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Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1945]
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@ Einstein quadrupole formula
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@ Amplitude quadrupole formula
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© Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]
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which is a 2.5PN ~ (v/c)® effect in the source’s equations of motion
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The orbital decay of the Hulse-Taylor binary pulsar

Cumnulative shift of periastron time (s}
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eccentricity enhancement factor

[Peters & Mathews 1963]
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@ Derivation based on flux-balance equation
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ Derivation based on EoM including the
radiation reaction term at 2.5PN
[Damour & Deruelle 1981; Damour 1982]

@ Resolution of the radiation reaction
controversy [Ehlers, Rosenblum, Goldberg & Havas
1976; Will & Walker 1980]
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The gravitational chirp of compact binaries

@ Inspiralling phase

- Post-Newtonian theory

2 - Point-particle approximation

- Dependence on spin precession
N - Universality of the signal in GR
- Effacing of the internal structure

GW amplitude

-0%5 020 -015 -010 -0.05 0.00 [Brillouin 1922; Damour 1982]
Time

o Late inspiral
- Post-Newtonian + Effective theory
- Effects due to tidal interactions
- Dependence on the internal structure (EoS)

- Numerical relativity
- Strong dependence on internal structure
- Phenomenological models (EOB, IMR)
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Equations of motion

Post-Newtonian equations of motion

1PN
dvy Gmo 1 5G*mimy  4G?*m3
7:_771/12 - 3 + 3 + - n12+...
dt T12 T2 T2
1 1 1 1 1 v\?
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GWs from compact binaries



Equations of motion

Methods to compute PN equations of motion

@ Traditional methods in classical GR

o ADM Hamiltonian canonical formalism in GR
o Fokker EH action in harmonic coordinates
e Surface-integral approach 3 /a EIH

o Extended fluids in the compact body limit

@ QFT inspired methods

o Effective-field theory
o Scattering amplitude approach

© Dimensional regularization is the common tool ['t Hooft & Veltman 1972]

o UV divergences: point particles modelling compact objects
o IR divergences: integration over all space of formal PN expansion
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Equations of motion

4PN: state-of-the-art on equations of motion

[Jaranowski & Schafer 1999; Damour, Jaranowski & Schafer 2001ab]

[Blanchet-Faye-de Andrade 2000, 2001; Blanchet & lyer 2002]
3PN [Blanchet, Damour & Esposito-Farese 2004]

[Itoh & Futamase 2003; Itoh 2004]
[Foffa & Sturani 2011]

ADM Hamiltonian
Harmonic EoM
Surface integral method

Effective field theory

[Jaranowski & Schifer 2013; Damour, Jaranowski & Schafer 2014, 2016] ADM Hamiltonian
[Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017ab]  Fokker Lagrangian
[Foffa & Sturani 2013, 2019; Foffa, Porto, Rothstein & Sturani 2019] Effective field theory
[Bliimlein, Maier, Marquard & Schéfer 2020] EFT Hamiltonian

4PN

o ADM Hamiltonian: One regularization ambiguity left at 4PN order and fixed
by comparison with GSF calculations

o Fokker Lagrangian: First complete derivation of the EoM at 4PN order
without regularization ambiguities

[See also talk by Thibault Damour]
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Conservative 4PN binding energy for circular orbits

With z = (€22)3/2 the orbital frequency and v =

mym2

(m1+ma

IE the mass ratio
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3.5PN: state-of-the-art on gravitational wave field

(beyond the Einstein quadrupole formula)

- X -
) ~ A2 4 A 2
‘é’r/? 7}7 J/ =L S — % () ) /
voa | < 3 (& Sun)

1PN [Epstein & Wagoner 1975; Wagoner & Will 1976] EW moments
[Blanchet & Damour 1989; Blanchet & Schifer 1989] BD moments
[Blanchet, Damour & lyer 1995] MPM-PN formalism

2PN < [Will & Wiseman 1996] DIRE formalism

[BDIWW 1995; BIWW 1996]

o Further developments up to 3.5PN order done using the MPM-PN formalism

@ The DIRE formalism is equivalent to the MPM-PN formalism for general
isolated matter systems
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The Multipolar-post-Minkowskian formalism

Keoping
he high-

Kip §. Thorne: Multipolg

Nowtonian potential, by reading the source’s multi-
pole moments off that potential, and by then fnserting
those moments fnto the gravitational-wave formulas

of Part IV.

