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Framework: asymptotically flat spacetimes

Emergence of Carroll: from AdSn to flatn asymptotics

Λ = − (n−1)(n−2)
2 k2→ 0 cbry. = k×Rcelestial sphere × cbulk
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I ± is a null hypersurface→ Carrollian geometry with
conformal isometry group ccarr(n− 1) ≡ BMSn

If flat holography exists the dual theory should be defined on a
Carrollian spacetime and be BMSn ≡ ccarr(n− 1)-invariant



Reconstructing the bulk from the boundary

Possible for Ricci-flat spacetimes – as for Einstein

boundary data defined on null boundary

Carrollian boundary dynamics from bulk Ricci flatness
infinite number of data ⊃ the Carrollian Co�on tensor

enters explicitly the bulk-metric expansion
contributes the losses via gravitational radiation
defines magnetic duals to charges (energy, momenta, etc.)



Hidden vs. visible symmetries in Ricci-flat spaces

Isometries or asymptotic isometries are visible and act locally

Reductions along isometric orbits exhibit hidden symmetries

from 4 to 3 dimensions: Ehlers’ Möbius group [Ehlers ’62]

from 4 to 2 dimensions: Geroch’ a�ine Möbius group [Geroch ’72]

larger reduction: bigger /∞-dim group / exceptional

acting non-locally in the parent space (phase-space symmetries)



Ehlers in a nutshell – Ricci flat [Ehlers ’62; Geroch ’71]

Bulk reduction along a Killing ξ:M→ S = M/orb(ξ)

λ = ξAξA ⇒ h̃AB = λgAB − ξAξB

Further ingredients: twist and its on-shell potential

w = ?(ξ ∧ dξ) ⇒ w = dω

Three-dimensional dynamics (sigma-model)

dofs. τ = ω + iλ h̃AB

eqs. R̃AB = − 2
(τ−τ̄)2 D̃(AτD̃B)τ̄ D̃2τ = 2

τ−τ̄ D̃MτD̃Nτ h̃MN

inv. τ → ατ+β
γτ+δ ,

(
α β
γ δ

)
∈ SL(2,R): Ehlers’ group

non-local for α = δ = cosχ & β = −γ = sinχ



Punch line [Mittal et al. ’22]

Ehlers group is realized on the Carrollian boundary and acts
locally on the data including the Carrollian Co�on descendants
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Carrollian geometry [Lévy-Leblond ’65; Sen Gupta ’66; Duval et al. ’14; Bekaert et al. ’16]

Basic ingredients in d + 1 dimensions (coordinates t, x)

degenerate metric: ds2 = −c2︸︷︷︸
0

(
Ωdt − bidx i

)2
+ aijdx idx j︸ ︷︷ ︸

d`2

field of observers: kernel 1
Ω∂t (t should be spelled u)

clock form: µ = −Ωdt + bidx i (Ehresmann connection)

General covariance (in the present parameterization)

Carrollian di�eomorphisms: t ′ = t ′(t, x) x′ = x′(x)

Applications

I ± in Ricci-flat spacetimes

black-hole horizons – membrane paradigm



Carrollian dynamics

Carrollian-covariant action, energy and momenta
Π = − 1√

a

(
δS
δΩ + bi

Ω
δS
δbi

)
energy density

Πi = 1√
aΩ

δS
δbi

energy flux

Πij = 2√
aΩ

δS
δaij

energy–stress tensor

Conservation eqations in Carrollian spacetimes

Weyl covariance⇒ Πi
i = Π

Carrollian covariance (ξ = ξt(t, x)∂t + ξi(x)∂i di�eos)

⇒
{

1
ΩD̂tΠ + D̂iΠ

i + Πijξij = 0 time(
1
ΩD̂tδ

i
j + ξi

j

)
Pi + D̂iΠ

i
j + 2Πi$ij = 0 space

→ momentum Pi



Pure gravity – asymptotically flat or AdS

Solving Einstein’ eqations in n = d + 2 dim for GAB{
r, t, x i

}
, i = 1, . . . , d plus gauge fixing (n = d + 2 conditions)

→ find GAB as O (1/rm) with coe�icients f (t, x) & dynamics

Solution space ≡ collection of data f (t, x)

Desirable feature: organize f (t, x) and their dynamics tensorially
wrt a covariant structure on the boundary

Gauge choice

Fe�erman–Graham bry.-covariant but singular at k → 0

Bondi/Newman–Unti valid at k → 0 but not bry.-covariant



From NU to boundary-covariant NU

Newman–Unti gauge in coordinates r , t , x i

Gauge conditions: Grr = 0, Grt = −1, Gri = 0 (i = 1, . . . , n− 2)

ds2
bulk =

V
r

dt2 − 2dtdr + Gij
(
dx i − U idt

) (
dx j − Ujdt

)
V , Gij , U i functions of all coordinates – expand in rm → f (t, x)
Good feature: ∂r null a�ine geodesic with shear Cij

