Modelling self-consistently beyond general relativity

School of Mathematical Sciences Queen Mary University of London

w/Llibert Aresté Saló, Katy Clough, Phys. Rev. Lett 129 (2022) 261104, to appear w/Ramiro Cayuso, Tiago França and Luis Lehner, arXiv:2303.07246

> Journées Relativistes de Tours Institute Denis Poisson, Tours, France Wednesday 31st of May 2023

Pau Figueras

Notivation

- Era of gravitational wave astronomy:
- New tests of the strong field regime of gravity
- Understanding of fundamental nature of gravity
- Current GWs data indicates that deviations from GR are small

Motivation

- Some issues in carrying out this program:
 - Predictions from (the strong field regime of) alternative theories of gravity are needed
 - No preferred alternative theory
 - So what should we be looking for?
 - Many such alternative theories are not known to be well-posed
 - How do we extract their predictions?

Notivation

- Possible ways forward:
 - Linearise around GR [Okounkova et al; Witek et al;...]
 - and Reall; East, Ripley; Bezares et al.; Aresté-Saló, Clough and PF]
 - Lehner]

- Find a well-posed formulation of the desired theory [Barausse et al.; Kovacs; Kovacs

- "Fix" the theory à la Müller-Israel-Stewart (MIS) [Lehner et al...; Cayuso, PF, França,

Motivation: understand the fundamental nature of gravity

- theories of quantum gravity (analogous to hydrodynamics)
- Effects may be enhanced in the strong field regime
- other (non-gravitational) physics

Consider higher derivative theories: well-motivated from microscopic

Focus on black holes. Other gravitational objects (e.g., neutron stars,...) typically require

Add all possible terms (in a derivative expansion) to the Einstein-Hilbert Lagrangian, consistent with the symmetries

$$I = \frac{1}{16\pi G} \int d^4x \sqrt{|g|} \left[R + \frac{1}{\Lambda_{UV}^2} (\alpha_1 R^2 + \alpha_2 R_{\mu\nu} R^{\mu\nu}) + \frac{\beta}{\Lambda_{UV}^3} \operatorname{Riem}^3 \dots \right]$$

- order eoms
- 0 theory
- The EFT is only reliable at distanc

Gravity as an EF

Some terms can be removed by field redefinitions and using the lower

The coefficients in the expansion are determined by the microscopic

$$pprox L \gg \Lambda_{UV}^{-1}$$

Outline

- Well-posedness of the initial value problem in gravity
- 4 derivative scalar-tensor theory (4 ∂ ST)
- Müller-Israel-Stewart (MIS) for gravity: 8 derivative theory
- Conclusions

Well-posedness of the initial value problem

Well-posedness

• Given suitable initial data, the solution exists, is unique and it depends continuously on the initial data

Predictive power

- Control of the "size" of the solution from the initial data (for small times)
- \Rightarrow Essential to hope to solve the equation(s) numerically
- In GR, establishing well-posedness depends on finding a suitable gauge and on the initial data

Well-posedness: GR

$$\frac{1}{2}g^{\alpha\beta}g_{\mu\nu,\alpha\beta} + g^{\alpha\beta}_{,(\mu}g_{\nu)\alpha,\beta} + H_{(\mu,\nu)} - H_{\alpha}\Gamma^{\alpha}_{\mu\nu} + \Gamma^{\alpha}_{\mu\beta}\Gamma^{\beta}_{\nu\alpha} = 0$$

- Manifest wave-like nature of the Einstein equations
- Requires excision of singularities
- All modes propagate at the speed of light

• Generalised harmonic coordinates: $C^{\mu} = \Box_g x^{\mu} - H^{\mu} = 0$ [Choquet-Bruhat]

Well-posedness: GR

[Baumgarte, Shapiro, Shibata, Nakamura; Baker et al., Campanelli et al.]

Decompose the spacetime metric into space and time:

$$ds^{2} = -\alpha^{2}dt^{2} + \gamma_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt)$$

- curvature)

ADM-like formulations (BSSN/CCZ4) in singularity avoiding coordinates

Evolve the induced metric γ_{ii} and its "velocity" $\partial_t \gamma_{ii} \sim K_{ii}$ (i.e., extrinsic

Coordinate freedom: choice of α and $\beta^i \rightarrow$ equivalent to choosing H^{μ}

eoms, find "good" evolution equations for α and β^{ι}

$$\begin{array}{l} \partial_t \tilde{\gamma}_{ij} = \dots \\ \partial_t \chi = \dots \\ \partial_t K = \dots \\ \partial_t \tilde{A}_{ij} = \dots \\ \partial_t \tilde{A}_{ij} = \dots \end{array} \qquad \textcircled{\begin{subarray}{ll} \Rightarrow \mbox{ No singular} \\ \hline & \mbox{ Not singular} \\ \partial_t \tilde{\Gamma}^i = \dots \\ \partial_t \alpha = \dots \\ \partial_t \beta^i = \dots \end{array}$$

• But it is a bit more complicated: rescale γ_{ij} , K_{ij} , use the constraints in the

ive-like nature of the Einstein equations

singularities in the computational domain

t all modes propagate at the speed of light (issues constraint preserving BCs)

Well-posedness: beyond GR

due to degeneracies [Papallo and Reall]

Introduce auxiliary metrics so that different modes propagate on the light cone of a different metric

Horndeski and Lovelock theories are not well posed in harmonic gauge

• Solution: break the degeneracies \rightarrow modified harmonic gauge [Kovacs and Reall]

