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> USe wmath.nar0s04582, Duke Math (2007), Lerun & M. 10 fOormulate global SD
gravity from holmorphic discs in twistor space.
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from chiral sigma model with Lw; ., vertex operators.



Gravity amplitudes at MHV (— — + ... + helicity)

Scatter n gravitons with momenta k;, i =1,...n.

> In 2-component spinors, null momenta ki, = KiaKia-
Spinor helicity notation:

(12) := Rk1ak5, [12] == /<c1d/$g‘, (112I13] = H1ak§‘dm3d .
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Gravity amplitudes at MHV (— — + ... + helicity)

Scatter n gravitons with momenta k;, i =1,...n.

> In 2-component spinors, null momenta ki, = KiaKia-
Spinor helicity notation:

(12) := Rk1ak5, [12] == /<c1d/$g‘, (112I13] = /{1ak§d1€3d .
P Hodges 2012 MHV formula, define n x n matrix:
| a i#]
Hj = [ik] C
—> Tk i=j.
Then: M(1,...,n) = (12)% det "H 6*(=, k)
Why???
> [ is Laplace matrix for matrix-tree theorem ~(gene me 2012]

» Sum of trees [Bern,Dixon,Perelstein,Rosowski '98, Nguyen, Spradlin, Volovich, Wen *10]

M = (Vq...Vy_2)uee from Sigma model.



Holography from null infinity, and amplitudes

» Celestial Holography seeks to
find boundary theory that S

constructs 4d gravity from .#. A
U =Z(x,..)

» Newman '70’s: tries to rebuild m

space-time from ‘cuts’ of .#. 7
> VYields instead ‘“H-space’ a z*
complex self-dual space-time.



Holography from null infinity, and amplitudes

» Celestial Holography seeks to
find boundary theory that S

constructs 4d gravity from .#. A
U =Z(x,..)

» Newman '70’s: tries to rebuild m

space-time from ‘cuts’ of .#. 7

> Yields instead ‘H-space’ a a
complex self-dual space-time.

» Penrose: ~» asymptotic Twistor space
PZ ~ CP3, the nonlinear graviton.

» Embodies integrability of SD sector.

» Chiral sigma models in twistor space give
full 4d gravity S-matrix expanding around
SD sector; manifests Lwy ., symmetry.



Conformal geometry in 4d split signature & self-duality
Conformal group = SO(3, 3) acts globally on:
» Conformal completion: R2¥2 U .# = §? x §2/Z, or S? x S2:

ds® = Q°(dsg; — 0sg,)

Coordinates (x,y) € R3 x R3, |x| = |y| = 1.
> Zp acts by (x,y) — (=X, —Y).

» Forflatcase A=0:Q ~ XS%},S and

I ={x3=y3} =Rx S"x S".
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Conformal group = SO(3, 3) acts globally on:
» Conformal completion: R2¥2 U .# = §? x §2/Z, or S? x S2:
ds® = Q°(dsg; — 0sg,)
Coordinates (x,y) € R3 x R3, |x| = |y| = 1.
» Zo acts by (X,y) — (=X, —Y).
» Forflatcase A=0:Q ~ XS% and

Y3’

I ={x3=y3} =Rx S"x S".
Curvature: For curved (M*, g), 2-forms split: Q2, = Q2 @ Q2~

+ . .
Riem — <Wey| + 8§ Riccig > '

Riccig Weyl™ + So

This talk: expand around Weyl~ = 0 = Ricci, so 92~ is flat.



« and g-surfaces and the Zollfrei condition
The split signature conformally flat metric

ds® = Q?(dsg; — dsg,)

admits a 3-parameter family of g-planes denoted by PTk:
> respectively totally null ASD S?s given by

x=Ay, AecSO(3)=RP>.

» Curved case with Weyl~ = 0 = (-planes survive as
B-surfaces.

» (-surfaces are projectively flat.
> If compact, 5-surfaces are necessarily S? or RP2.
» Null geodesics are projectively RP's or double cover.



« and g-surfaces and the Zollfrei condition
The split signature conformally flat metric

ds® = Q?(dsg; — dsg,)

admits a 3-parameter family of g-planes denoted by PTk:
> respectively totally null ASD S?s given by

x=Ay, AecSO(3)=RP>.

» Curved case with Weyl~ = 0 = (-planes survive as
B-surfaces.

» (-surfaces are projectively flat.

> If compact, 5-surfaces are necessarily S? or RP2.

» Null geodesics are projectively RP's or double cover.
Following Guillemin we define:
Definition
(M, g) is Zollfrei if all null geodesics are embedded S's.



Conformally self-dual case

Theorem (LeBrun & M. [Duke Math J. 2007, math.dg/0504582.)

(M*,[g]) Zollfrei & SD Weyl-curvature # 0, = M = S? x S2.
There is a1 : 1-correspondence between:

1. SD conformal structures on S? x S? near flat model &
2. Deformations PTy of standard embedding of RP® ¢ CP3.
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(M*,[g]) Zollfrei & SD Weyl-curvature # 0, = M = S? x S2.
There is a1 : 1-correspondence between:

1. SD conformal structures on S? x S? near flat model &
2. Deformations PTy of standard embedding of RP® ¢ CP3.

Let iR® x RP? ¢ CP® be a neighbourhood of of RP? in CP?,

v P Z=U+iV
3
IR FW PTR
U
| RP3

Figure: PTr = {graph V = F(U)} for some F : RP® — RS,

F(U) is free data for solution.