Unwanted feature: not stable under t → t(t, x) i.e. boundary
Carrollian di�eomorphisms or under r → rΩ(t, x) i.e. Weyl

Covariant Newman–Unti gauge: incomplete gauge fixing

Grt 6= −1, Gri 6= 0

[see also Ciambelli et al. ’20; Geiller et al. ’22]



Einstein 4-dim spacetimes in a nutshell

Covariant Newman–Unti gauge in coordinates r , xµ

boundary data

boundary metric ds2 = gµνdxµdxν (6)

conformal boundary energy–momentum tensor Tµν (5)

remaining Einstein’ equations∇µTµν = 0 (“fluid”)

The boundary Cotton tensor appears explicitly in GAB

[de haro ’08; Mansi et al. ’09; de Freitas et al. ’14; Gath et al. ’15; Ciambelli et al. ’18]

Cµν = η ρσ
µ ∇ρ

(
Rνσ −

R
4

gνσ

)
symmetric traceless ∇µCµν = 0

Cµν 6= 0⇔ non-conformally flat bry.↔ asymptotically locally
AdS bulk (e.g. Taub–NUT)



Ricci-flat in covariant Newman–Unti gauge

Full solution space in n = 4 [Brussels & Paris groups]

ds2
Ricci-flat described in terms of 2 + 1 Carrollian boundary data

Carrollian geometry (6) with zero geometrical shear ξij

degenerate metric (3) d`2 = aijdx idx j

Ehresmann connection (3) µ = −Ωdt + bidx i

Carrollian conformal energy and momenta (5) “fluid”
energy (1) ε
momenta – heat current (2) and stress tensor (2) Ni & Eij

Carrollian dynamical shear (2) Cij

infinite number of further Carrollian data – at every
O (1/rm): Chthonian challenges flat “holography”

obeying Carrollian dynamics↔ flux-balance equations



Central ingredient: the Carrollian Cotton

Carrollian Cotton avatars

reduce the Riemannian Cµν wrt Carrollian di�eomorphisms

expand wrt the speed of light→ c, ψi , χi , Ψij , Xij

∇µCµν = 0→ Carrollian dynamics for the descendants
1
ΩD̂tc + D̂iχ

i = 0
1
2D̂jc + 2χi$ij + 1

ΩD̂tψj − D̂iΨ
i
j = 0

1
ΩD̂tχj − D̂iX i

j = 0

Bulk interpretation – e.g. the scalar c
c/2 “nut aspect” (magnetic mass) in contrast to 4πGε “Bondi
mass aspect” (electric mass) combined in τ̂ = −c + 8πiGε



3 + 1 Ricci-flat bulk from 2 + 1 Carrollian bry

Resummable under conditions → algebraic Petrov

→ remove shear and Chthonian & dualize the energy flux and stress

ds2
res. Ricci-flat = µ

[
2dr + 2

(
rϕj − ∗D̂j ∗$

)
dx j −

(
rθ + K̂

)
µ
]

+

ρ2d`2 + µ2

ρ2 [8πGεr + ∗$c]

ρ2 = r2 + ∗$2 (geometric series)

µ = −Ωdt + bidx i and d`2 = aijdx idx j = 2
P2 dζdζ̄ (bry geometry)

−c + 8πiGε = τ̂ (complex mass aspect )

Einstein’ eqs. & Co�on conservation→ flux-balance equations

1
Ω D̂t χ̂j − D̂iX̂ i

j = 0 1
Ω D̂t τ̂ − D̂jχ̂

j = 0
1
Ω D̂t ψ̂i − 1

2 D̂i τ̂ − D̂ jΨ̂ij + 2i ∗$ ∗χ̂i = 0

[Ciambelli et al. ’18; Barnich et al. ’19; Freidel et al. ’21]



Contact with Newman–Penrose [NP ’68]

Parallelly transported null tetrad k = ∂r , l, m, m̄

here


Ψ0 = Ψ1 = 0 Cij = 0⇒ Goldberg–Sachs
Ψ2 = iτ̂

2(r−i∗$)3

Ψ3 =
iPχζ

(r−i∗$)2 + O (1/(r−i∗$)3)

Ψ4 =
iX ζ̄

ζ

r−i∗$ + O (1/(r−i∗$)2)

generally Ψ0
0 ∝ iE ζ̄

ζ , Ψ0
1 ∝ iNζ , etc.

