4d gravity from holomorphic discs
 A twistor sigma model for celestial $L w_{1+\infty}$ symmetry

Lionel Mason
The Mathematical Institute, Oxford
lmason@maths.ox.ac.uk
Journées Relativistes de Tours, 31/5/2023

Based on M. 2212.10895 on 4d pure gravity in split signature:

4d gravity from holomorphic discs
 A twistor sigma model for celestial $L w_{1+\infty}$ symmetry

Lionel Mason

The Mathematical Institute, Oxford
lmason@maths.ox.ac.uk
Journées Relativistes de Tours, 31/5/2023

Based on M. 2212.10895 on 4d pure gravity in split signature:

- Use math.DG/0504582, Duke Math (2007), LeBrun \& м. to formulate global SD gravity from holmorphic discs in twistor space.

4d gravity from holomorphic discs
 A twistor sigma model for celestial $L w_{1+\infty}$ symmetry

Lionel Mason

The Mathematical Institute, Oxford
lmason@maths.ox.ac.uk
Journées Relativistes de Tours, 31/5/2023

Based on M. 2212.10895 on 4d pure gravity in split signature:

- Use Math.DG/0504582, Duke Math (2007), LeBrun \& м. to formulate global SD gravity from holmorphic discs in twistor space.
- Adapt Adamo, M. \& Sharma 2103.16984, to construct gravity tree S-matrix from chiral sigma model with $L w_{1+\infty}$ vertex operators.

Gravity amplitudes at MHV ($--+\ldots+$ helicity $)$

Scatter n gravitons with momenta $k_{i}, i=1, \ldots n$.

- In 2-component spinors, null momenta $k_{i \alpha \dot{\alpha}}=\kappa_{i \alpha} \kappa_{i \dot{\alpha}}$. Spinor helicity notation:

$$
\left.\langle 12\rangle:=\kappa_{1 \alpha} \kappa_{2}^{\alpha},[12]:=\kappa_{1 \dot{\alpha}} \kappa_{2}^{\dot{\alpha}},\langle 1| 2 \mid 3\right]=\kappa_{1 \alpha} k_{2}^{\alpha \dot{\alpha}} \kappa_{3 \dot{\alpha}} .
$$

Gravity amplitudes at MHV ($--+\ldots+$ helicity $)$

Scatter n gravitons with momenta $k_{i}, i=1, \ldots n$.

- In 2-component spinors, null momenta $k_{i \alpha \dot{\alpha}}=\kappa_{i \alpha} \kappa_{i \dot{\alpha}}$. Spinor helicity notation:

$$
\left.\langle 12\rangle:=\kappa_{1 \alpha} \kappa_{2}^{\alpha},[12]:=\kappa_{1 \dot{\alpha}} \kappa_{2}^{\dot{\alpha}},\langle 1| 2 \mid 3\right]=\kappa_{1 \alpha} k_{2}^{\alpha \dot{\alpha}} \kappa_{3 \dot{\alpha}} .
$$

- Hodges 2012 MHV formula, define $n \times n$ matrix:

$$
\mathbb{H}_{i j}=\left\{\begin{array}{cl}
\frac{[i]}{\langle i j\rangle} & i \neq j \\
-\sum_{k} \frac{[i k]}{\langle\langle k\rangle} & i=j .
\end{array}\right.
$$

Then: $\quad \mathcal{M}(1, \ldots, n)=\langle 12\rangle^{6} \operatorname{det}^{\prime} \mathbb{H} \delta^{4}\left(\sum_{i} k_{i}\right)$

Gravity amplitudes at MHV ($--+\ldots+$ helicity $)$

Scatter n gravitons with momenta $k_{i}, i=1, \ldots n$.

- In 2-component spinors, null momenta $k_{i \alpha \dot{\alpha}}=\kappa_{i \alpha} \kappa_{i \dot{\alpha}}$. Spinor helicity notation:

$$
\left.\langle 12\rangle:=\kappa_{1 \alpha} \kappa_{2}^{\alpha},[12]:=\kappa_{1 \dot{\alpha}} \kappa_{2}^{\dot{\alpha}},\langle 1| 2 \mid 3\right]=\kappa_{1 \alpha} k_{2}^{\alpha \dot{\alpha}} \kappa_{3 \dot{\alpha}} .
$$

- Hodges 2012 MHV formula, define $n \times n$ matrix:

$$
\mathbb{H}_{i j}=\left\{\begin{array}{cl}
\frac{[i]}{\langle i j\rangle} & i \neq j \\
-\sum_{k} \frac{[i k]}{\langle\langle k\rangle} & i=j .
\end{array}\right.
$$

Then: $\quad \mathcal{M}(1, \ldots, n)=\langle 12\rangle^{6} \operatorname{det}^{\prime} \mathbb{H} \delta^{4}\left(\sum_{i} k_{i}\right)$
Why???

