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Broad motivation

> Almost every aspect of a black hole (BH) is fascinating!

> In classical general relativity (GR), Horizons are a key feature and provides
a playground for deep theoretical questions.

> These classical solutions can be modified in various ways:

- Backreactions from quantized matter fields (semiclassical regime)

- Effects from quantizing geometry itself (quantum gravity)

> We will try to understand the non-perturbative fate of BH horizons within
semiclassical GR.
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> The Hawking paradox was modernized and sharpened by arguing that the
following statements can’t all be simultaneously true
AMPSS 2013
- Unitarity,
- Validity of semiclassical physics near and outside horizon, (locality)

- Black hole being a quantum system with discrete spectrum and
- Validity of equivalence principle near the horizon. (no firewall)

> For a BH of finite entropy S, obeying unitary evolution

- Either locality should breakdown (Complementarity) or

- Due to firewall, one can't construct a local operator inside a BH horizon.

> Another option is a ‘soft’ near-horizon modification leading to a wormhole
type geometry. Along the lines of this talk.

> A recent series of works also deal with derivation of Page curve by
considering quantum corrections within semiclassical gravity.



Damour-Solodukhin wormholes

Replace black holes by wormholes via
—&tt — —8tt + € with e«

ds2y, = —(g(r) + ez)dt2 + g(r)fldr2 + rPdO3_,

Has the features of reproducing late-time quasi-periodic oscillations in two-point
functions, instead of an exponential decay indicative of information loss.

Damour-Solodukhin 2005
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Set-up

Static, spherically symmetric and asymptotically flat BHs in 4 spacetime
dimensions. Later on, black holes in 2D RST model (will be elaborated on
the talk by Yohan Potaux in the afternoon).

Consider backreaction from quantized scalar, gauge and fermion fields on
non-quantized background.

Non-perturbative handle is due to the study of conformal anomaly.
However, the analysis is near-horizon.

In 4D, the effective action of semiclassical GR is fixed up to a conformal
factor. We will fix this factor by casting the spacetime in a conformal form.

Fradkin-Tseytlin '84, Dowker-Schofield '90, Mazur-Motola '01
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> Start with a general ansatz for static, spherically symmetric metric

ds® = Q(z) guudxt dx” = e*7? (dt2 + N*(2)dz> + R*(z)(d6® + sin® 0 d¢2)> :

*> In the gauge N(z) = 1/Q(z), the two independent Einstein equations then
take the form (r(z) = R(z)Q(z))

2’ +r7—1 =

Q(r’2 - +2r'Q =

Aspect A: If at p = z = pp, the corresponding 2-sphere is a minimal area
surface, i.e. r' = 0, then it is necessarily a horizon. Q = 0.

Crusciel; Morris-Thorne '88
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Horizons in classical GR

> In N(z) = 1 gauge, assuming that there exists a horizon at Schwarzschild
radial coordinate r = r, with a finite temperature T = 1/8, one finds the
generic near-horizon behavior as (horizon located at z — o0)

Q(Z) _ e—27rz/5 + ..., R(Z) _ rhe27rz/ﬁ I

Aspect B: This provides an exact solution to the classical Einstein
equations (with or without cosmological constant) for any S.

v

We will test the validity of these two aspects (starting with aspect B)
within semiclassical physics where a non-perturbative result can be
expected.
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» In semiclassical gravity, the classical Einstein-Hilbert action Wen[G] is
supplemented by a quantum effective action I'[G] obtained by integrating
out the quantum matter fields.

> In 4D, for conformally coupled matter, the conformal anomaly fixes the
effective action up to a conformal factor.

Dowker-Schofield '89

> However, the difference between the effective actions for conformally
related metrics, I'[Q%g] — Io[g], is completely determined by the
conformal anomaly.

» For metrics of the form G,, = €*°g,., we want to compute
Weran[G] = Wen[G] + T[G],

whereas conformal anomaly fixes

Wen[G] + T[G] — To[g]



Conformal anomaly and effective action

A careful calculation gives:
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Here,
s Mo Mmp . om
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b — no 11n1 = 31m

360 ' 360 180 ’

k = 8w Gy and ns is number of fields of spin s.
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However, in order to study the above-mentioned aspects, we need to know
lo[g] to be computed in

ds’(g) = dt? + ds*(v), ds*(y) = N*(z)dz* + R?*(z)(d6? + sin® 0d¢?)