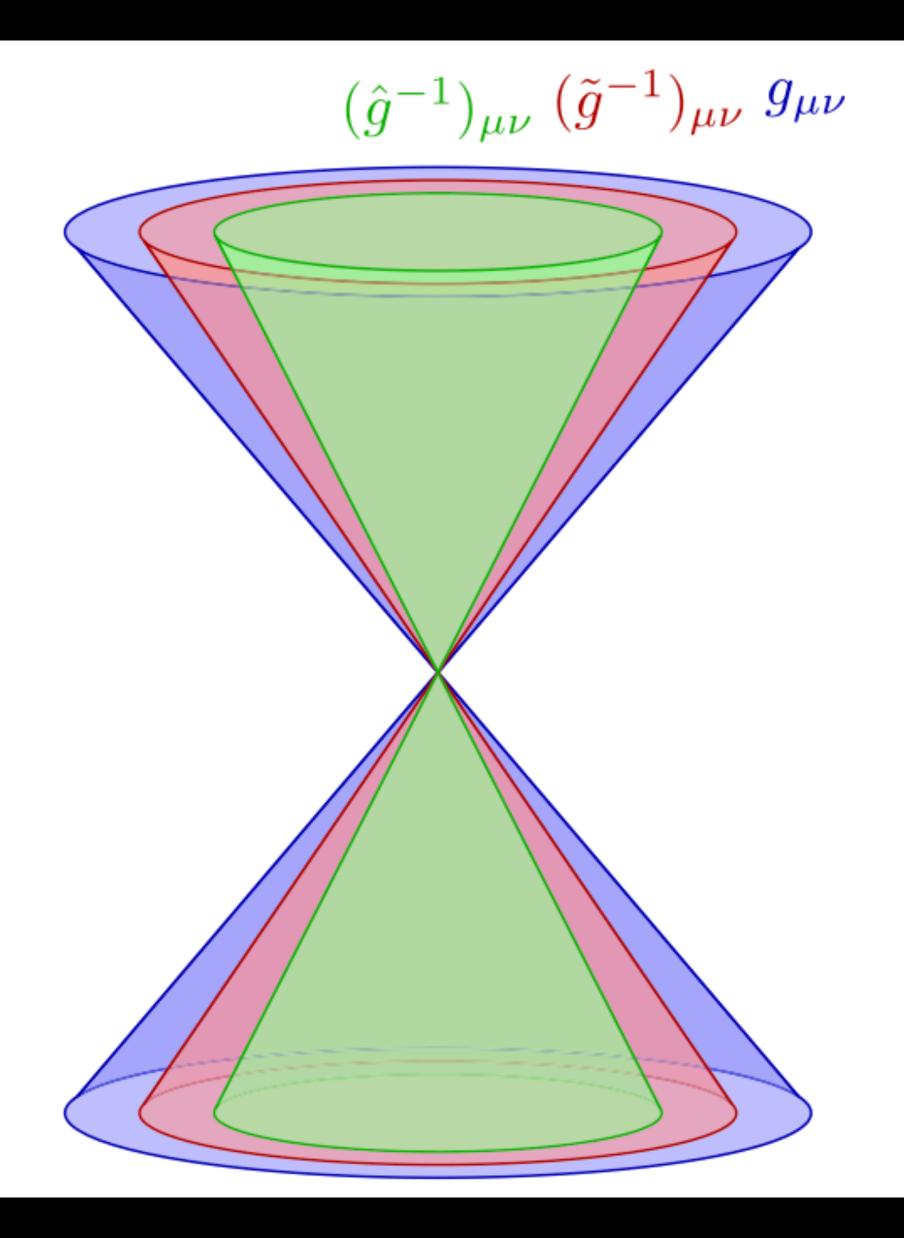


image borrowed from [Kovacs and Reall]

 $R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu} - \hat{P}_{\alpha}^{\ \beta\mu\nu} \nabla_{\beta}C^{\alpha} = 0$

 $C^{\mu} = H^{\mu} + \tilde{g}^{\rho\sigma} \Gamma^{\mu}_{\rho\sigma}$

 $\hat{P}_{\alpha}^{\ \beta\mu\nu} = \delta_{\alpha}^{(\mu}\hat{g}^{\nu)\beta} - \frac{1}{2}\,\delta_{\alpha}^{\beta}\,\hat{g}^{\mu\nu}$

• Modified harmonic gauge: $\tilde{g}^{\alpha\beta}\Gamma^{\mu}_{\alpha\beta} = H^{\mu}$

- 0 formulation

• Modified BSSN/CCZ4: find suitable H^{μ} that generalise the usual evolution equations for the lapse and the shift (1+log slicing and Gamma driver) [Aresté-Saló, Clough, PF]

4∂ ST, Einstein-Gauss-Bonet, etc., are well-posed in the modified CCZ4

Most general 4-derivative scalar-tensor (4 ∂ ST) theory of gravity w/ Llibert Aresté Saló, Katy Clough

Most general scalar-tensor theory of gravity up to 4 derivatives

$$I = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R + X \right]$$

$$X = -\frac{1}{2} (\nabla_{\mu} \phi) (\nabla^{\mu} \phi) \qquad \Im$$

- EFT of inflation
- 2nd order eoms! 0
- Our choices:

$$V(\phi) = 0, \quad g_2(\phi) = g_2$$

Most general general scalar-tensor theory of gravity up to 4 derivatives [Weinberg]:

 $X - V(\phi) + g_2(\phi) X^2 + \lambda(\phi) \mathscr{L}_{GB}$

 $\mathscr{E}_{GB} = R^2 - 4 R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$

 $\lambda(\phi) = \frac{\lambda^{GB}}{4} \phi$ or $\lambda(\phi) = \frac{\lambda^{GB}}{\gamma} (1 - e^{-\gamma \phi^2})$

Weak vs Strong coupling

- We take an EFT approach:
 - We consider the full theory but in a regime where the higher derivative terms in the eoms are small at all times
 - Compatible with non-linearities being important and consistent to neglect higher derivative terms in the action
 - Well-posedness holds
- In practice we monitor that the weak coupling condition is satisfied $|g_2 L^{-2}| \ll 1, \quad |\lambda'(\phi) L^{-2}| \ll 1, \quad L^{-1} = \sup\{|R_{\mu\nu\rho\sigma}|^{\frac{1}{2}}, |\nabla_{\mu}\phi|, |\nabla_{\mu}\nabla_{\nu}\phi|^{\frac{1}{2}}\}$

Weak vs Strong coupling

- Cases: $h^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \phi = \lambda'(\phi) \mathscr{L}_{GB}$
 - $\lambda(\phi) = \frac{\lambda^{GB}}{\Lambda} \phi$: shift-symmetric case \rightarrow Kerr is not a solution, only hairy black holes

