or smaller than 1.
 - **Case 2.1**: If we assume $\Omega \leq \Omega_0$, previous analysis yields

$$T^2 = rac{1}{eta^2} < rac{\lambda}{\gamma} rac{\Omega_0^2}{r^2}$$

- **Case 2.2**: For $\Omega > \Omega_0$, it provides an upper bound on the value of Ω .

$$\Omega_0 < \Omega < \Omega_0 e^{rac{\lambda^2}{4\gamma \bar{a}}}$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- Case 2: Ω² > ^γ/_λ r²/_{β²}. In this case, the ratio Ω₀/Ω can either be larger or smaller than 1.
 - **Case 2.1**: If we assume $\Omega \leq \Omega_0$, previous analysis yields

$$T^2 = rac{1}{eta^2} < rac{\lambda}{\gamma} rac{\Omega_0^2}{r^2}$$

- Case 2.2: For $\Omega > \Omega_0$, it provides an upper bound on the value of Ω .

$$\Omega_0 < \Omega < \Omega_0 e^{rac{\lambda^2}{4\gamma \bar{a}}}$$
 .

The temperature bound becomes

$$T^2 = rac{1}{eta^2} < rac{\lambda}{\gamma} \, e^{rac{\lambda^2}{2\gamma ar s}} \, rac{\Omega_0^2}{r^2} \, .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Minimality conditions

However, we need to make sure that these are consistent with our initial assumption of minimal 2-sphere and minimal G_{tt}.

(ロ)、(型)、(E)、(E)、 E) の(()

Minimality conditions

However, we need to make sure that these are consistent with our initial assumption of minimal 2-sphere and minimal G_{tt}.

• For large BHs, i.e. for
$$\kappa/r^2 << 1$$
,

$$\Omega'' = \frac{\Omega}{r^2 \left(3 - \frac{\bar{b}\kappa}{2r^2}\right)} \left(1 - 2y + \frac{\bar{a}\kappa}{2r^2}(1+y)^2\right),$$
$$rr'' = \frac{1}{\left(3 - \frac{\bar{b}\kappa}{2r^2}\right)} \left[\left(1 + \frac{\bar{a}\kappa}{2r^2}\right) + \left(1 - \frac{\left(-\bar{a} + \frac{\bar{b}}{2}\right)\kappa}{r^2}\right)y + \frac{\bar{a}\kappa}{2r^2}y^2\right].$$

can be shown to be positive. This fixes regimes of validity of the variable y.

(ロ)、(型)、(E)、(E)、 E) の(()