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Horizon entropy as a probe of QG

* Bekenstein-Hawking entropy provides a low-energy window into the
realm of quantum gravity

A = horizon area

Ac’

S =FB 0

e This beautiful formula combines all fundamental constants of Nature.



Horizon entropy

* By zooming in on the event horizon of a black hole we find the
horizon of an accelerating observer in flat space. That local Rindler
horizon again has thermodynamic properties. Unruh, Jacobson

singularity

/1 collapsing
A matter

* All horizon entropies should have the same statistical origin
(en’[anglement en’[ropy’?)_ Sorkin, Frolov, Novikov, Srednicki, Solodukhin, Fursaev, Zelnikov,

Susskind, Uglum, Jacobson, ...
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Horizon entropy

* Bekenstein-Hawking entropy is a universal formula: applies not only to
black hole horizon, but also to cosmological and acceleration horizons.

Static patch of de Sitter spacetime Rindler wedge of Minkowski spacetime

* The de Sitter entropy is set by the cosmological constant, and the
Rindler entropy is infinite.



Entropy of causal diamonds

* The de Sitter static patch and the Rindler wedge are examples of
causal diamonds.

* A causal diamond is the intersection of the future of one point with
the past of another point.

* |tis expected that causal diamonds of any
size In any Lorentzian spacetime have an
associated Bekenstein-Hawking entropy.

Banks, Fischler, Bousso, Draper, Farkas, Jacobson, MV, ...



Entropy of causal diamonds

* The de Sitter static patch and the Rindler wedge are examples of
causal diamonds.

* A causal diamond is the intersection of the future of one point with
the past of another point.

* |tis expected that causal diamonds of any
size In any Lorentzian spacetime have an
associated Bekenstein-Hawking entropy.

Banks, Fischler, Bousso, Draper, Farkas, Jacobson, MV, ...

e How to justify this?



Gibbons-Hawking partition function

 Gibbons and Hawking derived the entropy of black holes and
de Sitter horizons from a Euclidean saddle approximation of the
gravitational partition function.

(): can the entropy of causal diamonds be derived

from a saddle approximation to a partition function?

See also Banks-Draper-Farkas ’20
and our recent statistical interpretation (Jacobson-MV ’22)
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Gibbons-Hawking partition function

 Gibbons and Hawking derived the entropy of black holes and
de Sitter horizons from a Euclidean saddle approximation of the
gravitational partition function.

(): can the entropy of causal diamonds be derived

from a saddle approximation to a partition function?

A: Yes! Using the method of constrained instantons
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Outline

1. Gravitational partition function for de Sitter space

- Review of Gibbons-Hawking, Action integrals and partition functions in quantum gravity,
PRD, 1977.

2. Constrained sphere partition function

- T. Jacobson & M.V. Partition function of a volume of space,
(2212.10607, PRL)



Willem de Sitter (1872-1934)

 Director of the Leiden
Observatory from 1919.

* Had vivid discussions and
correspondence with
Einstein on cosmological
spacetimes.




Thermodynamics of de Sitter space

Static coordinates for de Sitter

dR?

2 _ _(1— R2/L2) d¢2 - _ R
ds (1= B/L%) dt* + 1z + R

A

 Cosmological horizonat: R=L .

* De Sitter entropy and temperature

@ o A(L)
QT B ™ UnaG

k=1/L Gibbons-Hawking (1977)
11

Tgo =



PHYSICAL REVIEW D VOLUME 15, NUMBER 10 15 MAY 1977

Cosmological event horizons, thermodynamics, and particle creation

G. W. Gibbons* and S. W. Hawking

D.A.M.T.P., University of Cambridge, Silver Street, Cambridge, United Kingdom
(Received 4 March 1976)

It is shown that the close connection between event horizons and thermodynamics which has been found in
the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An
observer in these models will have an event horizon whose area can be interpreted as the entropy or lack of
information of the observer about the regions which he cannot see. Associated with the event horizon is a
surface gravity k which enters a classical “first law of event horizons” in a manner similar to that in which
temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an
analogy: An observer with a particle detector will indeed observe a background of thermal radiation coming
apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain
energy and entropy at the expense of the region beyond his ken and the event horizon will shrink. The
derivation of these results involves abandoning the idea that particles should be defined in an observer-
independent manner. They also suggest that one has to use something like the Everett-Wheeler interpretation
of quantum mechanics because the back reaction and hence the spacetime metric itself appear to be observer-
dependent, if one assumes, as seems reasonable, that the detection of a particle is accompanied by a change in
the gravitational field. '



Thermodynamics of de Sitter space

 What evidence do we have for the thermodynamics of the static
patch of de Sitter?

1. QFT in fixed de Sitter background
2. De Sitter horizon satisfies thermodynamic laws

3. Euclidean sphere partition function
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Thermodynamics of de Sitter space

1. The de Sitter vacuum state when restricted to one static patch is thermal

with respect to the Hamiltonian K generating the Killing tflow
Gibbons-Hawking (1977)
1

2. Gravitational first law of de Sitter static patch v & .
e
G Z

NB The static patch has no boundary where ADM energy can be defined.
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Gibbons-Hawking partition function

PHYSICAL REVIEW D VOLUME 15, NUMBER 10 - 15 MAY 1977

/+ction integrals and partition functions in quantum gravity

G. W. Gibbons* and S. W. Hawking
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England
(Received 4 October 1976)

One can evaluate the action for a gravitational field on a section of the complexified spacetime which avoids
the singularities. In this manner we obtain finite, purely imaginary values for the actions of the Kerr-Newman
solutions and de Sitter space. One interpretation of these values is that they give the probabilities for finding
such metrics in the vacuum state. Another interpretation is that they give the contribution of that metric to
the partition function for a grand canonical ensemble at a certain temperature, angular momentum, and
charge. We use this approach to evaluate the entropy of these metrics and find that it is always equal to one
quarter the area of the event horizon in fundamental units. This agrees with previous derivations by
completely different methods. In the case of a stationary system such as a star with no event horizon, the
gravitational field has no entropy.