-
$$\lambda(\phi) = \lambda^{GB} \gamma^{-1} (1 - e^{-\gamma \phi^2})$$
: Kerr a

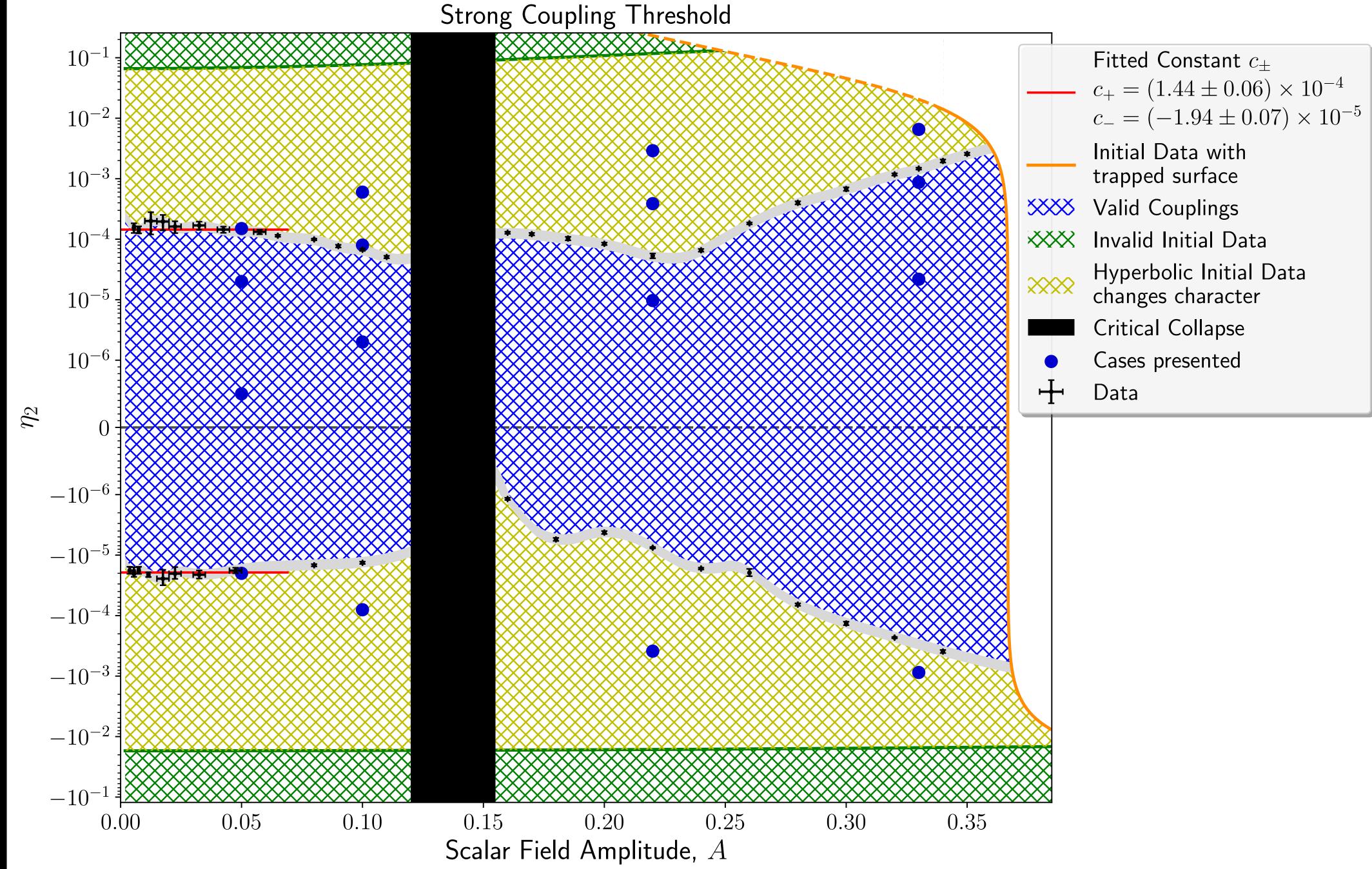
• The evolution of the scalar field is controlled by an effective metric: $h^{\mu\nu} = g^{\mu\nu}(1 + g_2 X) - 2g_2 (\nabla^{\mu} \phi) (\nabla^{\nu} \phi)$