Gravity amplitudes at MHV ($--+\ldots+$ helicity $)$

Scatter n gravitons with momenta $k_{i}, i=1, \ldots n$.

- In 2-component spinors, null momenta $k_{i \alpha \dot{\alpha}}=\kappa_{i \alpha} \kappa_{i \dot{\alpha}}$. Spinor helicity notation:

$$
\left.\langle 12\rangle:=\kappa_{1 \alpha} \kappa_{2}^{\alpha},[12]:=\kappa_{1 \dot{\alpha}} \kappa_{2}^{\dot{\alpha}},\langle 1| 2 \mid 3\right]=\kappa_{1 \alpha} k_{2}^{\alpha \dot{\alpha}} \kappa_{3 \dot{\alpha}} .
$$

- Hodges 2012 MHV formula, define $n \times n$ matrix:

$$
\mathbb{H}_{i j}=\left\{\begin{array}{cl}
\frac{[i j]}{\langle i j\rangle} & i \neq j \\
-\sum_{k} \frac{[i k]}{\langle\langle k\rangle} & i=j .
\end{array}\right.
$$

Then: $\quad \mathcal{M}(1, \ldots, n)=\langle 12\rangle^{6} \operatorname{det}^{\prime} \mathbb{H} \delta^{4}\left(\sum_{i} k_{i}\right)$
Why???

- \mathbb{H} is Laplace matrix for matrix-tree theorem $\sim_{\text {[Feng, He 2012] }}$
- Sum of trees [Bem,Dixon,Pereststein,Rosososki '9g, Nguyen, Spradiin, Volowich, Wen' 10] $\mathcal{M}=\left\langle V_{1} \ldots V_{n-2}\right\rangle_{\text {tree }}$ from Sigma model.

Holography from null infinity, and amplitudes

- Celestial Holography seeks to find boundary theory that constructs 4d gravity from \mathscr{I}.
- Newman '70's: tries to rebuild space-time from 'cuts' of \mathscr{I}.
- Yields instead 'H-space' a
 complex self-dual space-time.

Holography from null infinity, and amplitudes

- Celestial Holography seeks to find boundary theory that constructs 4d gravity from \mathscr{I}.
- Newman '70's: tries to rebuild space-time from 'cuts' of \mathscr{I}.
- Yields instead 'H-space' a complex self-dual space-time.
- Penrose: \leadsto asymptotic Twistor space $P \mathscr{T} \sim \mathbb{C P}^{3}$, the nonlinear graviton.
- Embodies integrability of SD sector.
- Chiral sigma models in twistor space give full 4d gravity S-matrix expanding around
 SD sector; manifests $L w_{1+\infty}$ symmetry.

Conformal geometry in 4d split signature \& self-duality

Conformal group $=S O(3,3)$ acts globally on:

- Conformal completion: $\mathbb{R}^{2+2} \cup \mathscr{I}=S^{2} \times S^{2} / \mathbb{Z}_{2}$ or $S^{2} \times S^{2}$:

$$
d s^{2}=\Omega^{2}\left(d s_{S_{x}^{2}}^{2}-d s_{S_{y}^{2}}^{2}\right),
$$

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{3} \times \mathbb{R}^{3},|\mathbf{x}|=|\mathbf{y}|=1$.

- \mathbb{Z}_{2} acts by $(\mathbf{x}, \mathbf{y}) \rightarrow(-\mathbf{x},-\mathbf{y})$.
- For flat case $\Lambda=0: \Omega \sim \frac{1}{x_{3}-y_{3}}$, and

$$
\mathscr{I}=\left\{x_{3}=y_{3}\right\}=\mathbb{R} \times S^{1} \times S^{1} .
$$

Conformal geometry in 4d split signature \& self-duality

Conformal group $=S O(3,3)$ acts globally on:

- Conformal completion: $\mathbb{R}^{2+2} \cup \mathscr{I}=S^{2} \times S^{2} / \mathbb{Z}_{2}$ or $S^{2} \times S^{2}$:

$$
d s^{2}=\Omega^{2}\left(d s_{S_{x}^{2}}^{2}-d s_{S_{y}^{2}}^{2}\right),
$$

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{3} \times \mathbb{R}^{3},|\mathbf{x}|=|\mathbf{y}|=1$.
$-\mathbb{Z}_{2}$ acts by $(\mathbf{x}, \mathbf{y}) \rightarrow(-\mathbf{x},-\mathbf{y})$.

- For flat case $\Lambda=0: \Omega \sim \frac{1}{x_{3}-y_{3}}$, and

$$
\mathscr{I}=\left\{x_{3}=y_{3}\right\}=\mathbb{R} \times S^{1} \times S^{1} .
$$

Curvature: For curved (M^{4}, g), 2-forms split: $\Omega_{M}^{2}=\Omega^{2+} \oplus \Omega^{2-}$

$$
\text { Riem }=\left(\begin{array}{cc}
\text { Weyl }^{+}+\text {S } \delta & \text { Ricci }_{0} \\
\text { Ricci }_{0} & \text { Weyl }^{-}+\text {S } \delta
\end{array}\right) .
$$

This talk: expand around Weyl ${ }^{-}=0=$ Ricci, so Ω^{2-} is flat.