Soon thereatter, While Writing the first draft of Chap.
36 of MTW, 1 found what I thought was pmul
of Ipser’s conjocturo, That proof appear re-
liminary versions of MTW [Misnor et al. oo, 1or)
and 18 roforred (o in my review article with Bill Pross
on gravitational-wave astronomy [Press and Thorne
(1972)). However, much to my horror, in March 1978
whilo checking page prools of the final Yorsion of MTW,
1found a subtlo but fatal flaw in my proof of Ipsor's
conjocture. Aftor much agony I managed to rewrite the
relovant matorial [Socs. 36.7 and 36.10 of Misner
etal.,(1973)) with a rostriction to sourcos that havo
weak intornal gravity—and without changing by even
on tho total number of 1ines of text.

In Part Two of this article I shal try to redeem my«

‘concept of the asymptotic Newtonian potential of &
source; in its place will appear a proscription for.
reading the multipole moments of a source off its near-
20n0 gonoral relativistic metric. Howover, in all
AL e D
original i

P4r T wo o Lhe papex conslts o Hre becicus, The
first four (Secs. VIII-XI) develop foundations for
strong-field, slow-motion wave-generation formalism.
Tho last (Sec. XII) presents the formalism itself and
doscribos a fow applications.

Each of the four foundations s a derivation of the.
vacuum extorior gravitational field of a goneral iso-
lated system. Section VIII dorivos that field for timo-
dependent systoms in linearized theory. Section IX
dorives it in the near zone of slow-motion time-
dopendent systems in full general relativity using do
Dondor coordinates, and also matches that ne
solution onto outgoing waves in tho

specializes to time-independent general
relativistic systems in do Donder coordinates; and
See. XI extonds tho timo-indopondent gonoral rolatiy-
atic case to any “asymplotically Cartosian and mass-
contored” (ACMC) coordinato systom.

For a more dotatled overview see Sec. LB, Box 2,
and the tablo of contents—all in Part Ono of this

rticlo.

VIIl. LINEARIZED THEORY.

ro o express, in terms of time-depondont multi-
pole moments, the linearized oxtornal gravitational
fiold of an arbitrary isolated systom. Similar expros-
sions, but i different notation, have been given by.
Sachs and Borgmann (1958), Sachs (1961), P!

(1964), and Campbell and Morgan (1971). ‘The notation
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xpansions of gravitational radiation 326
e (8.1)
Wo shall donote by 4, the trace-reversed porturbation

-in n"x},.- (8.2)
(Tho iporscript 1 notation will bo-
ey P
eystam and bsts vecios, and the rla (o rtao
Loworing indicos, s )

Wo nirodice Loronts Gaige i 40 for oue prave
Hational fild, Than, exprossad i torms of covarian

g |

components o cpaio And radelsd s
i od oations (B of MTW) ro
Vioo®Var i (8.30)
Orhy ==7hs ot Vha 1170+ (6.30)

Welatak oa okt aneral il rariabctnt fou
¥As =7ha which satisfios these equations,
b iy utgong wares (0 neomlog mavas) it
and wo writa that fiold as & sum over its multi-
S
The general outgoing-vavo solution to the fleld equa-
tion C174, = 0 in multipole notation has the following
form [see Eq. (2.51), where we must set ¢
going wavos) and we must make the identifications
YiomF, 74,% V) = U

Yiom D [r1 @y (1= 4, (8.4a)

LD M (Gl P L) N

+ 30D, (0= 1) sy (8.4b)

(8.40)

tensor; tho capltal script quantities are the multipolo
moments, which are arbitrary functions of rotardad
timo (=7 and are symmatric and trace-(reo (STF) on
all et ansor nico;, and il tor il o e
tion are explained in Sec. 1.C. Th gaugo conitions
(8.59) lacs te fllowing coniraints on she BTF e

@ Most general solution of the
Einstein vacuum linearized field
equations in harmonic coordinates
[Thorne 1980]

Ghy"[1L(u), Jo(u)]
————
multipole moments

Iterate that linear solution in a post
Minkowskian expansion
[Blanchet & Damour 1986]