Hyperbolicity can break down in the strongly coupled regime

Shocks can form from smooth initial data

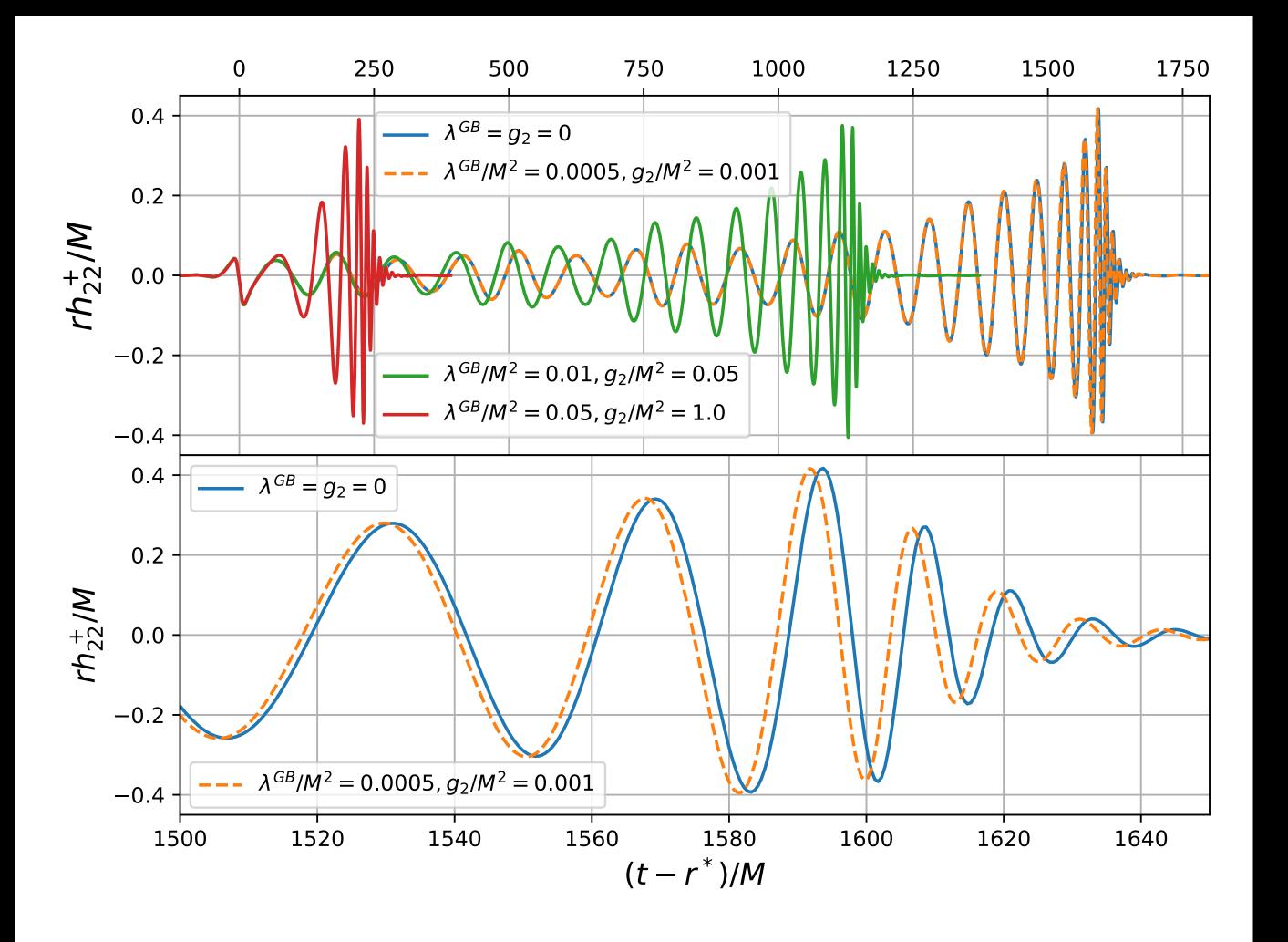
and hairy black holes are solutions

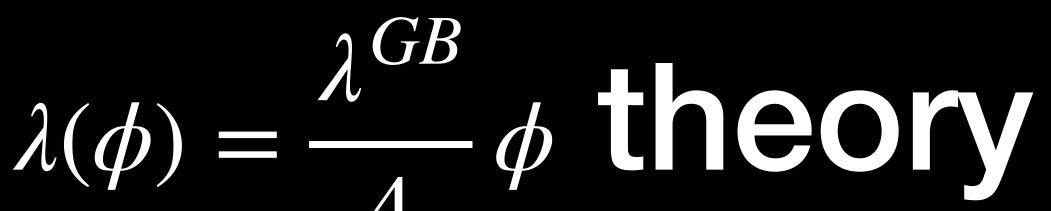
- [Ripley and Pretorius; Bernard et al; PF and França; Bezares et al.]



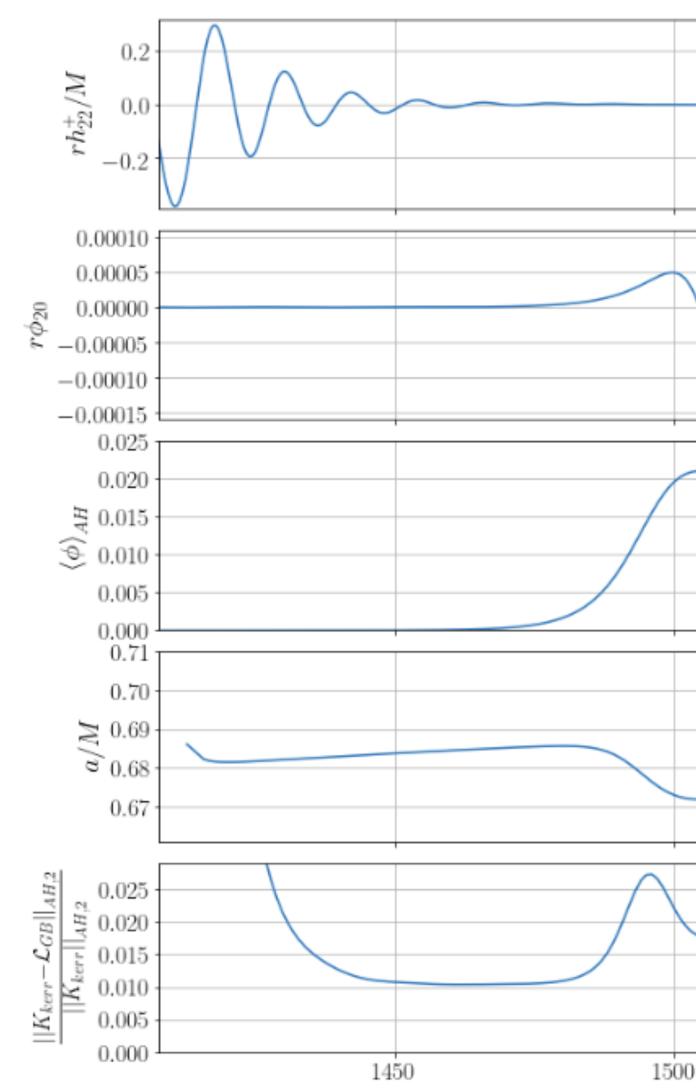
Black hole binaries

- Initial data corresponding to two superposed non-spinning GR black holes
 → small initial constraint violations
- Initial configuration is in the weakly coupled regime
- ~11 quasi-circular orbits
- Monitor the weak coupling condition
- "Excise" a portion of the interior of the AH