The split signature conformally flat metric

$$
d s^{2}=\Omega^{2}\left(d s_{S_{\mathrm{x}}^{2}}^{2}-d s_{S_{\mathrm{y}}^{2}}^{2}\right)
$$

admits a 3-parameter family of β-planes denoted by $\mathbb{P} \mathbb{T}_{\mathbb{R}}$:

- respectively totally null ASD $S^{2} s$ given by

$$
\mathbf{x}=A \mathbf{y}, \quad A \in S O(3)=\mathbb{R} \mathbb{P}^{3}
$$

- Curved case with Weyl ${ }^{-}=0 \Rightarrow \beta$-planes survive as β-surfaces.
- β-surfaces are projectively flat.
- If compact, β-surfaces are necessarily S^{2} or $\mathbb{R P}^{2}$.
- Null geodesics are projectively $\mathbb{R P}^{1}$ s or double cover.

α and β-surfaces and the Zollfrei condition

The split signature conformally flat metric

$$
d s^{2}=\Omega^{2}\left(d s_{S_{\mathrm{x}}^{2}}^{2}-d s_{S_{\mathrm{y}}^{2}}^{2}\right)
$$

admits a 3-parameter family of β-planes denoted by $\mathbb{P T}_{\mathbb{R}}$:

- respectively totally null ASD $S^{2} s$ given by

$$
\mathbf{x}=A \mathbf{y}, \quad A \in S O(3)=\mathbb{R P}^{3}
$$

- Curved case with Weyl ${ }^{-}=0 \Rightarrow \beta$-planes survive as β-surfaces.
- β-surfaces are projectively flat.
- If compact, β-surfaces are necessarily S^{2} or $\mathbb{R P}^{2}$.
- Null geodesics are projectively $\mathbb{R P}^{1}$ s or double cover.

Following Guillemin we define:
Definition
$\left(M^{d}, g\right)$ is Zollfrei if all null geodesics are embedded $S^{1} s$.

Conformally self-dual case

Theorem (LeBrun \& M. [Duke Math J. 2007, math.dg/0504582.)
$\left(M^{4},[g]\right)$ Zollfrei \& SD Weyl-curvature $\neq 0, \Rightarrow M=S^{2} \times S^{2}$.
There is a 1:1-correspondence between:

1. $S D$ conformal structures on $S^{2} \times S^{2}$ near flat model \&
2. Deformations $\mathbb{P}_{\mathbb{R}}$ of standard embedding of $\mathbb{R} \mathbb{P}^{3} \subset \mathbb{C P}^{3}$.

Conformally self-dual case

Theorem (LeBrun \& M. [Duke Math J. 2007, math.dg/0504582.)
$\left(M^{4},[g]\right)$ Zollfrei \& SD Weyl-curvature $\neq 0, \Rightarrow M=S^{2} \times S^{2}$.
There is a 1:1-correspondence between:

1. $S D$ conformal structures on $S^{2} \times S^{2}$ near flat model \&
2. Deformations $\mathbb{P}_{\mathbb{R}}$ of standard embedding of $\mathbb{R} \mathbb{P}^{3} \subset \mathbb{C P}^{3}$.

Let $i \mathbb{R}^{3} \times \mathbb{R} \mathbb{P}^{3} \subset \mathbb{C P}^{3}$ be a neighbourhood of of $\mathbb{R} \mathbb{P}^{3}$ in $\mathbb{C P}^{3}$,

Figure: $\mathbb{P T}_{\mathbb{R}}=\{$ graph $V=F(U)\}$ for some $F: \mathbb{R P}^{3} \rightarrow \mathbb{R}^{3}$.
$F(U)$ is free data for solution.

Conformally self-dual case

Theorem (LeBrun \& M. [Duke Math J. 2007, math.dg/0504582.)
$\left(M^{4},[g]\right)$ Zollfrei \& SD Weyl-curvature $\neq 0, \Rightarrow M=S^{2} \times S^{2}$.
There is a 1:1-correspondence between:

1. $S D$ conformal structures on $S^{2} \times S^{2}$ near flat model \&
2. Deformations $\mathbb{P}_{\mathbb{R}}$ of standard embedding of $\mathbb{R} \mathbb{P}^{3} \subset \mathbb{C P}^{3}$.

Reconstruction:

Each $x \in M^{4} \leftrightarrow$ holomorphic discs $\mathbb{D}_{x} \subset \mathbb{C P}^{3}$ with $\partial \mathbb{D}_{x} \subset \mathbb{P T}_{\mathbb{R}}$:

Figure: $\mathbb{D}=$ hol. disc $\subset \mathbb{P P}^{3}$ with $\partial \mathbb{D} \subset \mathbb{P} \mathbb{T}_{\mathbb{R}}$.