(I, Jp) = GRYY + GPhRbY + - -
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Linearized multipolar vacuum solution [piani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

uh“ﬁ Buh(ly =0

4R, (1 ——
h??) = sy Q&L <IL) L= 1112 -1y
C =0 . T
+0oo ¢
: 4 —) 1 1) J4 1
poi = 25 g (2 L WY
)= 3 2 | { L 1<r 1L—1> +£+18 b0aL 1<r bL 1)}
+oo ¢
4 () 1.2 2t ! (1)
h(Jl) = 7074 — Vi {aL—Q ( IUL o) T ¢+ laaL—Q ;alb(i‘]j)bLfQ

@ multipole moments Iz, (u) and Jg(u) are arbitrary functions of u =t —r/c
@ mass M = I = const, center-of-mass position G; = I; = const
linear momentum P; = Ii(l) = 0, angular momentum J; = const
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Sad situation of the field in the 1980’s

| Kip$. Thorne: Multipole expansions of gravtational adiation 21

o9 |

| @ Multipole moments given by

[the local |
o | divergent integrals
| [Epstein & Wagoner 1975; Thorne 1980]

We now perform the Integeal over @ and (' saig the

el ~ /d3x rtal(6, ) T (%, u)

and we express

: ::«M ':m:: :M.:. o pseudo-tensor
e LR @ PN iteration yields divergent
\ e O Poisson like integrals from 3PN
o ‘ ‘ [Anderson & DeCanio 1975; Kerlick 1980]

Henee, we c:
S

Lo i e R @ Treatment of point-particles in
e non-linear GR poorly understood
R [Infeld & Plebariski 1960]

(1)

e Tails, memory, tails-of-tails, - - -
completely ignored

with Eqs. (1), @.4a), aad (2.235)

1m) eSO DN (i, 5100

v Mod. Py, Vol 52,No.2, Pt 1 Ao 1980
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Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986; Blanchet, Damour & lyer 1995; Blanchet 1987, 1998]

@ Look for the general multipolar expansion M (h*") generated outside
the source in the form [Bonnor 1959; Bonnor & Rotenberg 1961]

M(hlﬂ’):Gh’l‘”+G2h/2‘V+...+G"hﬁV+...

formal post-Minkowskian expansion

e Start from Thorne's multipolar linearized solution A} [}, J. ]

@ lterate that solution using a regularization scheme based on analytic
continuation in B € C to treat the singularity of the multipole expansion
when r — 0

Finijge:g’art Orer [(7‘/7"0)Bf}

@ A particular MPM construction obtains the metric in radiative coordinates
such that the retarded time u =t — r is a null coordinate and the metric
admits an expansion in powers of 1/r at future null infinity
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The MPM-PN formalism

The MPM outer metric is matched to the PN inner field of the source

h
multipole expansion
exterior zone P chi
- matching zone

: near zone

actual solution

GWs from compact binaries



Field equations and Green’s function in d dimensions

@ Einstein's field equations in harmonic (de Donder) coordinates

O,h"" =0 (harmonic gauge condition)
167G . . .
OhMY = 77; THY (wave equation in D = d + 1 dimensions)
c
4
™ = |g|T* + 16C GA’“’ (matter + gravitation pseudo tensor)
™

@ The Green's function is implemented in the real space-time domain

Gret(xvt) = ﬁmﬁ/%‘i <t>

47 pd-1 r

2y/m 1-d
71;(2)%(221) 3
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The multipole expansion outside the matter source

@ The multipole expansion M (h*") is a retarded solution the vacuum field
equations OM(h*) = M(A#") valid formally everywhere except at =0

regularization when r — 0

“+o00
MB™) = FP ot (2) Mm@y =0T QR o Fe
B=0

To

retarded homogeneous solution

OF " (r,t) =0 in d dimensions

@ The multipole moment functions F}”(t) are symmetric-trace-free (STF) with
respect to their £ indices L =iy -+ - iy

— ]; oo v
Fr (r,t)zrd—_Q/l dZ’Yl;id(Z).FZ (t — 27)
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The multipole expansion matched to the PN source

@ Explicit matching to a general extended PN isolated source gives

IR regularlzatlon

1
Fro(t) = g / (=) "L / dzééd)(z) TH(x,t + 2r)
=0 — ——
! PN expansion of the pseudo-tensor
+/ _
52‘1) (z) = ( ) (1— 22)%+€