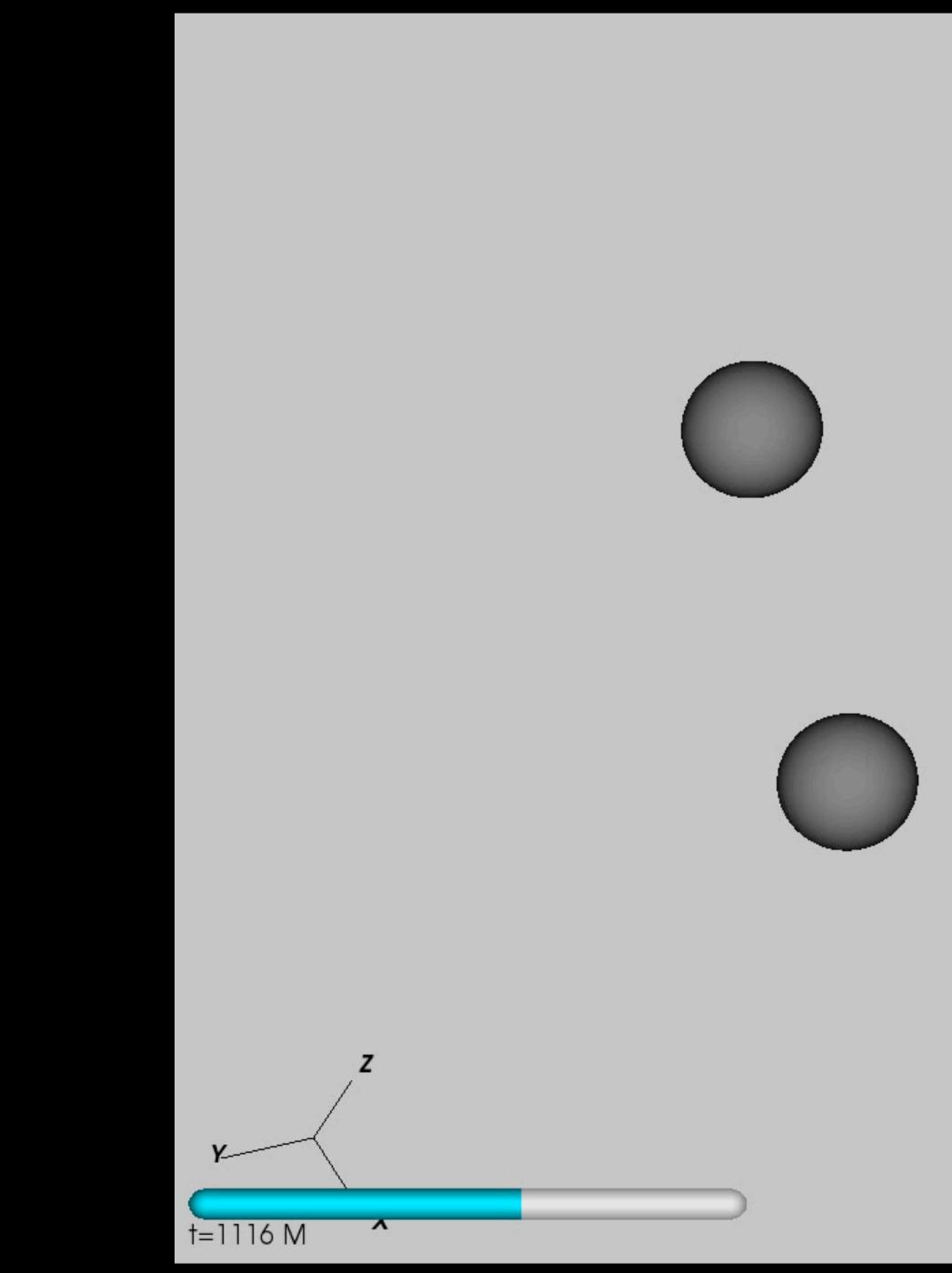


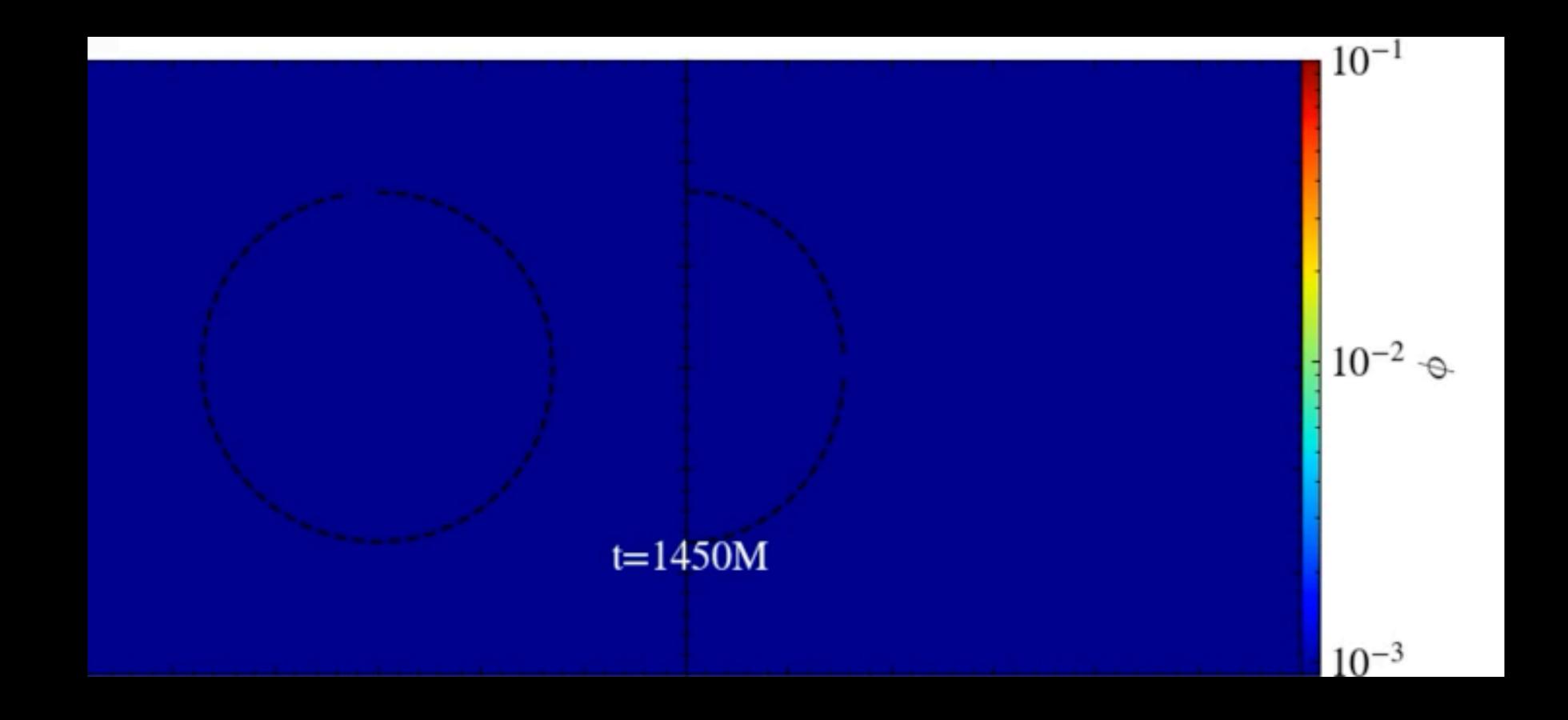
 $\lambda(\phi) = \frac{\lambda^{GB}}{\gamma} (1 - e^{-\gamma \phi^2}) \text{ theory}$



$(t - r^{*})/M$		
V		
1550	1600	16

~/ **-**





Müller-Israel-Stewart (MIS) for an 8-derivative theory of gravity w/ Ramiro Cayuso, Tiago França and Luis Lehner

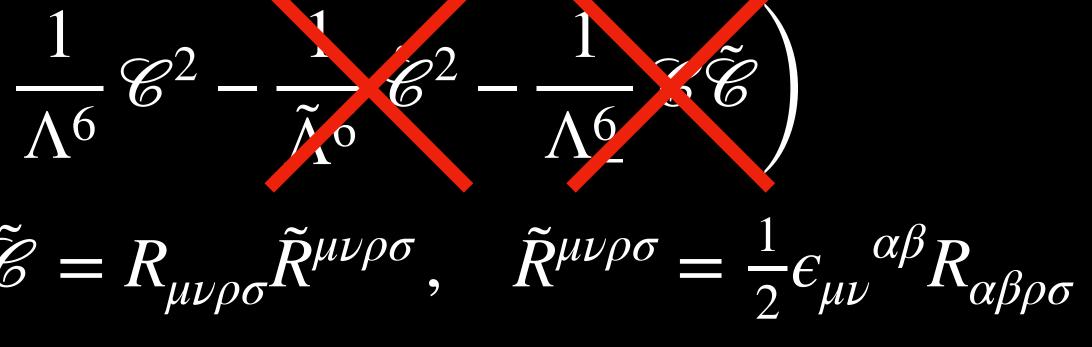
Eight derivative theory of gravity

$$I = \int dx^4 \sqrt{-g} \left(R - \frac{1}{2} \right)^2 dx^4 \sqrt{-g} \left(R - \frac{1}{$$

$$\mathscr{C} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}, \quad \widetilde{\mathscr{C}}$$