188 E. T. Newman and R. Penrose

Unlike the case of the linear theory, it is now not possible to choose cr° = 0 every­
where if there is outgoing radiation. In fact (see Bondi 1962; Sachs 1962a;
Newman & Unti 1962)

<r° = — ^ 4, (4-4)

so that cr0 is, effectively, a second time-integral of the radiation field. Furthermore,

® = 3<r°. (4-5)

We shall also require the equation

— ^2 = ~ + 32<x° — 92(7°. (4-6)

The Bianchi identities give
(4-7)

^  = —8 v^ + o-V". (4-8)

^5 = —8 ^  + 2 (4-9)

i!/‘u = — (4-10)

all these equations are obtained from Newman & Unti (1962) by translation into 
the 3 notation. Note that from (4*8), (4-4) and (4-5) we get

= — 32cr° — cr°(T0. (4-11)

Further calculations yieldf

H  = - 3 3 ^ - 4 3 ( ( r 0̂ S), (4-12)

K  =  - | ( ^ J  +  6^J) +  5{(^«)2- ^ ô - 1 ^ o^2} + ^,  (4-13)

where E — 56a°8^o +3Sa08^o + f a 0S2̂ o + §^oS2(r0+-2-(X°S2^o —§ a 0cr0S^5
— 12 ô x}/*ffi(T0 — 2a°^5So'° +  l̂ 5-o:0((r0)2 tJ/% f  (r0̂ 0^®. (4* 14)

(The important thing about E, here, is that it vanishes when cr° = 0.)
Before considering the new conservation laws in detail, we note, for comparison, 

the Bondi-Sachs mass-momentum lawj for which we put

P  1
v(327jo*

1* 0TM,m(o-0o-0+^0)d0J, (4-15)

1 ^ n ^  \m\ ^  0. Then,

(^0,0’ ® 2(A ,l~  A .-l)’ i6 + Pi,-1)5 3 2P1;0) (4-16)

is the Bondi-Sachs total energy-momentum vector (in an ‘asymptotic ’ orthonormal 
frame) at the retarded time u, with P0 0 being the total mass. In fact, this vector is

t  We are deeply indebted to Dr T. Unti for his aid in performing the very lengthy calcula­
tions needed here.

J Although Bondi et al. (1962) and Sachs (1962a) were originally explicitly concerned with 
mass only, the behaviour under homogeneous Lorentz transformations implies that the 
momentum law is also involved (cf. Sachs 19626). The momentum carried by gravitational 
radiation is more explicitly considered by Bonnor & Rotenberg (1966); see also Penrose (1964, 
1967), Winicour (1967).
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Figure: NP ’68 Eqs. (4.7)–(4.9)



Spin-off: elec. / magn. charges from the boundary

Riemannian boundary in asymptotically AdS bulk

ξ bry. conf. Killing (max 10)→ Iµ = ξνTµν and IµCot = ξνCµν

Qξ =

∫
Σ2

∗I and QCotξ =

∫
Σ2

∗ICot

electric and magnetic conserved charges (bulk mass vs. nut)

Carrollian boundary for Ricci-flat spacetimes

infinite tower of conformal Killings (asymptotic symmetries)

d + 1 = 3→ ccarr(3) ≡ so(3, 1) n supertransls. ≡ BMS4

every Carrollian item (infinite number) & its magnetic dual
produce towers of charges – not always conserved
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Carrollian stationary boundary dynamics

Assuming ∂t be a Killing→ θ = 0, Ω = 1, ϕi = 0, K̂ = K

d`2 = 2
P2(ζ,ζ̄)

dζdζ̄ K = ∆ ln P

µ = −dt + bζdζ + bζ̄dζ̄ ∗$ =
iP2

2

(
∂ζbζ̄ − ∂ζ̄bζ

)
τ̂ = −c + 8πiGε complex mass aspect

Flux-balance eqs. ∆K = 0 ∂ζ τ̂ = 0

2K = k̂(ζ) + ˆ̄k
(
ζ̄
)

τ̂ = τ̂(ζ)

Example: Kerr–Taub–NUT family (spherical case)

k̂ = K = 1 τ̂ = 2(iM− n)
P = 1

2ζζ̄ + 1 ∗$(ζ, ζ̄) = n + a− 2a
P



Boundary Möbius action [Mittal et al. ’22]

Algebraic Ricci-flat spacetimes with Killing ∂t

τ
(
r, ζ, ζ̄

)
=

τ̂ (ζ)

r + i ∗$
(
ζ, ζ̄
) − ik̂ (ζ)