Vil (51 +0)

@ The Be regularization

- first apply the limit B — 0 in generic dimensions d =3 + ¢
- then the usual dimensional regularization when ¢ — 0

Luc Blanchet (GReCO GWs from compact binaries



Mass and current irreducible multipole moments
[Henry, Faye and Blanchet 2020]

@ The irreducible decomposition of F1 reads (with (---) the STF projection)

FP =R,

i|(ie

(-)
-1y 0Ty,

ij _ rr(4+2) (+1) (0) (=1
}—L - UijL + SIF S;EF Ui|ujL71 + 5iierL71 + 5iierm_1L72

834, 0iy UL 3+ Wéjlz'mflL—J +6i; VL

@ The “mass-type” contributions Ry, Tﬁ&, T]E:>1, U](jé), U£O>, U£:22), Vi are
STF in the ordinary sense

@ The “current-type” contributions 70 u(ty b have more

’LH’L‘[L*l)' ’il’i/+1L' ’L‘I’L‘[,]L*Q
complicated symmetries
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Mass and current irreducible multipole moments
[Henry, Faye and Blanchet 2020]

@ The mass moment [} is given by the usual STF moment, but the
generalization of the current moment involves two tensors .J; ;, and K|,
having the symmetries of mixed Young tableaux

1, = Gl Ta]
[ ITw] [
J’HL* £ |t 1 K/i,j\L* € |te—afte—2

i Jl

]

@ The tensor Kj;1, is absent in 3 dimensions

(d—3)d(d—1)g_2(20+d—2)(+d —1)
2000+ 1)(£ —2)!

f(components) =

and plays no role with dimensional regularization
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The irreducible mass quadrupole moment

@ Posing

_ d—1 d r\B ) ~ij 4(d+2) Aijk;k
2(d +2)

~ijkl Ek
dd+1)d+6) " M

Ad=3)(d+2) , .p 2" <kl
dd—Dd+aH° " 2

@ The Be regularization is systematically applied (the limit B — 0 is finite)

Luc Blanchet (GReCO)
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Techniques to compute the 4PN mass quadrupole

@ Method of super-potentials
linear potential
=
/d3xrB il 6 P = | dxrP (\pf AP +0; [a,«pfp - \I/‘faiPD

difficult potential

yields a surface term

where \Ilf is obtained from the super-potentials ¢o5 of ¢ = ¢g as
Adopy2 = P2k

—2)k0

—~

Tk OK) P2k+2

@ Method of surface integrals

P / dxrPip AG = —(20+ 1) / dQng X, (n)

where X, is the coefficient of ¢~ in the expansion of G when r — 400

@ Schwartz distributional derivatives in d dimensions systematically applied

GWs from compact binaries
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Towards 4.5PN templates

Completion of the 4PN mass quadrupole moment

[Larrouturou, Blanchet, Henry & Faye 2021ab]

@ All UV divergences treated by dimensional regularization and all UV poles
shown to be renormalized by appropriate shifts of the particles’ worldlines

@ Presence at 4PN order of a non-local-in-time term associated with tail
radiation mode and containing a crucial IR pole

o IR divergences (poles %-3) appear already at 3PN order but are cancelled
(as well as the finite part beyond) by poles coming from “tails-of-tails”
propagating in the wave zone

@ At 4PN order the IR poles are cancelled by more complicated
“tails-of-memory" but there remains a crucial finite contribution specifically
due to dimensional regularization

o Finally we have obtained the finite renormalized 4PN quadrupole moment of
compact binaries ready to be used for 4PN/4.5PN templates
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Towards 4.5PN templates

Towards 4.5PN templates

4 5PN *“tail-of-tail-of-tail” completed [Marchand, Blanchet & Faye 2017]
3PN mass octupole moment and 3PN current quadrupole moment completed

- UV divergences treated by dimensional regularization
- IR divergences treated by Hadamard regularization equivalent to dimensional
regularization at that order

2PN mass dodecapole and current octupole, as well as higher-order moments
are already known

Cubic interactions at 4PN order in the radiative quadrupole moment need to
be completed in (computation to be done in ordinary 3d)