 \blacksquare EOMs with 4th order derivatives ($\epsilon \equiv \Lambda^{-6}$): $G_{\mu\nu} = 8\epsilon \left\{ \mathscr{C} \left[\Box R_{\mu\nu} - \frac{1}{2} \nabla_{\mu} \nabla_{\nu} R - \frac{1}{16} \mathscr{C} g_{\mu\nu} - R_{\mu\lambda} R^{\lambda} \right] \right\}$ $+R^{\alpha\beta}R_{\mu\alpha\nu\beta}+\frac{1}{2}R_{\mu\sigma\rho\lambda}R_{\nu}^{\sigma\rho\lambda}\right]$ $+2(\nabla^{\alpha}\mathscr{C})\left[\nabla_{\alpha}R_{\mu\nu}-\nabla_{(\mu}R_{\nu)\alpha}\right]+R_{\mu\nu}^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta}\mathscr{C}\right\}$

Most general higher derivative theory of gravity (in vacuum) up to 8 derivatives:



No mathematical theory for general higher than 2nd order PDEs

 How is one to approach the study of this theory and its physical predictions?

MIS: relativistic viscous hydrodynamics

2nd order stress tensor of a relativistic viscous (conformal) fluid:

$$T_{\mu\nu} = \frac{\rho}{d-1} (d u_{\mu} u_{\nu} + \eta_{\mu\nu}) + \Pi_{\mu\nu}$$

$$\Pi_{\mu\nu} = -2 \eta \sigma_{\mu\nu} + 2 \eta \tau_{\Pi} \left(\langle u^{\alpha} \partial_{\alpha} \sigma_{\mu\nu} \rangle + \frac{1}{d-1} \sigma_{\mu\nu} \partial_{\alpha} u^{\alpha} \right) + \langle \lambda_{1} \sigma_{\mu\alpha} \sigma_{\nu}{}^{\alpha} + \lambda_{2} \sigma_{\mu\alpha} \omega_{\nu}{}^{\alpha} + \lambda_{3} \omega_{\mu\alpha} \omega_{\nu}{}^{\alpha}$$

- $\Rightarrow \partial_{\mu}T^{\mu\nu} = 0$ are third order PDEs. How does one solve them?

$$\Pi_{\mu\nu} = -2\eta \sigma_{\mu\nu} - \tau_{\Pi} \left(\langle u^{\alpha} \partial_{\alpha} \Pi_{\mu\nu} \rangle + \frac{d}{d-1} \Pi_{\mu\nu} \partial_{\alpha} u^{\alpha} \right) + \left\langle \frac{\lambda_1}{\eta^2} \Pi_{\mu\alpha} \Pi_{\nu}^{\alpha} - \frac{\lambda_2}{\eta} \Pi_{\mu\alpha} \omega_{\nu}^{\alpha} + \lambda_3 \omega_{\mu\alpha} \omega_{\nu}^{\alpha} \right\rangle$$

 \blacksquare the eoms are 1st order and $\Pi_{\mu\nu} \rightarrow -2\eta \sigma_{\mu\nu}$ on a timescale set by τ_{Π}

MIS formulation: promote $\Pi_{\mu\nu}$ to a new dynamical variable with eom



MIS for gravity

• Order reduction: Ric $\sim \mathcal{O}(\epsilon) \Rightarrow$ keep only the $\mathcal{O}(\epsilon)$ terms in the EOMs

$$G_{\mu\nu} = \epsilon \left(4 \,\mathscr{C} \, W_{\mu}{}^{\alpha\beta\gamma} \, W_{\nu\alpha\beta\gamma} - \frac{1}{2} \, g_{\mu\nu} \,\mathscr{C}^2 + 8 \, W_{\mu}{}^{\alpha\beta} \nabla_{\alpha} \nabla_{\beta} \mathscr{C} \right) \,, \quad \mathscr{C} = W_{\mu\nu\rho\sigma} W^{\mu\nu\rho\sigma} \, W^{\mu\nu$$

- <u>Want</u>:
 - Well-posed, 2nd order (in time) equations
 - Consistently incorporate the small corrections at long wavelengths whilst controlling to flow of energy to the UV
 - Capture non-linearities whilst remaining in the regime of validity of EFT

MIS for gravity

- Model problem: $\Box \phi = -\epsilon \partial_t^4 \phi$
 - Option A: $\partial_t^4 \phi = \partial_t^2 C(\phi)$ with $C(\phi) = \partial_x^2 \phi$
 - Option B: $\partial_t^4 \phi = \partial_y^4 \phi$
- Both options lead to blow up
- Solution for the model problem:
 - $\hat{C} \rightarrow C(\phi)$ on a timescale σ/τ
 - on them while preserving numerical stability

$$\Box \phi = -\epsilon \partial_t^2 \hat{C}$$

$$\tau \partial_0 \hat{C} + \sigma (\partial_t^2 - 2\beta^i \partial_{ti} + \beta^i \beta^j \partial_{ij}) \hat{C} = C(\phi) - e^{i\beta} \partial_{ti} \partial_{ti} + e^{i\beta} \partial_{ij} \partial_{ij}$$

