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Abstract: Observing the motion of test particles in a

Gravitational Wave could provide a way to detect the lat-

ter. Following Souriau (1973), the geodesic equations

can be integrated using the 5-parameter isometries of plane

gravitational waves, identified as Lévy-Leblond ’s (1965)

“Carroll” group in 2+1 dimensions with no rotations. The

group acts as symmetry for the particle subject to the

wave; the associated conserved quantities determine the

trajectories.

Based on:

• “Carroll symmetry of gravitational plane waves,” Class.

Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284

[gr-qc]]

• “The Memory Effect for Plane Gravitational Waves,”

Phys. Lett. B 772 (2017) 743. [arXiv:1704.05997

[gr-qc]].

• “Soft gravitons and the memory effect for plane gravi-

tational waves,” Phys. Rev. D 96 (2017) no.6, 064013

[arXiv:1705.01378 [gr-qc]].

• “Sturm-Liouville and Carroll: at the heart of the Mem-

ory Effect,” Gen. Rel. Grav. 50 (2018) no.9, 107

[arXiv:1803.09640 [gr-qc]].
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Road map:

• Gravitational waves from Einstein to LIGO

• The Memory Effect (Zel’dovich-Polnarev)

• Isometries & Carroll (Souriau & Lévy-Leblond)

• Geodesics in Brinkmann coordinates

• Example: gravitational collapse

• Isometries (in Brinkmann)

• Isometries (in BJR)

• Isometries & geodesics
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Gravitational Waves

from
Einstein to LIGO

Einstein (1916)

predicts GWs. However,

A. Einstein and N. Rosen “On Gravitational waves,”

J. Franklin Inst. 223 (1937) 43. casts doubt on their

physical existence  controversy, long debate.

e.g.

H. Bondi “Plane Gravitational Waves in General Relativ-

ity,” Nature, 179 (1957) 1072-1073.

Ya. B. Zel’dovich and A. G. Polnarev “Radiation

of gravitational waves by a cluster of superdense stars,”

Astron. Zh. 51, 30 (1974)
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resonant “Weber bar”
 bombshell report:

J. Weber , Phys. Rev. Lett. 22 (1969) 1320

Weber’s claims NOT confirmed , though

https://aeon.co/essays/how-joe-weber-s-gravity-ripples-turned-out-to-

be-all-noise
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Attracts lots of attention, marks whole genera-
tion of physicists.

e.g. G. W. Gibbons S. W. Hawking “Theory of the de-

tection of short bursts of gravitational radiation,” Phys.

Rev. D 4 (1971) 2191. . . . no funding from SRC  
return to theory . . . . . .

Research taken up by Kip Thorn (team of Wheeler
& team of Zeldovich )  LIGO, VIRGO ≈ 1500
people, 1 billion $ . . .

Thorn-Weiss-Barish [+ Ron Drever ] Nobel 2017

“For as long as 40 years, people have been thinking about

this, trying to make a detection, sometimes failing in the

early days, and then slowly but surely getting the technol-

ogy together to be able to do it” (Weiss)
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Memory

Ya. B. Zel’dovich and A. G. Polnarev , “Radiation

of gravitational waves by a cluster of superdense stars,”

Astron. Zh. 51, 30 (1974)

. . . detector, consisting of two noninter-
acting bodies (such as satellites). [ . . . ]
the distance between a pair of free bod-
ies should change, and in principle this
effect might possibly serve as a nonres-
onance detector. [ . . . ] although dis-
tance between free bodies will change,
their relative velocity will become

vanishingly small

(gives no proof)
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Elaborated by V.B. Braginsky & L. P. Grishchuk

“Kinematic resonance and the memory effect in free mass

gravitational antennas,” Zh. Eksp. Teor. Fiz. 89 744-750

(1985) who introduce

“memory effect”

“distance between a pair of bodies is dif-

ferent from the initial distance in the pres-

ence of a gravitational radiation pulse.

. . . possible application to detect gravitational

radiation . . . ”

Assumption (GR) : particles follow geodesics.
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Sandwich wave: burst of gravitational wave. Space-

time non-flat only in short interval uB ≤ u ≤ uA
of retarded time [Wavezone]. Flat both in Be-

forezone u < uB that the wave has not reached

yet, and in Afterzone uA < u where has already

passed, see fig.

u flows from left to the right, whereas wave ad-

vances from right to left.
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Isometries & Carroll
Souriau & Lévy-Leblond

Assumption: for very large distances GW approx-

imated with exact plane GW

H. Bondi, F. A. E. Pirani and I. Robinson , “Gravitational

waves in general relativity. 3. Exact plane waves,” Proc.