Reconstruction of M^{4} from twistor space $\mathbb{P}_{\mathbb{R}}$

Each $x \in M^{4} \leftrightarrow$ holomorphic disc $\mathbb{D}_{x} \subset \mathbb{C P}^{3}$ with $\partial \mathbb{D}_{x} \subset \mathbb{P T}_{\mathbb{R}}$.

- \mathbb{D}_{x} has topological degree one.
- Reconstruct M^{4} from $\mathbb{P}_{\mathbb{R}}$ space of all such disks:
$M^{4}=\left\{\right.$ Moduli of degree-1 hol. disks: $\left.\mathbb{D}_{x} \subset \mathbb{C P}^{3}, \partial \mathbb{D}_{x} \subset \mathbb{P}_{\mathbb{R}}\right\}$.
- Gives compact 4d moduli space topology $M^{4}=S^{2} \times S^{2}$.
- M admits a conformal structure for which $\partial \mathbb{D}_{x} \cap \partial \mathbb{D}_{x^{\prime}}=Z$ means that x, x^{\prime} sit on same β-plane:
Space-time Twistor Space

Restriction to Einstein vacuum case

Which $\mathbb{P} \mathbb{T}_{\mathbb{R}} \subset \mathbb{C} \mathbb{P}^{3}$ give SD Einstein $g \in[g]$ on $S^{2} \times S^{2}$?

- Let $Z^{A}=\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}\right), \alpha=0,1, \dot{\alpha}=\dot{0}, \dot{1}$ be homogenous coordinates for $\mathbb{C P}^{3}$.
- Introduce Poisson structure and 1-form

$$
\begin{aligned}
\{f, g\} & :=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\beta}}}=\left[\frac{\partial f}{\partial \mu} \frac{\partial g}{\partial \mu}\right] \\
\theta & :=\epsilon^{\alpha \beta} \lambda_{\alpha} d \lambda_{\beta}=\langle\lambda d \lambda\rangle
\end{aligned}
$$

of rank 2 and homogeneity degree -2 and 2 respectively.
Theorem (After Penrose 1976)
A vacuum $g \in[g]$ exists when $\left.\theta\right|_{\mathbb{P T}_{\mathbb{R}}} \&\{,\}_{\mathbb{P} \mathbb{T}_{\mathbb{R}}}$ are real.

Generating functions for Einstein embeddings

Explicitly in homogeneous coordinates:

- Let $Z^{A}=U^{A}+i V^{A}$, with $U^{A}, V^{A} \in \mathbb{R}^{4}$.
- Let $h(U)$ be an arbtrary function of homogeneity degree 2 ,

$$
U \cdot \frac{\partial h}{\partial U}=2 h
$$

Proposition

All 'small' SD Einstein vacuum twistor data \leftrightarrow such $h(U)$ with

$$
\mathbb{T}_{\mathbb{R}}=\left\{v^{A}=\left\{h, U^{A}\right\}\right\}=\left\{v_{\alpha}=0, v^{\dot{\alpha}}=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial h}{\partial u^{\dot{\beta}}}\right\}
$$

projectivising gives $\mathbb{P T}_{\mathbb{R}}$.
The corresponding self-dual $(2,2)$ vacuum metrics are Zollfrei on $S^{2} \times S^{2}$ with null \mathscr{I} modelled by $x_{3}=y_{3}$.

Poisson diffeos of plane \& $L w_{1+\infty}$ symmetries

$W_{N}=$ higher spin symmetries in 2d CFT [Zamolodchikov 1980s].
For $N \rightarrow \infty$, classical $w_{\infty}=$ Poisson diffeos of plane: [Hoppe]:

- Plane has coords $\mu^{\dot{\alpha}}, \dot{\alpha}=\dot{0}, \dot{1}$ with Poisson bracket

$$
\{f, g\}:=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\alpha}}}, \quad \varepsilon^{\dot{\alpha} \dot{\beta}}=\varepsilon^{[\dot{\alpha} \dot{\beta}]}
$$

- Loop algebra $L w_{1+\infty}$, loop coord $\lambda_{1} / \lambda_{0}$, generators

$$
g_{m, r}^{p}\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}\right)=\frac{\left(\mu^{\dot{0}}\right)^{p-m}\left(\mu^{\dot{1}}\right)^{p+m}}{\lambda_{0}^{r-1} \lambda_{1}^{2 p-r-1}}, \quad p \pm m \in \mathbb{N}, r \in \mathbb{Z}
$$

- $L w_{1+\infty}$ algebra is $\left\{g_{m, r}^{p}, g_{n, s}^{q}\right\}=(2 p n-2 q m) g_{m+n, r+s}^{p+q}$.

Poisson diffeos \& $L w_{1+\infty}$ after Strominger

[Adamo, M., Sharma, 2110.06066.]