 σ and τ can be chosen to minimise the difference and dependence of the solution

MIS for gravity

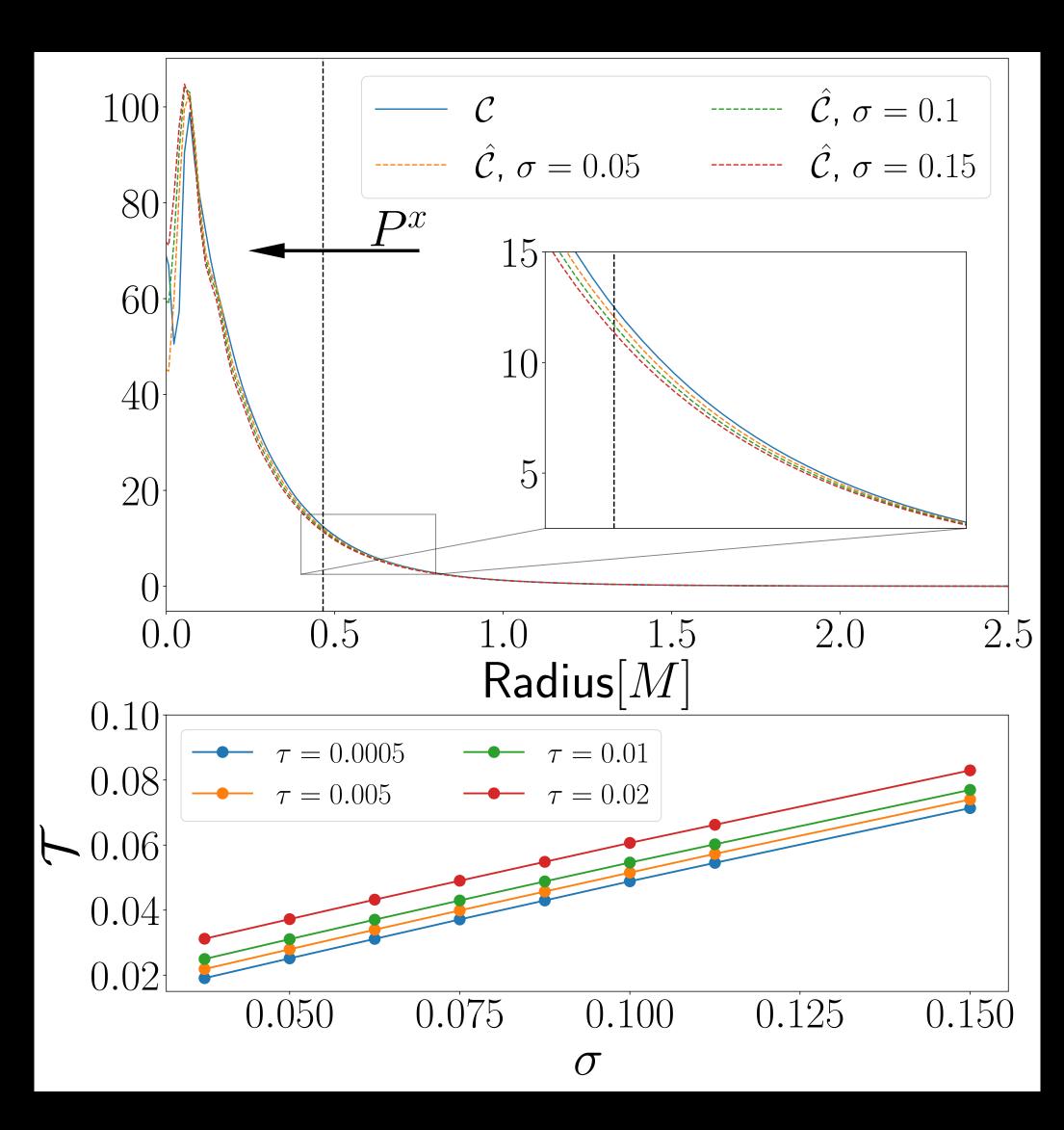
Our solution:

 $(\partial_t^2 - 2\beta^i \partial_{ti} + \beta^i \beta^j \partial_{ij})\hat{\mathscr{C}} = \frac{1}{\sigma} \left(\mathscr{C} - \hat{\mathscr{C}} - \tau \partial_0 \hat{\mathscr{C}} \right)$

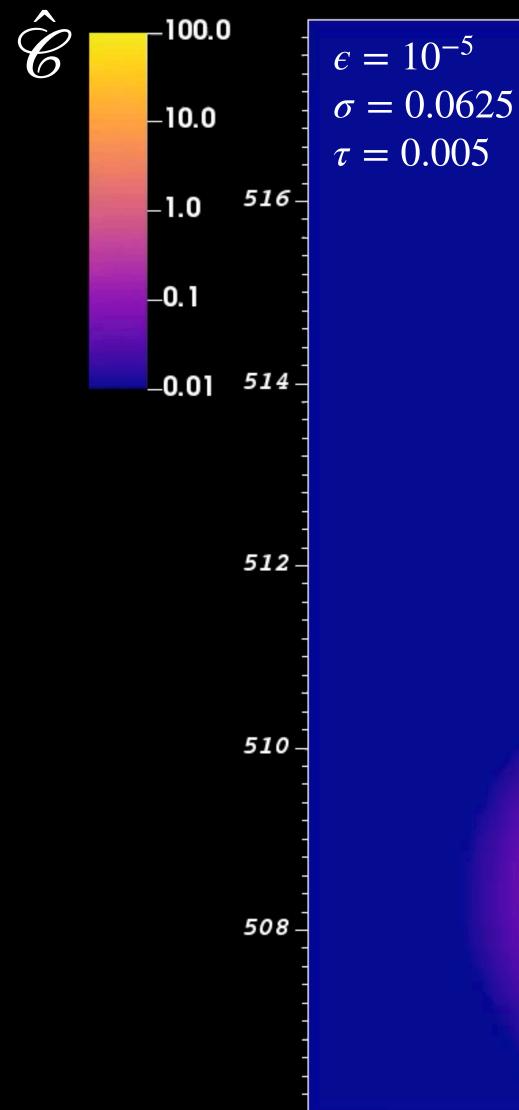
Reduction of order to replace time derivatives on the RHS