Roy. Soc. Lond. A 251 (1959) 519 : plane GWs have

5-parameter group of isometry: 3 translations +

2 WHAT ?

Souriau “Ondes et radiations gravitationnelles,” Collo-

ques Internationaux du CNRS No 220, pp. 243-256. Paris

(1973): symmetry  integration of geodesic eqns.

C. Duval, et al. “Carroll symmetry of gravitational plane

waves,” Class. Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284

[gr-qc]] : in Baldwin-Jeffery-Rosen (BJR) coords

isometries ≡ “Carroll” group Lévy-Leblond 1965 :

c→ 0 contraction of Poincaré
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Geodesics in Brinkmann* coordinates

plane GWs

δijdX
idXj + 2dUdV +Kij(U)XiXjdU2 (1a)

profile Kij(U)XiXj =

1
2A+(U)

(
(X1)2 − (X2)2

)
+A×(U)X1X2

(1b)

where A+ and A× + and × polarization-state

amplitudes. X = (Xi) transverse, U, V light-

cone coords. (Xµ) = (U,X, V ) global

Vacuum Einstein solutions : Ricci flat

Rµν = 0⇔ Tr(Kij) = 0. (2)

Sandwich wave: K(U) 6= 0 only in “wave zone”

UB < U < UA. Assumption : metric Minkowski in

“Beforezone” U < UB, flat in “Afterzone” UA <

U .

* M. W. Brinkmann, “Einstein spaces which are mapped

conformally on each other,” Math. Ann. 94 (1925) 119–

145.
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• Linearly polarized burst A× = 0 with Gaussian

profile

Kij(U)XiXj =
e−U

2

√
π

(
(X1)2 − (X2)2

)
. (3)

Gaussian profile A+(u) = exp[−u2].
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Geodesics : solution of

d2X1

dU2
−

1

2
A+X

1 = 0, (4a)

d2X2

dU2
+

1

2
A+X

2 = 0, (4b)

d2V

dU2
+

1

4

dA+

dU

(
(X1)2 − (X2)2

)
+A+

(
X1dX

1

dU
−X2dX

2

dU

)
= 0 .

(4c)

X1,2-components decoupled. Projection of 4D

worldline to transverse (X1−X2) plane indepen-

dent of V (U0) & V̇ (U0).

Assumption: particle at rest in Beforezone:

X(U) = X0, Ẋ(U) = 0 U ≤ UB. (5)

N.B. For affine parameter (∼ “dot”) −gµνẊµẊµ =

m2 const of the motion. For m = 0 null lift. For

m2 6= 0 shift m2U ⇒ restrict to m = 0 ⇒ enough

to solve transverse eqn (4a)-(4b).
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N.B. GW plane wave fits to Eisenhart-Duval

framework ≡ relativistic (“Kaluza-Klein”) desrip-

tion for non-relativistic physics

Profile −1
2Kij(U)XiXj of Brinkmann (1) ∼ New-

ton potential

δijdX
idXj + 2dUdV + Kij(U)XiXj︸ ︷︷ ︸

−2(Newton potential)

dU2

Framework originally proposed by

L. P. Eisenhart, “Dynamical trajectories and geodesics”,

Annals. Math. 30 591-606 (1928).

- forgotten - then rediscovered independently :

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin,

“Bargmann Structures and Newton-Cartan Theory,”

Phys. Rev. D 31 (1985) 1841.

C. Duval, G. W. Gibbons, and P. A. Horvathy, “Ce-

lestial Mechanics, Conformal Structures and Gravitational

Waves,” Phys. Rev. D43, 3907 (1991)
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• linearly polarized GW with Gaussian profile (1a-

b) with A+ = e−U
2 A× = 0

Kij(U)XiXj = e−U
2(

(X1)2 − (X2)2
)

repulsive in

X1 attractive in X2 cf. (4a-b)  

Geodesics for Gaussian burst for blue/red/green positions

in Beforezone. X2 focuses for all initial positions (0, X2
0) !
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Variation of relative (euclidean) distance ∆X(X,Y ) =

|X − Y | and of relative velocity ∆Ẋ = |Ẋ − Ẏ |.
Latter could (in principle) be observed through

the Doppler effect (Braginski-Grishchuk).