$W_{N}=$ higher spin symmetries in 2d CFT [Zamolodechikov 1980s].
For $N \rightarrow \infty$, classical $w_{\infty}=$ Poisson diffeos of plane: [Hopef:

- Plane has coords $\mu^{\dot{\alpha}}, \dot{\alpha}=\dot{0}, \dot{1}$ with Poisson bracket

$$
\{f, g\}:=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\alpha}}},
$$

- Generators of $L w_{1+\infty}=$ hamiltonians $h(\lambda, \mu) \in C^{\infty}\left(\mathbb{P} \mathbb{T}_{\mathbb{R}}\right)$.

Thus:

- $L w_{1+\infty}=$ structure preserving diffeomorphisms of $\mathbb{P T}_{\mathbb{R}}$.
- Here $L w_{1+\infty}^{\mathbb{C}}$ shifts $\mathbb{R P}^{3} \rightarrow \mathbb{P}_{\mathbb{R}}$ so

$$
\{\text { SD gravity phase space }\}=L w_{1+\infty}^{\mathrm{C}} / L w_{1+\infty} \ni h(U)
$$

Poisson bracket underpins Strominger's $L w_{1+\infty}$ symmetries.

Poisson diffeos \& $L w_{1+\infty}$ after Strominger

[Adamo, M., Sharma, 2110.06066.]

$W_{N}=$ higher spin symmetries in 2d CFT [Zamolodahikov 198s).
For $N \rightarrow \infty$, classical $w_{\infty}=$ Poisson diffeos of plane: [Hopee]:

- Plane has coords $\mu^{\dot{\alpha}}, \dot{\alpha}=\dot{0}, \dot{1}$ with Poisson bracket

$$
\{f, g\}:=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\alpha}}},
$$

- Generators of $L w_{1+\infty}=$ hamiltonians $h(\lambda, \mu) \in C^{\infty}\left(\mathbb{P}_{\mathbb{R}}\right)$. Thus:
- $L w_{1+\infty}=$ structure preserving diffeomorphisms of $\mathbb{P} \mathbb{T}_{\mathbb{R}}$.
- Here $L w_{1+\infty}^{\mathbb{C}}$ shifts $\mathbb{R P}^{3} \rightarrow \mathbb{P}_{\mathbb{R}}$ so

$$
\{\text { SD gravity phase space }\}=L w_{1+\infty}^{\mathbb{C}} / L w_{1+\infty} \ni h(U)
$$

Poisson bracket underpins Strominger's $L w_{1+\infty}$ symmetries.
Question: Is this structure restricted to SD sector?

Holomorphic discs \& open chiral twistor sigma models

Perturbation theory around SD sector

- Express disk as upper-half-plane $\mathbb{D}=\{\sigma \in \mathbb{C}, \operatorname{Im} \sigma \geq 0\}$.

Lemma
Given $\sigma_{i} \in \mathbb{R}$, and $Z_{i}^{A} \in \mathbb{T}_{\mathbb{R}}, i=1, \ldots, k$, then \exists ! disk thru Z_{i}^{A}

$$
Z^{A}(\sigma)=\sum_{i=1}^{k} \frac{Z_{i}^{A}}{\sigma-\sigma_{i}}+M^{A}(\sigma): \mathbb{D} \rightarrow \mathbb{T}
$$

with $M^{A}(\sigma)$ holomorphic on \mathbb{D} and $\left.Z(\sigma)\right|_{\partial \mathbb{D}} \subset \mathbb{T}_{\mathbb{R}}$.

- $Z=\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}\right) \in \mathbb{T}_{\mathbb{R}}$ implies λ_{α} real so $M^{A}=\left(0, m^{\dot{\alpha}}\right)$,
- Action for holomorphy and boundary conditions:

$$
S_{D}\left[Z(\sigma), Z_{i}\right]=\operatorname{Im} \int_{\mathbb{D}}[m \bar{\partial} m] d \sigma+\oint_{\partial \mathbb{D}} h(Z) d \sigma
$$

(spinor-helicity notation $[\mu \nu]:=\mu_{\dot{\alpha}} \nu^{\dot{\alpha}}$.)

Gravity S-matrix on SD background via sigma model

 Amplitudes are functionals $\mathcal{M}\left[h, \tilde{h}_{i}\right]$ of gravitational data:- $h \in C^{\infty}\left(\mathbb{P} \mathbb{T}_{\mathbb{R}}, \mathcal{O}(2)\right)$ for fully nonlinear SD part,
- $\tilde{h}_{i} \in C^{\infty}\left(\mathbb{P} \mathbb{T}_{\mathbb{R}}, \mathcal{O}(-6)\right), i=1, \ldots, k$, ASD perturbations.
- For eigenstates of momentum $k_{i \alpha \dot{\alpha}}=\kappa_{i \alpha} \tilde{\kappa}_{i \dot{\alpha}}$ take:

$$
h_{i}=\int \frac{d t}{t^{3}} \delta^{2}\left(t \lambda_{\alpha}-\kappa_{i \alpha}\right) \mathrm{e}^{i t\left[\mu, \tilde{\kappa}_{i}\right]}, \quad \tilde{h}_{i}=\int \frac{d t}{t^{-5}} \delta^{2}\left(t \lambda_{\alpha}-\kappa_{i \alpha}\right) \mathrm{e}^{i t\left[\mu, \tilde{\kappa}_{i}\right]}
$$