Carrollian boundary local transformations

P ′ =
P∣∣∣γk̂ + iδ

∣∣∣ k̂′ = i
αk̂ + iβ

γk̂ + iδ
τ̂ ′ = − τ̂(

γk̂ + iδ
)2

Example: Kerr–Taub–NUT family: τ̂ = 2(iM− n), a

τ̂ → τ̂ ′ = τ̂ e−2iχ a→ a′ = a

electric & magnetic charges – mixed under Möbius
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�otable facts

Ricci-flat spacetimes are reconstructed from boundary
Carrollian-covariant data including the Co�on tensors

part of the Newman–Penrose Ψs are Carrollian Co�on
descendents

a bulk isometry reveals into a boundary Ehlers’ Möbius
local invariance involving the Co�on as a magnetic facet

Further knowledge and investigation

Towers of charges and dual charges
capture e.g. the multipolar moments [Geroch ’70; Hansen ’74]

organized wrt SL(2,R)
further comparison with bulk approaches for towers of
charges and duality issues [Newman, Penrose ’68; Godazgar2 , Pope ’18–21]

What could we learn for flat/celestial holography?



Starring

Lewis Carroll (1832 – 1898)

Poet and mathematician – Christ Church College, Oxford
Alice’s Adventures in Wonderland & Through the Looking-Glass

Émile Cotton (1872 – 1950)

Professor of mathematics at the University of Grenoble
Co�on tensor

Jürgen Ehlers (1929 – 2008)

Max Planck Institute for Gravitational Physics – Potsdam
Ehlers group & Ehlers frame for the Newtonian limit of GR
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3 + 1 Ricci-flat bulk from its 2 + 1 Carrollian boundary

→ add shear Cij and Chthonian Fij , . . .& no dualization

ds2
Ricci-flat = 2µ

[
dr − rθ + K̂

2
µ +

(
rϕi − ∗D̂i ∗$ −

1
2
D̂jC

j
i

)
dx i

]

+Cij
(
rdx idx j − ∗$ ∗dx idx j)+

(
r2 + ∗$2 +

CklC kl

8

)
d`2

+
1
r

[
8πGεµ2 − 4

3
(∗ψi − 8πGπi) dx iµ− 16πG

3
Eijdx idx j

]
+

1
r2

(
∗$cµ2 + Fijdx idx j + · · ·

)
+ O (1/r3)

µ = −Ωdt + bidx i and d`2 = aijdx idx j

N̂ ij = 1
Ω D̂tC ij covariant Bondi-like news

4πGε− 1
8C

jkN̂jk = M Bondi mass aspect

− c
2 + 4πiGε = τ̂ complex mass (electric and magnetic)

∗ψi − 8πGπi = Ni angular momentum aspect



Complete flux-balance eqations & contact with NP

1
Ω D̂t χ̂j − D̂iX̂ i

j = 0

1
Ω D̂t τ̂ − D̂iχ̂

i = i
2

(
D̂iD̂jN̂ ij + C ijD̂iR̂j + 1

2Cij
1
Ω D̂tN̂ ij

)
1
Ω D̂t

(
iNi + ψ̂i

)
− 1

2 D̂i τ̂ − D̂ jΨ̂ij + 2i ∗$ ∗χ̂i = − i
2

[
C ijD̂jK̂ +

∗C ijD̂jÂ − 4 ∗$ ∗C ijR̂j − 1
2 D̂

j
(
D̂jD̂kC ik − D̂ iD̂kCjk

)
+

C ijD̂kN̂jk + 1
2 D̂

j
(
C ikN̂jk

)
− 1

4 D̂
i
(
C jkN̂jk

)]
1
Ω D̂tHij = Hij [C ,N , . . .] for Eij , Fij , . . .

188 E. T. Newman and R. Penrose

Unlike the case of the linear theory, it is now not possible to choose cr° = 0 every­
where if there is outgoing radiation. In fact (see Bondi 1962; Sachs 1962a;
Newman & Unti 1962)

<r° = — ^ 4, (4-4)

so that cr0 is, effectively, a second time-integral of the radiation field. Furthermore,

® = 3<r°. (4-5)

We shall also require the equation

— ^2 = ~ + 32<x° — 92(7°. (4-6)

The Bianchi identities give
(4-7)

^  = —8 v^ + o-V". (4-8)

^5 = —8 ^  + 2 (4-9)

i!/‘u = — (4-10)

all these equations are obtained from Newman & Unti (1962) by translation into 
the 3 notation. Note that from (4*8), (4-4) and (4-5) we get

= — 32cr° — cr°(T0. (4-11)

Further calculations yieldf

H  = - 3 3 ^ - 4 3 ( ( r 0̂ S), (4-12)

K  =  - | ( ^ J  +  6^J) +  5{(^«)2- ^ ô - 1 ^ o^2} + ^,  (4-13)
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