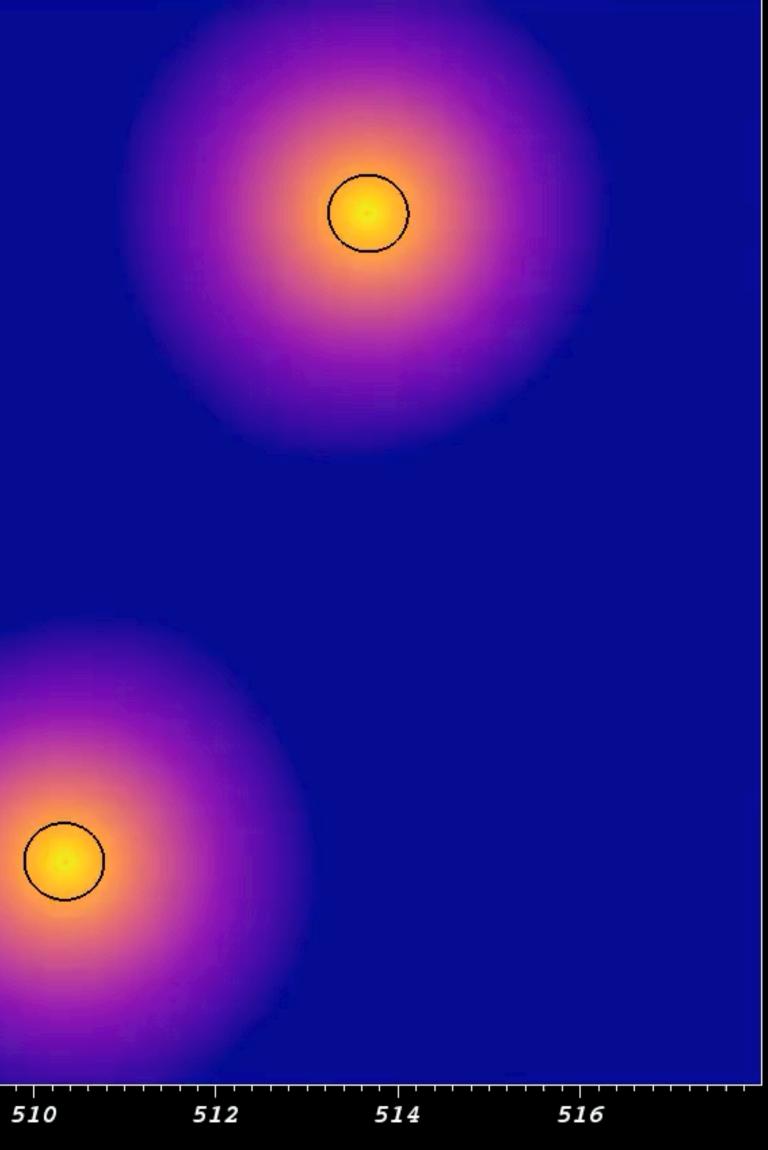
 $G_{\mu\nu} = \epsilon \left(4 \hat{\mathscr{C}} W_{\mu}{}^{\alpha\beta\gamma} W_{\nu\alpha\beta\gamma} - \frac{1}{2} g_{\mu\nu} \hat{\mathscr{C}}^2 + 8 W_{\mu}{}^{\alpha}{}^{\beta} \nabla_{\alpha} \nabla_{\beta} \hat{\mathscr{C}} \right)$

MIS for gravity: results

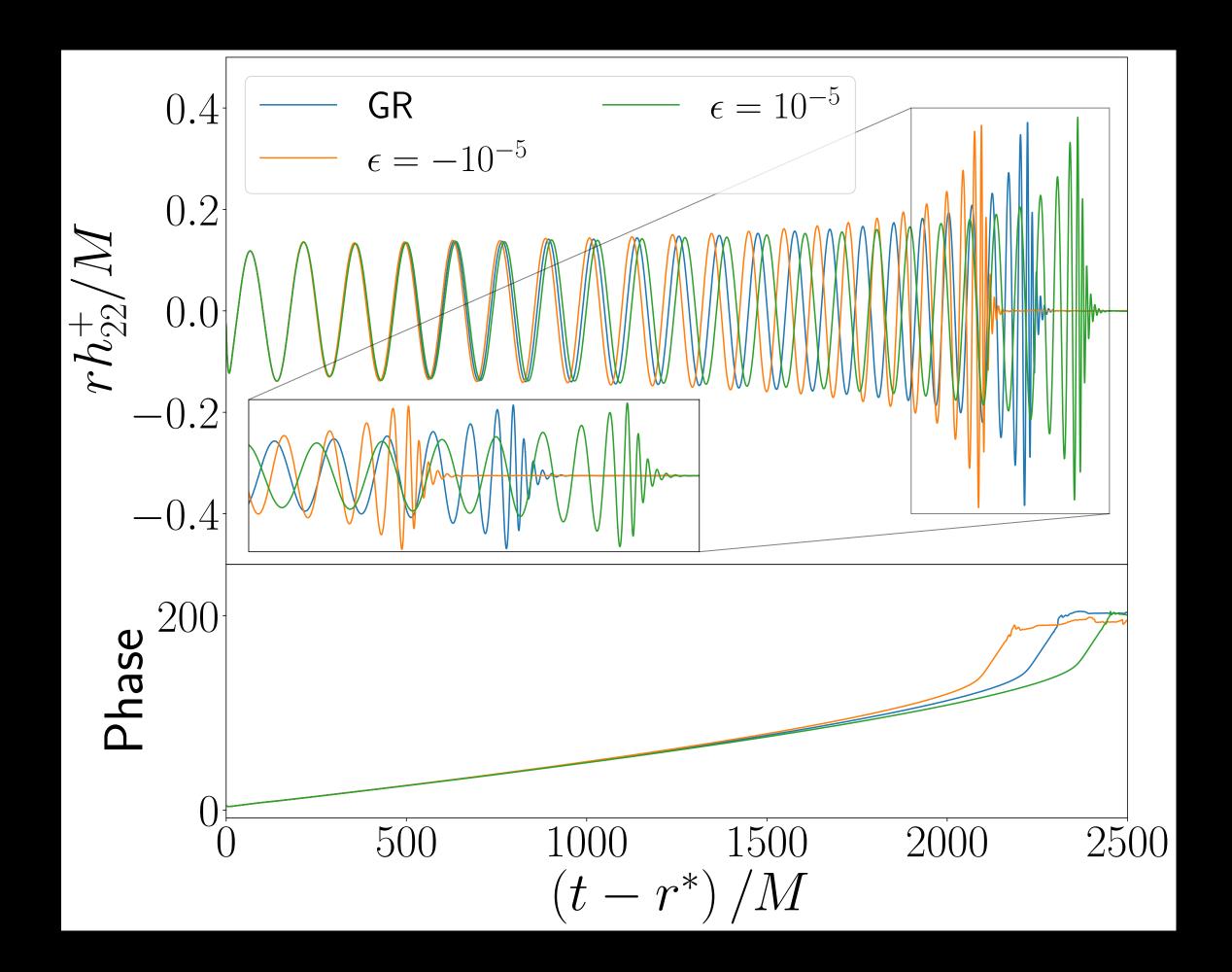


MIS for gravity: results





MIS for gravity: results



Conclusions and outlook

Conclusions

- We have performed simulations of black hole binary mergers in the 4∂ ST and higher derivative theories of gravity treating them fully non-linearly
- Physically relevant initial data can be found such that the theory remains weakly coupled throughout the evolutions
- The waveforms exhibit a generic O(1) de-phasing compared to the GR
- Applications: compact binary mergers, EFT of inflation, endpoint of the GL instability of black strings, finite coupling effects in holography

Thank your for your attention!