Gravity S-matrix on SD background via sigma model

 Amplitudes are functionals $\mathcal{M}\left[h, \breve{h}_{i}\right]$ of gravitational data:- $h \in C^{\infty}\left(\mathbb{P T}_{\mathbb{R}}, \mathcal{O}(2)\right)$ for fully nonlinear SD part,
- $\tilde{h}_{i} \in C^{\infty}\left(\mathbb{P}_{\mathbb{R}}, \mathcal{O}(-6)\right), i=1, \ldots, k$, ASD perturbations.
- For eigenstates of momentum $k_{i \alpha \dot{\alpha}}=\kappa_{i \alpha} \tilde{\kappa}_{\dot{j} \dot{\alpha}}$ take:

$$
h_{i}=\int \frac{d t}{t^{3}} \delta^{2}\left(t \lambda_{\alpha}-\kappa_{i \alpha}\right) \mathrm{e}^{i t\left[\mu, \tilde{\kappa}_{i}\right]}, \quad \tilde{h}_{i}=\int \frac{d t}{t^{-5}} \delta^{2}\left(t \lambda_{\alpha}-\kappa_{i \alpha}\right) \mathrm{e}^{i t\left[\mu, \tilde{\kappa}_{i}\right]}
$$

Proposition (Adapted from [Adamo, м. \& Sharma, 2103.16984] to split signature.)

The amplitude for k ASD perturbations on SD background h is

$$
\mathcal{M}\left(h, \tilde{h}_{i}\right)=\int_{\left(S^{1} \times \mathbb{P}_{\mathbb{R}}\right)^{k}} S_{D}^{o s}\left[h, Z_{i}, \sigma_{i}\right] \operatorname{det}^{\prime} \tilde{\mathbb{H}} \prod_{i=1}^{k} \tilde{h}_{i}\left(Z_{i}\right) D^{3} Z_{i} d \sigma_{i}
$$

Here $S_{D}^{O S}\left[h, Z_{i}, \sigma_{i}\right]$ is the on-shell Sigma model action and

$$
\tilde{\mathbb{H}}_{i j}\left(Z_{i}\right)=\left\{\begin{array}{cl}
\frac{\left\langle\lambda_{i} \lambda_{j}\right\rangle}{\sigma_{i}-\sigma_{j}} & i \neq j \\
-\sum_{l} \frac{\left|\lambda_{i} \lambda_{l}\right\rangle}{\sigma_{i}-\sigma_{j}}, & i=j
\end{array}\right.
$$

Ideas in proof: the complete tree-level S-matrix

- Expand $h=h_{k+1}+\ldots+h_{n}$ to 1 st order in each h_{i}, momentum e-states, to give full perturbative amplitude.
- On shell action expands as tree correlator

$$
S_{D}^{O S}\left[h_{k+1}+\ldots+h_{n}, Z_{i}, \sigma_{i}\right]=\left\langle V_{h_{k+1}} \ldots V_{h_{n}}\right\rangle_{\text {tree }}+O\left(h_{i}^{2}\right)
$$

- Here the 'vertex operators' are $V_{h_{i}}=\int_{\partial D} h_{i}\left(\sigma_{i}\right) d \sigma_{i}$.
- Propagators for S_{D} give Poisson bracket $\{$,

$$
\left\langle h_{i} h_{j}\right\rangle_{\text {tree }}=\frac{\left[\partial_{\mu} h_{i} \partial_{\mu} h_{j}\right]}{\sigma_{i}-\sigma_{j}}=\frac{[i j]}{\sigma_{i}-\sigma_{j}} h_{i} h_{j}, \quad i \neq j
$$

- Matrix-tree theorem then gives

$$
\left\langle h_{k+1} \ldots h_{n}\right\rangle_{\mathrm{tree}}=\operatorname{det}^{\prime} \mathbb{H} \prod_{i=k+1}^{n} h_{i}, \quad \mathbb{H}_{i j}=\frac{[i j]}{\sigma_{i}-\sigma_{j}}, \quad i \neq j \text { etc. }
$$

Ideas in proof: the complete tree-level S-matrix

- Expand $h=h_{k+1}+\ldots+h_{n}$ to 1 st order in each h_{i}, momentum e-states, to give full perturbative amplitude.
- On shell action expands as tree correlator

$$
S_{D}^{O S}\left[h_{k+1}+\ldots+h_{n}, Z_{i}, \sigma_{i}\right]=\left\langle V_{h_{k+1}} \ldots V_{h_{n}}\right\rangle_{\text {tree }}+O\left(h_{i}^{2}\right)
$$