- relation between canonical and source/gauge moments

- relation between radiative and canonical moments

Luc Blanchet ( GWs from compact binaries



Towards 4.5PN templates

Problem of cubic interactions at 4PN order

y —+oo
_ A2 GM (4) cT 11
N 1.5PN tail
G| 2G ° (3 3
tE { e AR VRT ERCEE RO }

2.5PN memory

G2M?* [*ee (5) o [ cT 57 cr
ArM P (u—7) |2l [ — ) + = In —
T /0 My (u 7){ . <2r0) t 35 n(%) +

124627
22050

3PN tails-of-tail

G2 +o0 ®) 400 @)
+ 5 Z]W/O dp]\ffaii(u—p)/o dr K (p,7) M;Z,

(u—p—T)}

4PN tails-of-memory

+

cd 2rg

G3M?P [T ©6) 4. 5 (cr 129268 428
dr MY (u — 21 - Rkt s 2
/0 M (u =) {3n ( )+ +33075+3157r]+

4.5PN tail-of-tail-of-tail
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Towards 4.5PN templates

Gravitational-wave tails of memory

(‘A[?] X ]\f) X ]\LJ (A[U X AL]) x M AC[U x M x A[Z]
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Towards 4.5PN templates

Powel’ful integratiOn formU|a [Blanchet & Damour 1986]

@ The tails of memory are computed using a powerful formula to solve

ovy, = ng S(’)",t—?“)

source with given multipolarity £

@ When the source term S(r,u) tends to zero suffiently rapidly when » — 0

t—r t—r—s _ t+r—s
\I,L:/ dséLlR( 5=,5) — R (%5 73)]

r

P W -1
where R(p,s) = pe/ dA % (i) S(A, s)
0 !

@ Alternative form

2271

o seson () (S5
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Towards 4.5PN templates

Gravitational-wave tails of MEMOXY [Trestini & Blanchet 2023]

o Computation performed using the MPM construction in radiative coordinates
which avoids far zone logarithms which plague harmonic coordinates

2G2M | [*ee e T
ToM 7(4) 74 _ _
U = o8 {/0 dp]\[a<i(u p)/o dr ]\[j>a(u p—7)ln <2r0>

“genuine” tail-of-memory

“+oo
PCI PP CO N B T\ 7
+/o dr (]k[au ]\[j>a)(u T) [ 151n (21)0) 101n (27"0)]

tail like terms

+oo
r(2) 1(5) T 27521
—8M ! dr M — In | —
</0 7 Mjjale =) {n (27"0) T 5040

tail like terms

@ The 4PN genuine tail-of-memory can be retrieved by inserting 1.5PN tails
into the lowest order 2.5PN memory
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Tail modulation of the GW phase at the 4PN order

[Wiseman 1993; Blanchet & Schafer 1993; Blanchet, lyer, Will & Wiseman 1996]

@ Because of GW tails the GW phase 1 differs from the orbital phase ¢ by a
logarithmic, tail-induced phase modulation

¢¢2GMwln<w>

3

which affects the waveform at the 4PN order
e The GW frequency Q = 1) is shifted with respect to the orbital one w = ¢

Q:waGAfw [ln<w)+1}
C wo
192 (Gmw\¥? w 1

@ Expressing the flux and modes in terms of the directly observable GW phase ¢
and frequency ) we find that all arbitrary constants cancel out at 4PN order
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Post-adiabatic calculation of the tail integral

@ The tail integral arises at the 1.5PN order

oscillating phase

+oo o« N T
x / dr [w(u —7)]" e ¢(u=m) 1 (>
0

70
@ At 4PN order we must include a 2.5PN post-adiabatic correction

=205 =0 ()

e Changing variable 7 — v = £[p(u) — ¢(u — 7))

efind)(u)

) /;00 dv [w(u—7(v))]* " ef In (T(v)>

7o

fast oscillating integrand in the limit £(u) — 0

@ The integral can be computed by replacing the integrand by its expansion
when v — 0 which yields the asymptotic post-adiabatic expansion

Luc Blanchet (GReCO)
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The 4.5PN GW energy flux for circular orbits

[Blanchet, Faye, Henry, Larrouturou & Trestini 2023ab]

