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Broad motivation

§ Almost every aspect of a black hole (BH) is fascinating!

§ In classical general relativity (GR), Horizons are a key feature and provides
a playground for deep theoretical questions.

§ These classical solutions can be modified in various ways:

- Backreactions from quantized matter fields (semiclassical regime)

- Effects from quantizing geometry itself (quantum gravity)

§ We will try to understand the non-perturbative fate of BH horizons within
semiclassical GR.



Motivation from Information Problem

§ The Hawking paradox was modernized and sharpened by arguing that the
following statements can’t all be simultaneously true

AMPSS 2013

- Unitarity,
- Validity of semiclassical physics near and outside horizon, (locality)
- Black hole being a quantum system with discrete spectrum and
- Validity of equivalence principle near the horizon. (no firewall)

§ For a BH of finite entropy S , obeying unitary evolution

- Either locality should breakdown (Complementarity) or

- Due to firewall, one can’t construct a local operator inside a BH horizon.

§ Another option is a ‘soft’ near-horizon modification leading to a wormhole
type geometry. Along the lines of this talk.

§ A recent series of works also deal with derivation of Page curve by
considering quantum corrections within semiclassical gravity.
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Damour-Solodukhin wormholes

Replace black holes by wormholes via

´gtt Ñ ´gtt ` ε
2 with ε2

! 1

ds2
wh “ ´pgprq ` ε

2
qdt2

` gprq´1dr 2
` r 2dΩ2

d´2

Has the features of reproducing late-time quasi-periodic oscillations in two-point
functions, instead of an exponential decay indicative of information loss.

Damour-Solodukhin 2005

Wormholes as black hole mimickers

Replace black hole with a wormhole

�gtt ! �gtt + ✏2 , ✏2 ⌧ 1

ds2
wh = �(g(r) + ✏2)dt2 + g(r)�1dr2 + r2d!2

d

Thibault and SS (2005)

Sergey Solodukhin Black holes and wormholes in semiclassical gravity



Outline of the talk

§ Properties of BHs (especially, near-horizons) in classical GR

§ Studying these properties in semiclassical GR, especially depending on the
choice of the quantum state

§ Conclusions
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Set-up

§ Static, spherically symmetric and asymptotically flat BHs in 4 spacetime
dimensions. Later on, black holes in 2D RST model (will be elaborated on
the talk by Yohan Potaux in the afternoon).

§ Consider backreaction from quantized scalar, gauge and fermion fields on
non-quantized background.

§ Non-perturbative handle is due to the study of conformal anomaly.
However, the analysis is near-horizon.

§ In 4D, the effective action of semiclassical GR is fixed up to a conformal
factor. We will fix this factor by casting the spacetime in a conformal form.

Fradkin-Tseytlin ’84, Dowker-Schofield ’90, Mazur-Motola ’01
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Horizons in classical GR

§ Start with a general ansatz for static, spherically symmetric metric

ds2
“ Ω2

pzq gµνdx
µdxν

“ e2σpzq
´

dt2
` N2

pzqdz2
` R2

pzqpdθ2
` sin2 θ dφ2

q

¯

.

§ In the gauge Npzq “ 1{Ωpzq, the two independent Einstein equations then
take the form (rpzq “ RpzqΩpzq)

2rr2 ` r 12 ´ 1 “ 0 ,

Ωpr 12 ´ 1q ` 2rr 1Ω1 “ 0 .

Aspect A: If at ρ “ z “ ρh, the corresponding 2-sphere is a minimal area
surface, i.e. r 1 “ 0, then it is necessarily a horizon. Ω “ 0.

Cruściel; Morris-Thorne ’88
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Horizons in classical GR

§ In Npzq “ 1 gauge, assuming that there exists a horizon at Schwarzschild
radial coordinate r “ rh with a finite temperature T “ 1{β, one finds the
generic near-horizon behavior as (horizon located at z Ñ8)

Ωpzq “ e´2πz{β
` . . . , Rpzq “ rhe

2πz{β
` . . . .

Aspect B: This provides an exact solution to the classical Einstein
equations (with or without cosmological constant) for any β.

§ We will test the validity of these two aspects (starting with aspect B)
within semiclassical physics where a non-perturbative result can be
expected.
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Conformal anomaly and effective action

§ In semiclassical gravity, the classical Einstein-Hilbert action WEH rG s is
supplemented by a quantum effective action ΓrG s obtained by integrating
out the quantum matter fields.

§ In 4D, for conformally coupled matter, the conformal anomaly fixes the
effective action up to a conformal factor.