- Here the 'vertex operators' are $V_{h_{i}}=\int_{\partial D} h_{i}\left(\sigma_{i}\right) d \sigma_{i}$.
- Propagators for S_{D} give Poisson bracket $\{$,

$$
\left\langle h_{i} h_{j}\right\rangle_{\text {tree }}=\frac{\left[\partial_{\mu} h_{i} \partial_{\mu} h_{j}\right]}{\sigma_{i}-\sigma_{j}}=\frac{[i j]}{\sigma_{i}-\sigma_{j}} h_{i} h_{j}, \quad i \neq j
$$

- Matrix-tree theorem then gives

$$
\left\langle h_{k+1} \ldots h_{n}\right\rangle_{\mathrm{tree}}=\operatorname{det}^{\prime} \mathbb{H} \prod_{i=k+1}^{n} h_{i}, \quad \mathbb{H}_{i j}=\frac{[i j]}{\sigma_{i}-\sigma_{j}}, \quad i \neq j \text { etc. }
$$

$\leadsto \mathcal{M}\left(h_{i}, \tilde{h}_{i}\right)=\int_{\left(S^{1}\right)^{n} \times\left(\mathbb{R P}^{3}\right)^{k}} \underset{\operatorname{det}^{\prime} \mathbb{H}}{ } \operatorname{det}^{\prime} \tilde{\mathbb{H}} \prod_{j=k+1}^{n} h_{j} d \sigma_{j} \prod_{i=1}^{k} \tilde{h}_{i}\left(Z_{i}\right) D^{3} Z_{i} d \sigma_{i}$.
This is now equivalent to the Cachazo-Skinner formula,

Relation to Einstein-Hilbert action at $k=2$

[Adamo, M, Sharma, 2103.16984]

At $k=2$, Mobius symmetry trivialises σ integrals $\& \operatorname{det}^{\prime} \tilde{\mathbb{H}}$ so

$$
\mathcal{M}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]=\int d^{2} \mu_{1} d^{2} \mu_{2} \mathrm{e}^{i\left[\mu_{1} 1\right]+i\left[\mu_{2} 2\right]} S_{D}^{o s}\left[h, Z_{1}, Z_{2}\right]
$$

- Writing $x^{\alpha \dot{\alpha}}=\left(\mu_{1}^{\dot{\alpha}}, \mu_{2}^{\dot{\alpha}}\right)$ this a space-time integral

$$
\mathcal{M}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]=\int d^{4} x \mathrm{e}^{i k_{1} \cdot x+i k_{2} \cdot x} S_{D}^{O S}\left[h, \mu_{1}, \mu_{2}\right]
$$

Proposition

Let $\Omega(x):=S_{D}^{o s}\left[h, \mu_{1}, \mu_{2}\right]$. Then Ω is the Plebanskis first potential (Kahler scalar) for the SD background metric

$$
d s^{2}=\frac{\partial^{2} \Omega}{\partial \mu_{1}^{\dot{\alpha}} \partial \mu_{2}^{\dot{\beta}}} d \mu_{1}^{\dot{\alpha}} d \mu_{2}^{\dot{\beta}} .
$$

The second variation of the Einstein-Hilbert action

$$
\delta^{2} S_{\mathrm{EH}}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]=\int d^{4} x \mathrm{e}^{i\left(k_{1}+k_{2}\right) \cdot x} \Omega(x)=\mathcal{M}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]
$$

(Follows from Plebanski gravity action.)

Summary \& conclusions

Geometry:

- Split signature SD vacuum metrics on $S^{2} \times S^{2}$ with $\mathscr{I} \simeq S^{1} \times S^{1} \times \mathbb{R} \leftrightarrow C^{\infty}$ generating functions h on \mathbb{R}^{3}, defines deformed real slice $\mathbb{P T}_{\mathbb{R}} \subset \mathbb{C P}^{3}$.
- Split signature twistors avoid 'lightray' or Čech-Dolbeault transform manifesting $L w_{1+\infty}$ directly. Slogan: SD gravity phase space $=L w_{1+\infty}^{\mathbb{C}} / L w_{1+\infty}$
Sigma model:
- Reconstruction via open holomorphic discs leads to chiral open sigma model that computes gravity amplitudes.
- MHV formula gives theory underlying tree formalism of Bern et. al. from 1998 \& equals the Einstein-Hilbert action.
- Framework gives $L w_{1+\infty}^{\mathbb{C}}$ action on full amplitude via vertex operators that generate gravitons. (Real generators are passive with vanishing charges).