5
32c¢ 1247 35
F = v2a8 1+(777 )z+47ra‘ /2
5G 336 12
44711 9271 65 8191 583
+( V+—V2)12+(777—u)7rm5/2
9072 504 18 672 24
6643739519 16 o 1712 856 134543 41 5 94403 o 775 3| 3
+ — 7t = 'yEf—ln(lsz)ﬁ»(f —m )V* v — —uv |z
69854400 3 105 105 7776 48 3024 324
( 16285 214745 193385 2) 7/2
+ v v | mwx
504 1728 3024
323105549467 232597 1369 o 39931 47385 232597
+ V- — n2 — n Inx
3178375200 4410 126 294 1568 8820
1452202403629 41478 267127 5 479062 47385 20739
(—7 e — ™ In In3+ ln:r)l/
1466942400 245 4608 2205
(1607125 3157 2) 5 6875 5 5 4] 4
_ )t —— % St
6804 384 504 6
265978667519 6848 3424 2062241 41 2
—_— = —— Y — 1n(16z)+(7 )u
745113600 105 5 22176 12
133112905 o 3719141 4 9/2
- ve — v |wx
290304 38016

In the test-mass limit v — 0, we exactly retrieve the result of linear black-hole
perturbation theory [Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]
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Comparison with second-order GSF results

[Warburton, Pound, Wardell, Miller & Durkan 2021]

The 4.5PN flux agrees well with recent numerical second-order self-force results

1074 \ :
107 ¢
1076 ¢

107 ¢

Coefficient of v° inF

1070 :

1079 ;

8 10 12 15 18 20

Invariant separation R

Courtesy to A. Pound
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The 4.5PN phase evolution of compact binaries

[Blanchet, Faye, Henry, Larrouturou & Trestini 2023ab]

Apply the energy flux-balance equation % =—-F
=5/2 3715 55 .
¢=w0717{1 (7+—V):27107r1'3/2
32v 1008 12
15293365 27145 3085 2 2 38645 65 5/2
(7 vr 2y ).7: ( 7—V)7ra: Inw
1016064 1008 144 1344 16
[12348611926451 160 P 1712 856
- x%_ v — — In(16a)
18776862720 3 21 21

15737765635 2255 2 76055 Py 127825 3 3
(- loTaTIonnn | 2R gy, TS 5 127A ]
12192768 48 6912 5184

(77096675 378515 74045 2) 7/2
—_—+ ———v - ——— v |72
2032128 12096 6048
2550713843998885153 9203 45245 4 252755 78975 9203
- = - 2 - T e — n3— — " Ine
2214468081745920 126 756 2646 1568 252
680712846248317 488986 109295 4 1245514 78975 244493
(- _assoss 2 w2
337983528960 1323 1792 1323 392 1323
(7510073635 11275 2) 5 1292395 5 5975 4] 4
_ = % v —v" - —— v |z
24385536 1152 96768 768
93098188434443 1712 80 o 856
- Yg + —7° + — In(16x)
150214901760 21 3 21

1072963584 48

1016064 1596672

(1492917260735 2255 2) 45293335 5 10323755 3] 9/2}
s % v — ve — ve|mx
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Number of cycles contributed by each PN order

Contribution of each PN order to the total number of accumulated cycles

Detector LIGO/Virgo ET LISA

Masses (Mo) || 1.4x 1.4 | 10x 10 1.4x1.4 | 500 x 500 || 10% x 105 [ 107 x 107
PN order cumulative number of cycles

Newtonian 2562.599 | 95.502 744 401.36 37.90 28 095.39 9.534
1PN 143.453 17.879 1433.85 9.60 618.31 3.386
15PN —94.817 | —20.797 || —1005.78 —12.63 —265.70 —5.181
2PN 5.811 2.124 23.94 1.44 11.35 0.677
2.5PN —8.105 —4.604 —17.01 —3.42 —12.47 —1.821
3PN 1.858 1.731 2.69 1.43 2.59 0.876
35PN ~0.627 ~0.689 ~0.93 ~0.59 ~0.01 —0.383
4PN ~0.107 ~0.064 —0.12 ~0.04 ~0.12 ~0.013
45PN 0.098 0.118 0.14 0.10 0.14 0.065

@ The PN approximation seems to converge well for comparable masses

@ This suggests that systematic errors due to the PN modeling may be

dominated by statistical errors and negligible for LISA

@ However, this should be confirmed by detailed investigations along the lines
[Owen, Haster, Perkins, Cornish & Yunes 2023]
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