Dowker-Schofield ’89

§ However, the difference between the effective actions for conformally
related metrics, ΓrΩ2g s ´ Γ0rg s, is completely determined by the
conformal anomaly.

§ For metrics of the form Gµν “ e2σgµν , we want to compute

Wgrav rG s “WEH rG s ` ΓrG s,

whereas conformal anomaly fixes

WEH rG s ` ΓrG s ´ Γ0rg s
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Conformal anomaly and effective action

A careful calculation gives:

p4πβq´1Wgrav “

1

κ

ż

dz
e2σ

N2

´

R 12N ` 6RR 1Nσ1 ` 3R2Npσ12 ` σ2q ` 2RR2N ´ N3
´ 2RR 1N 1 ´ 3R2N 1σ1

¯

´
4a

3p4πq2

ż

dz
σ

R2N5

´

N3
` RR2N ´ RR 1N 1 ´ R 12N

¯2

´
4b

p4πq2

ż

dz

„

1

N

ˆ

R 12

N2
´ 1

˙

σ12 `
R2σ12

N3

ˆ

σ2 ` 2
R 1

R
σ1 ´

N 1

N
σ1
˙

`
R2σ14

2N3



` p4πβq´1Γ0rgµνs ,

. . . Birrell-Davies, Riegert ’84 . . .

Here,

a “
n0

120
`

n1{2

20
`

n1

10
,

b “
n0

360
`

11n1{2

360
`

31n1

180
,

κ “ 8πGN and ns is number of fields of spin s.
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Γ0 on S1 ˆ M3 to S1 ˆ H3

However, in order to study the above-mentioned aspects, we need to know
Γ0rg s to be computed in

ds2
pgq “ dt2

` ds2
pγq , ds2

pγq “ N2
pzqdz2

` R2
pzqpdθ2

` sin2 θdφ2
q ,

Γ0rS
β
1 ˆ M3s “ ´

π2

90β3

ˆ

n0 `
7

2
n1{2 ` 2n1

˙
ż

M3

1`
1

144β

`

n1{2 ` 4n1

˘

ż

M3

RM ` . . .

“ ´
2π3

45

cH
β3

ż

dzNpzqR2
pzq `

π

18

λH

β

ż

dzpNpzq ` R 12N´1
q|near horizon

where

RM “ ´
2

R2N3

´

2RNR2 ´ 2RR 1N 1 ´ N3
` NR 12

¯

,

cH “ n0 `
7

2
n1{2 ` 2n1, λH “ n1{2 ` 4n1

Gusev-Zelnikov ’98, Hung-Myers-Smolkin ’14
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Fate of aspect B in semiclassical theory

For the near-horizon (z Ñ8) ansatz

Ωpzq “ e´2πz{β
` . . . , Rpzq “ rhe

2πz{β
` . . . ,

the semiclassical equations give

δσWgrav : 0 “ O
´

e´4πz{β
¯

,

δNWgrav : 0 “ p360b ´ 2cH ´ 10λHq
π2

180β4
R2
pzq

“ ´
`

n0 ` 6n1{2 ´ 18n1

˘ π2

180β4
R2
pzq .

- Curiously, the equations are satisfied for N “ 4 SYM theory.

- The above statement remains true even at subleading orders.
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Fate of aspect A in semiclassical theory

§ What happens to the minimal surface? How is Ω modified?

§ To study the semiclassical EOMs in a simplified way, we impose that the
Gtt component of the metric is also a minimum at horizon and is non-zero
outside.

§ Hence we impose r 1 “ Ω1 “ 0 and perform a local analysis of the
semiclassical equations near the turning point.

§ The equations are (N “ 1{Ω gauge)

δσWgrav :
2Ω

κ

ˆ

1´ 2rr2 ´ r 2 Ω2

Ω

˙

`
ā

r 2Ω

´

Ω` Ωrr2 ´ r 2Ω2
¯2

` b̄Ω2 “ 0 ,

δNWgrav : ´
Ω2

κ
´

ā

r 2
ln Ω´1

”

pΩrr2 ´ r 2Ω2q2 ´ Ω2
ı

´
γr 2

β4Ω2
`

λ

β2
“ 0 ,

where ā “ a{12π2, b̄ “ b{2π2, γ “ cHπ
2
{90 and λ “ λH{72.
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ā

r 2Ω

´

Ω` Ωrr2 ´ r 2Ω2
¯2

` b̄Ω2 “ 0 ,

δNWgrav : ´
Ω2

κ
´

ā
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ā

r 2
ln Ω´1

”

pΩrr2 ´ r 2Ω2q2 ´ Ω2
ı

´
γr 2

β4Ω2
`

λ

β2
“ 0 ,
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An example: Aspect A for λ “ 0

§ It’s when either only scalar field backreacts or when we neglect the
subleading term in Γ0.