Discussion

Exotic symmetries:

- Action of $L w_{1+\infty}$ generator h on n-graviton amplitude generates $n+1$ th graviton in sigma model OPE language.
- $\operatorname{det}^{\prime} \mathbb{H} \operatorname{det}^{\prime} \tilde{\mathbb{H}}$ integrand $\Leftrightarrow L w_{1+\infty}$ on $\mathbb{P} \mathbb{T}$ and $\widetilde{L w_{1+\infty}}$ on $\mathbb{P T}^{*}$.
- L $w_{1+\infty}$ suffices at MHV; both needed beyond MHV but dont commute!
- In ambitwistor-string, we can analyse vertex operators for both sectors $V_{h}, V_{\tilde{h}}$ with OPEs

$$
\begin{equation*}
V_{h} \cdot V_{h^{\prime}} \sim V_{\left\{h, h^{\prime}\right\}}+\ldots, \quad \text { but } \quad V_{h} \cdot V_{\tilde{h}} \sim \text { mess } \tag{1}
\end{equation*}
$$

but mess resolves into scattering equations.
1-loop all +

- 1-loop all + becomes bubble in background on disc.
- Remains $L w_{1+\infty}$ invariant.

Thank you!

Flat holography: the split signature story from \mathscr{I}

A celestial torus

Now $\mathscr{I}=\mathbb{R} \times S^{1} \times S^{1}$ with real coords $(u, \lambda, \tilde{\lambda}), \lambda=\lambda_{1} / \lambda_{0}$.

$$
d s^{2}=\frac{1}{R^{2}}\left(d u d R-d \lambda d \tilde{\lambda}+R \sigma d \tilde{\lambda}^{2}+R \tilde{\sigma} d \lambda^{2}+\ldots\right),
$$

where $R=1 / r$, and $\mathscr{I}=\{R=0\}$.

- The $\sigma, \tilde{\sigma}$ are now real asymptotic shears that encode respectively SD and ASD gravitational data.
- Twistors intersect \mathscr{I} in null geodesic circles in $\lambda=$ const.:

$$
u=Z(\lambda, \tilde{\lambda}), \quad \frac{\partial^{2} Z}{\partial \tilde{\lambda}^{2}}=\sigma(Z, \lambda, \tilde{\lambda}) .
$$

\leadsto Zollfrei projective structure on each $\lambda=$ const..

- In general \exists nonlinear correspondence [Lebrun \& M , Joififeoom. oz]:

$$
\{\text { Zollfrei proj. str. } \leftrightarrow \sigma\} \stackrel{\text { 1:1 }}{\leftrightarrows}\{h(U)\} \text {. }
$$

- In linear theory map is analogue of radon transform

$$
\sigma(u, \tilde{\lambda}, \lambda)=\partial_{u}^{2} \int_{-\infty}^{\infty} d t h\left(\mu^{\dot{\alpha}}+t \tilde{\lambda}^{\dot{\alpha}}, \lambda_{\alpha}\right) .
$$

$L w_{1+\infty}$ symmetries of sigma model

Recall, $L w_{1+\infty}=\lambda$-dependent Poisson diffeos of $\mu^{\dot{\alpha}}$-plane.

- For sigma model action

$$
S[Z \sigma)]=\operatorname{Im} \int_{\mathbb{D}} d \sigma\left[\mu \bar{\partial}_{\sigma} \mu\right]+\oint_{\partial \mathbb{D}} 2 h d \sigma
$$

Poisson diffeo with Hamiltonian $g(W)$ gives

$$
\delta \mu^{\dot{\alpha}}=\left\{g, \mu^{\dot{\alpha}}\right\}=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial g}{\partial \mu^{\dot{\beta}}}, \quad \delta h=\{h, g\} .
$$

- Symmetry $\Rightarrow \delta h=0 \Rightarrow g$ holomorphic, $\bar{\partial}_{h} g=0$.
- If g is real \leadsto diffeomorphism of $\mathbb{P T}_{\mathbb{R}}$, coordinate freedom. Cf, supertranslations, BMS etc..
- If g is imaginary, defines an infinitesimal generating function \leadsto perturbation i.e. graviton, perturbation of metric.

Quantization

- Einstein gravity tree $=$ tree sigma model correlator (MHV).
- Does full quantum sigma model correlator \leftrightarrow gravity loops?

$$
\langle 12\rangle^{2 n} \prod_{i=3}^{n} \frac{1}{\langle 1 i\rangle^{2}\langle 2 i\rangle^{2}} \exp \left[-\frac{\mathrm{i} \alpha}{8 \pi} \sum_{j \neq i} \frac{[i j]}{\langle i j\rangle} \frac{\langle 1 i\rangle^{2}\langle 2 j\rangle^{2}}{\langle 12\rangle^{2}}\right]
$$

- Does quantum sigma model realize $W_{1+\infty}$ or W-gravity?
- Moyal quantization of $\mu^{\dot{\alpha}}$-plane and 'palatial twistors'?

Questions:

- $N=8$ formulation with S_{n} symmetry?
- Axiomatize correspondence between celestial OPES and twistor sigma model/ambitwistor string OPEs.
[Adamo, Casali, Sharma, Wei, arxiv: 2111.02279]