3. Gibbons-Hawking represented the canonical partition function in
gravity as a Euclidean path integral over metrics




Gibbons-Hawking partition function

* |f the action is very large compared to Planck’s constant,
the path integral can perhaps be estimated as:

aN exp ( Saddle/h)

» From the canonical partition Z = Tre P

thermodynamic quantities for the system

InZ =—pF

one usually gets

d
——1HZ <H>5

dp
<1 —5;;) InzZ==5
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Entropy from the partition function

* |f the saddle geometry is a Euclidean black hole spacetime, then

Ip/h=BF =AM — 8

horizon area

d

* |f the saddle geometry is Euclidean de Sitter space
(a round sphere whose radius is L), then

- M = 0 (since the saddle has no boundary)

- the entropy Is

Sas = —Ig/h = AlL)

4hGG sP
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Gibbons-Hawking partition function

* Since the energy vanishes for Euclidean de Sitter space, the
partition function seems to count the dimension of the quantum
gravity Hilbert space Banks, Fischler

7 =Tre PH & H=0

Jacobson, Banihashemi ‘22

—— | Z = Tyl =eds

= dimension of Hilbert space
of states surrounded by a horizon,
.e. states of a ball
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Outline

1. Gravitational partition function for de Sitter space

- Review of Gibbons-Hawking, Action integrals and partition functions in quantum gravity,
PRD, 1977.

2. Constrained sphere partition function

- T. Jacobson & M.V. Partition function of a volume of space,
(2212.10607, PRL)
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Partition function for a volume of space

* Should not “area = entropy” apply to any causal diamond?

* To specity a generic diamond, one must somehow fix its size:
a) Fixed edge area: no saddle exists, since fluctuations are too large.
b) Fixed Euclidean spacetime volume: not a constraint on the states.

c) Fixed spatial volume: this works!

ZIV] = Tryl — Z[V] = / Dgs(Clgl — V)e—1eld
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Euclidean sphere geometry

* (Counting the dimension of the Hilbert space of a diamond is
equivalent to counting the states of a spatial slice at one time.

* We consider a spatial topological (D-17)-ball whose boundary has
topology SP~2.

* The Euclidean manifold generated by rotating the ball through a
complete circle about the ball boundary is a topological D-sphere

e.qg. D=2 version:




Constrained path integral

In the gravitational path integral we can introduce a constraint
as follows Affleck, Cotler-Jensen

/ dg] e =19 = / av / dglé(Clg] — V)e Tzl

Introducing a Lagrange multiplier to impose the constraint the
integral can be rewritten as

/dg ~Iely /dV/dA/dg ~Lelgl+AClgl=V)

Saddle-point equations of motion

0lplgl+AdClg] =0, Clg| =V
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Constrained sphere partition function

Method of constrained instantons Affleck, Cotler-Jensen

2V, A] = / Dgs(Clg] — V) exp [167; ~ / P /G(R — 2A)]

= /DADQ eXp [167:hG /de\/g(R— 27) +%/d¢)\(¢) (/dD—lxﬁ_V>]

Foliate S by (D-1)-balls at constant ¢ with induced metric Yab = Jab — N2¢,a¢,b

N = (gab¢,a¢,b)—1/2

The saddle point equations are the Einstein equations sourced by an effective
perfect fluid with vanishing energy density,

. A
Gab + Agab — 87TGTab with Tab — N”Ya,b = P"Va,b
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Static, spherically symmetric saddle

ds® = N?(r)d¢* + h(r)dr® + r2dQ%_,

 N(r)is determined by the Tolman-Oppenheimer-Volkoff-equation,
with boundary conditions:

1) N = 0 at r = Ry, the horizon

2) N' = —\/E at r = Ry, to remove conical singularity

A — O solution: Ry = [(D - 1)V/QD_2]1/(D_1)

1
IR?

ds? (R3, — r°)?d¢® + dr® 4+ r2dQ5, _,
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Euclidean saddle

 Comparison between diamond saddle and spherical dS saddle

 Diamond saddle has topology Sl?is conformally flat, and has a curvature
singularity at the horizon
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Euclidean action

Even though the saddle has a 1/(r-Rv) curvature singularity at the horizon,
the action is finite.

On-shell Euclidean action

1 A
Lsaadie = 167TG/dD$\/§R: _é

Hence, in the zero-loop saddle-point approximation:

Z[V] ~ exp(Ay /4hG)

This generalizes the GH partition function to a finite volume of space!
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A > () saddle

* The saddle solution with positive cosmological constant is similar, BUT:
1) If V = Vs (static patch spatial volume), then the saddle is dS, which is smooth

2) It Vis larger than the dS spatial hemisphere, the entropy decreases as volume
Increases

2) There is no saddle if Vis larger than the full de Sitter spatial sphere.

3) The integral over all Vis dominated by the de Sitter saddle.
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Conclusions

Partition function of a volume of space = dimension of the quantum gravity
Hilbert space of a topological ball with fixed proper volume.

The Hilbert space dimension matches with the semiclassical horizon entropy
attributed to diamonds, and exhibits the holographic nature of nonperturbative
guantum gravity in finite volumes of space.

Future directions:

Higher curvature corrections: determine whether they smoothen out the
curvature singularity at the horizon.

Volume constraint: relation with York Hamiltonian?
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