§ The best way to proceed is by defining a new variable y such that

´

Ωrr2 ´ r 2Ω2
¯2

“ y 2Ω2 ,

y 2
“ 1´

r 2

κā ln Ω´1

ˆ

γκr 2

β4Ω4
´

λκ

β2Ω2
` 1

˙

.

§ The positivity condition y 2
ě 0 imposes important constraints on possible

values of Ω and β. One can show that this choice is consistent with other
constraints.

§ Since a ą 0, b ą 0, γ ą 0, the positivity condition y 2
ą 0 can be rewritten

in the form of an inequality

Ω4 ln
Ω0

Ω
ą
γr 4

āβ4
ą 0 , with Ω0 “ e´

r2

āκ
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Aspect A for λ “ 0

§ The above equation signifies

Ω ă Ω0 “ e´
r2

āκ „ e´S .

§ Thus we find a “non-perturbatively” small modification of the classical
horizon such that 0 ă Ω ă 1.

§ In turn, this can be viewed as a bound on the possible ‘temperature’,

T 4
“

1

β4
ă

ā

γr 4
Ω4 ln

Ω0

Ω
ă

1

4

ā

γr 4
Ω4

0 ,

where in the last inequality we used that Ω4 ln Ω0{Ω ď Ω4
0{p4eq ď Ω4

0{4.

§ Temperature of the semiclassical geometry that replaces the classical black
hole is much less than the Hawking temperature.
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ā

γr 4
Ω4 ln

Ω0

Ω
ă

1

4

ā
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āκ „ e´S .

§ Thus we find a “non-perturbatively” small modification of the classical
horizon such that 0 ă Ω ă 1.

§ In turn, this can be viewed as a bound on the possible ‘temperature’,

T 4
“

1

β4
ă

ā
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Conclusions

§ Non-perturbative, wormhole-type modification.

§ Bound on temperature. Experimental signatures for early universe black
holes. Lower temperature with longer life span.

§ All the results boil down to the known black hole case in the classical
limit.

§ Analytic and exact results for 2D Dilaton gravity. Static cases yield no
horizon scenarios for Boulware state. Dynamic case provides a framework
to pose information loss problem for the hybrid state, where a Page curve
can be analytically obtained.
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Thank you for your attention!



Backup slides



Motivation from Information Problem

The old version of information problem due to Hawking (pure state ñ mixed
state) can be restated by considering BH complementarity, which demands
that the early Hawking radiations are not independent of the sub-horizon
modes. However, ‘nice-slice’ physics demand otherwise.

| i

| i | i

R

I O
B

|ψy: State of the infalling information at
various spaeclike nice slices.
I and O: Ingoing and outgoing modes
inside horizon.
B: Modes just outside the horizon.
R: Modes in early Hawking radiation
which are maximally entangled with O
after Page time tP .



Equations of motion (EOM)
δσWgrav :
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´
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ff
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Aspect A for λ ‰ 0

§ Case 2: Ω2
ą

γ
λ

r2

β2 . In this case, the ratio Ω0{Ω can either be larger or

smaller than 1.

- Case 2.1: If we assume Ω ď Ω0, previous analysis yields

T 2 “
1

β2
ă
λ

γ

Ω2
0

r2
.

- Case 2.2: For Ω ą Ω0, it provides an upper bound on the value of Ω.

Ω0 ă Ω ă Ω0e
λ2

4γā .

The temperature bound becomes

T 2 “
1

β2
ă
λ

γ
e

λ2

2γā
Ω2

0

r2
.
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Minimality conditions

§ However, we need to make sure that these are consistent with our initial
assumption of minimal 2-sphere and minimal Gtt .

§ For large BHs, i.e. for κ{r 2
ăă 1,

Ω2 “
Ω

r 2
´

3´ b̄κ
2r2

¯

ˆ

1´ 2y `
āκ

2r 2
p1` yq2

˙

,

rr2 “
1

´

3´ b̄κ
2r2

¯

»

–

ˆ

1`
āκ

2r 2

˙

`

¨

˝1´

´

´ā` b̄
2

¯

κ

r 2

˛

‚y `
āκ

2r 2
y 2

fi

fl .

can be shown to be positive. This fixes regimes of validity of the variable
y .
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