2

s 7 1

ro[SiB X M3] = _9053 (no+§n1/2+2n1)f 1+m(n1/g+4n1) " Rm + ..
—ZiaﬁfdzN(z)Aﬂ( )+ Z M (N(2) + RPN e o

45 ﬂ3 18 B near horizon
where

2 1 3 /2

Rt = — a5 (2RNR” = 2RR'N' — N° + NR”)

7
CH = ng + Enl/g +2n1, Ay = Ny + 4m

Gusev-Zelnikov '98, Hung-Myers-Smolkin '14



Fate of aspect B in semiclassical theory
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Fate of aspect B in semiclassical theory

For the near-horizon (z — o) ansatz
Qz)=e P 4. .., R(z)=nme™P +. .,

the semiclassical equations give

SoWgay: 0 = O (e_4“/5) ,
71'2 2
ONWegrav 0 = (360b — 2cy — 10AH) 18057 R*(z)
2
= — (no+6n1/2—18n1) 187654/?2(2).

- Curiously, the equations are satisfied for A' = 4 SYM theory.

- The above statement remains true even at subleading orders.
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» What happens to the minimal surface? How is Q modified?

> To study the semiclassical EOMs in a simplified way, we impose that the
Gt component of the metric is also a minimum at horizon and is non-zero
outside.

> Hence we impose r' = Q' = 0 and perform a local analysis of the
semiclassical equations near the turning point.

> The equations are (N = 1/Q gauge)
. 2Q " 2QU a " 2~/ 2 To! _
60Wgrav.?<lf2rr -y +E<Q+Q” er) +bQ" =0,

Q®* 3 -1 n209m2 2 yr A
5InQ [(er —r’ Q") —Q]—B4Q2+§

6N Wgrav : =0 5

K r

where 3 = a/127%, b = b/27%, v = cyw?/90 and A = \y/72.
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An example: Aspect A for A =0
> It's when either only scalar field backreacts or when we neglect the
subleading term in .

> The best way to proceed is by defining a new variable y such that
(er// _ r2Q//)2 _ }/292 ,

2 2 )\K;
O R TR 1) .
y PR R e To i

» The positivity condition y? > 0 imposes important constraints on possible
values of Q and . One can show that this choice is consistent with other
constraints.

» Since a> 0, b > 0, v > 0, the positivity condition y*> > 0 can be rewritten
in the form of an inequality
Qo "}/I’4

’2
Q4In6>§754>07 with (20=975
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> The above equation signifies

_2 _s
Q<Qog=e"3 ~e 7.

> Thus we find a “non-perturbatively” small modification of the classical
horizon such that 0 < Q < 1.

> In turn, this can be viewed as a bound on the possible ‘temperature’,

1 794 QO 1 5 4

oo L 13g
B4 Q <4’yr4 0

where in the last inequality we used that Q*InQo/Q < Q¢/(4e) < Q4/4.

> Temperature of the semiclassical geometry that replaces the classical black
hole is much less than the Hawking temperature.
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Conclusions

> Non-perturbative, wormhole-type modification.

> Bound on temperature. Experimental signatures for early universe black
holes. Lower temperature with longer life span.

> All the results boil down to the known black hole case in the classical
limit.

> Analytic and exact results for 2D Dilaton gravity. Static cases yield no
horizon scenarios for Boulware state. Dynamic case provides a framework
to pose information loss problem for the hybrid state, where a Page curve
can be analytically obtained.



Thank you for your attention!



Backup slides



Motivation from Information Problem

The old version of information problem due to Hawking (pure state = mixed
state) can be restated by considering BH complementarity, which demands
that the early Hawking radiations are not independent of the sub-horizon
modes. However, ‘nice-slice’ physics demand otherwise.

[1): State of the infalling information at
various spaeclike nice slices.

| and O: Ingoing and outgoing modes
inside horizon.

B: Modes just outside the horizon.

R: Modes in early Hawking radiation
which are maximally entangled with O
after Page time tp.




Equations of motion (EOM)
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(Sanrav:
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2

» Case 2: O°> > T Zz. In this case, the ratio Q0/€ can either be larger or

B2
smaller than 1.

- Case 2.1: If we assume Q < Qq, previous analysis yields
2
T2 = 1 < i& .
gy r?
- Case 2.2: For Q2 > Qo, it provides an upper bound on the value of Q.

A2
Qo < Q < Qoeta .

The temperature bound becomes

A2 Q2
T2:i<iem70_
B2 5 r2
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Minimality conditions

> However, we need to make sure that these are consistent with our initial
assumption of minimal 2-sphere and minimal Gg.

> For large BHs, i.e. for /f/r2 << 1,

Q _
Q”:7}(172y+%(1+y)2),
r2<3—?)
b
rr”*i1 +3i + 11 <—3+§)'f +l2
7( 757;«5) 2r2 r2 Y 2r2y
2r

can be shown to be positive. This fixes regimes of validity of the variable
y.