(a) (b)

In Gaussian case (a) Two particles initially at rest re-

cede from each other after wave has passed. Their dis-

tance, ∆X, increases roughly linearly in the after-zone. (b)

The relative velocity, ∆Ẋ, jumps rapidly to approximately

constant but non-zero value.

disproves Zel’dovich-Polnarev 1974 NO sim-

ple displacement !
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Example: gravitational collapse

Gibbons & Hawking (G-H) 1971 : Gravita-

tional collapse  linearly polarized GH profile

A+(U) =
1

2

d3(e−U
2
)

dU3
(6)

Attractive/repulsive directions alternate with sign.
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“Time” evolution of G-H wave profile A+(U) = (exp[−U2])′′′
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Geodesics for particles at rest in Beforezone ∼ gravitational

collapse profile G-H . X1 focused to U1 = 0.593342 and

X2 to U2 = 1.97472.
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“Tissot”∗ diagram for “collapse profile” 1
2
d3(e−U

2

)/dU3 (6).

Circle at u = u0 = 0 is deformed to ellipse, which at U1, U2

circle degenerates to vertical/horizontal segment.

∗ Nicolas-Auguste Tissot (1824–1897) cartographer. Tissot indicatrix

is graphical representation that describes its distortion on a map.
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• For Kij 6= 0 ???

Motion for collapse profile 1
2
d3(e−U

2

)/dU3 . In flat After-

zone motion is (approximately) along diverging straight

lines ∼ Bargmann  Newton’s 1st law !!!

VELOCITY EFFECT

Non-vanishing constant velocity in Afterzone  
disproves (again) Zel’dovich-Polnarev 1974

agrees with Ehlers-Kundt 1962, Souriau 1973
Braginsky-Thorn 1987, Bondi-Pirani 1988
Grishchuk-Polnarev 1989, . . .
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Isometries (in Brinkmann)

Bondi-Pirani-Robinson 1959: metric (11) has 5-

dim isometry group. In Brinkmann coords (X, U, V )

δijdX
idXj + 2dUdV +Kij(U)XiXjdU2

cf. in (1).

Torre “Gravitational waves: Just plane symmetry, ” Gen.

Rel. Grav. 38 (2006) 653 : Killing vectors

Si(U)∂i + Ṡi(U)Xi ∂V , ∂V , (7)

“dot” = d/dU . Si, i = 1,2 solution of vector

Sturm-Liouville eqn

S̈i(U) = Kij(U)Sj(U) . (8)

• In Minkowski Kij ≡ 0, (8) solved by

Si = γi + βiU (9)

combination of translations in transverse plane

X1−X2 +Galilei boosts lifted to Bargmann space,

Y = (γi + Uβi)∂i +
(
δ +Xiβi

)
∂V . (10)

i = 1,2, δ = const. (5th isometry = “vertical

translation” generated by ∂V ).
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Isometries & geodesics (in BJR)

J-M. Souriau 1973

Using Baldwin-Jeffery-Rosen (BJR) coordinates

(x, u, v) metric takes form,

aij(u) dxidxj + 2du dv . (11)

a(u) ≡ (aij(u)) positive 2× 2 matrix.

Brinkmann/Bargmann “potential” KijX
iXj traded

for transverse metric aij(u).

BJR coords (u,x, v) “no global” ≡ coordinate

singularities



coord sing detected by det(a) = 0. Souriau :

ALWAYS exist u1 where det(a)(u1) = 0

χ = (det(a)1/4 for “collapse” wave. Zeros of χ coincide

with points ui, i = 1,2, where Brinkmann trajectories are

focused. In flat Outside regions χ approximately linear.
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Souriau: in coordinate patch u1 < u < u2 isome-

tries implemented on space-time

u → u,

x → x + H(u) b + c,

v → v − b · x− 1
2b · H(u) b + ν,

(12)

Acts on u = const slice.

where H(u) is symmetric 2× 2 Souriau matrix ,

H(u) =
∫ u
u0

a(t)−1dt u1 < u0 < u1 (13)

• for a = Id (Minkowski) ⇒ H(u) = u − u0 ⇒
Galilei.

• for collapse profile

Souriau matrix for collapse profile. In Beforezone, H(u) ≈
u Id. In Afterzone H(u) falls off rapidly.
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Restriction to u = u0 = 0 ⇒ H(u) = 0  boost

implemented by{
x′ = x

v′ = v − b · x
(14)

≡ Lévy-Leblond ’s “Carroll” boost with broken

rotations.

J.-M. Lévy-Leblond,

“Une nouvelle limite non-relativiste du group de Poincaré,”

Ann. Inst. H Poincaré 3 (1965) 1

NB : Relation not realized by Souriau . . . recalled

by Duval in 2017 . . .

26



implementation on u − const slice obtained by

“exporting” from u0 using Souriau matrix H(u).

Combining with BJR → Brinkman  boosts in

Brinkmann:

X →X +Q(u)b Q(u) = P (u)H(u). (15)
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In afterzone

• numerical solution for P :

Pii ≈ linear & have same slope C for both com-

ponents,

P11(u) ≈ Cu+B & P22(u) ≈ Cu+D . (16)

• Souriau matrix can be integrated,

H11(u) ≈ −
1

C(Cu+B)
, H22(u) ≈ −

1

C(Cu+D)
.

(17)

H and P combine approx to const 6= 0 matrix,

Q = HP ≈
1

C
diag(1,1) (18)

⇒ boosts act in Afterzone as translations ? ,

X →X +
1

C
b . (19)
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N.B. Elbistan et al Q = PH satisfies same Sturm-

Liouville eqn (8), as P ,

Q̈ = K(u)Q , Q†Q̇ = Q̇Q† . (20)

Afterzone: K ≈ 0 ⇒ Q = Au+B but why A ≈ 0 ?

However confirmed numerically :

Matrix Q = HP is usual Galilean expression (u − u0)Id in

Beforezone, but ≈ constant (18) in Afterzone. (At ui

have numerical uncertainty ∼ singularity of H and vanishing

of P ).
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Isometries & geodesics

Brinkmann ⇔ (BJR) coords (X, U, V ) ? ⇔ (x, u, v):

G. W. Gibbons “Quantized Fields Propagating in Plane

Wave Space-Times,” Commun. Math. Phys. 45 (1975)

191.

U = u , X = P (u)x , V = v −
1

4
x · ȧ(u)x (21)

where 2×2 matrix P = (Pij) is solution of matrix

Sturm-Liouville pb cf. (8)

aij =
(
P †P

)
ij
, P̈ = K(u)P , P †Ṗ = Ṗ †P (22)

Noether⇒ 5 isometries ⇒ conserved quantities.

In BJR (from (12))

p=a(u) ẋ , k=x(u)−H(u)p , (23)

interpreted as conserved linear & boost-momentum,

supplemented by m = v̇ = 1.

Extra const of motion e = 1
2gµν ẋµẋν. Geodesics

timelike/lightlike/ spacelike if e negative/zero/positive.
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Conversely, geodesics determined by Noether quan-

tities,

x(u) = H(u)p + k, (24a)

v(u) = −1
2p · H(u) p + e u+ d, (24b)

Only quantity to calculate is Souriau matrix

H(u) .

• In flat Minkowski a = 1 ⇒ H(u) = u 1, yields

free motion

x(u) = up + k, (25a)

v(u) =
(
−1

2|p|
2 + e

)
u+ v0. (25b)

usual boosts / usual motions.

Consider sandwich wave. In Beforezone u < uB
K = 0⇒ SL eqn. solved by P (u) = 1⇒ Brinkmann

and BJR coords coincide.
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Crucial fact : by (23) momentum of particle at

rest vanishes, p = 0 for u ≤ uB because of initial

condition ẋ(u) = 0. p conserved ⇒

p = 0 for all u (26)

for any H i.e. for any metric a .

x(u) = x0, v(u) = e u+ v0 . (27)

In BJR coords particles initially at rest remain at

rest during and after passage of wave !!

In Brinkmann coords both GWs and geodesics

are global with no singularity. Solving SL eqns

(22) [e.g. numerically] for P ,

X(U) = P (u)x0, x0 = const (28)

Complicated trajectory comes from P(u)

!!!
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In flat afterzone u ≥ UA exact analytic solution

Complicated-looking trajectories in B coords re-

covered: plots overlap perfectly up to point where

BJR coords becomes singular.

Analytic (heavy line in red/blue) and numerical (dashed

line in cyan) solutions overlap perfectly in (approx) After-

zone u ≥ u0 = 4.
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