Conformally self-dual case

Theorem (LeBrun & M. [Duke Math J. 2007, math.dg/0504582.)

(M*,[g]) Zollfrei & SD Weyl-curvature # 0, = M = S? x S2.
There is a1 : 1-correspondence between:

1. SD conformal structures on S? x S? near flat model &
2. Deformations PTy of standard embedding of RP® ¢ CP3.

Reconstruction:
Each x € M* + holomorphic discs Dy ¢ CP® with 9Dy C PTg:

Ccp?

PTgr
d

RP3

iR3 Dx

Figure: D = hol. disc ¢ CP® with D C PTy.



Reconstruction of M* from twistor space PTr
Each x € M* > holomorphic disc Dy ¢ CP® with 0Dy C PT.
» D, has topological degree one.
» Reconstruct M* from PTy space of all such disks:

M* = {Moduli of degree-1 hol. disks: Dy c CP?, 0Dy C PTg} .

» Gives compact 4d moduli space topology M* = S x S2.

» M admits a conformal structure for which 0Dy, N ODy = Z
means that x, x’ sit on same -plane:

Space-time Twistor Space

T w

Xl

— 7



Restriction to Einstein vacuum case

Which PTy ¢ CP® give SD Einstein g € [g] on S? x §2?
> Let ZA = (Ao, %), « = 0,1,& = 0, 1 be homogenous
coordinates for CP3.
» Introduce Poisson structure and 1-form
as OF 0g of dg
{f.g} =¢ Baﬂdﬁ = {8#8#} ;
0 := P XodAs = (AN

of rank 2 and homogeneity degree —2 and 2 respectively.

Theorem (aer penrose 1976 )
A vacuum g € [g] exists when 0|pr, & {, }pr, are real.



Generating functions for Einstein embeddings

Explicitly in homogeneous coordinates:
> Let ZA = UA + iVA, with UA, VA € R,
» Let A(U) be an arbtrary function of homogeneity degree 2,

oh
— = 2h.
v ou

Proposition
All 'small’ SD Einstein vacuum twistor data <+ such h(U) with

Tg = {vAz {h,uA}} - {va —0,v° :edﬁ';;;.}

projectivising gives PTg.
The corresponding self-dual (2,2) vacuum metrics are Zollfrei
on S? x S? with null .# modelled by x3 = ys.



Poisson diffeos of plane & Lwy, ., symmetries

Wy = higher spin symmetries in 2d CFT (zamolodchikov 1980s].

For N — oo, classical w,, = Poisson diffeos of plane:  Hoppe::
» Plane has coords 1%, & = 0, 1 with Poisson bracket

{f7g} = 80‘4588/;5[88; ) EQBZE[dB].

» Loop algebra Lwy ., loop coord \y/\g, generators

(uO)P=m(ul)Ptm
—1\2p—r—1
Ao A

Qﬁ,r(ka,ﬂd)z , pEtmeN, reZ.

> Lwiy o algebrais {gh,, gis} = (2pn —2qm) ght% s



Poisson diffeos & Lwjy ., after Strominger

[Adamo, M., Sharma, 2110.06066.]

Wy = higher spin symmetries in 2d CFT zamolodchiov 1980s].
For N — oo, classical w,, = Poisson diffeos of plane: Hoppe;:

> Plane has coords p%, & = 0, 1 with Poisson bracket
.5 Of 0g
f = aﬁi.i.
» Generators of Lwy, ., = hamiltonians h(\, u) € C>*(PTR).
Thus:
» Lwj, = structure preserving diffeomorphisms of PTg.
> Here Lwf,  shifts RP® — PTg so

{SD gravity phase space} = Lw{, /LW > h(U)

Poisson bracket underpins Strominger’s Lwy, ., Symmetries.
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[Adamo, M., Sharma, 2110.06066.]

Wy = higher spin symmetries in 2d CFT zamolodchiov 1980s].
For N — oo, classical w,, = Poisson diffeos of plane: Hoppe;:

> Plane has coords p%, & = 0, 1 with Poisson bracket

.5 Of dg
= aﬁi_ _—
{f,g} =« B O

» Generators of Lwy, ., = hamiltonians h(\, u) € C>*(PTR).
Thus:

» Lwj, = structure preserving diffeomorphisms of PTg.

> Here Lwf,  shifts RP® — PTg so

{SD gravity phase space} = Lw{, /LW > h(U)

Poisson bracket underpins Strominger’s Lwy, ., Symmetries.

Question: Is this structure restricted to SD sector?



Holomorphic discs & open chiral twistor sigma models

Perturbation theory around SD sector
» Express disk as upper-half-plane D = {¢ € C,Imoc > 0}.

Lemma
Giveno; € R, and ZA € Tg, i = 1,...,k, then 3! disk thru Z/

with MA(o') holomorphic onD and Z(o)|sp C Tg.
> Z = (Ao, %) € Tr implies )\, real so MA = (0, m%),
» Action for holomorphy and boundary conditions:

SplZ(0), Z] = Im /D (mbmido + § n(Z)do

(spinor-helicity notation [ v] := pgv®.)



Gravity S-matrix on SD background via sigma model
Amplitudes are functionals M|h, hj] of gravitational data:
» he C>*(PTg, O(2))for fully nonlinear SD part,
> hj € C®°(PTg,O(—6)),i=1,..., k, ASD perturbations.
» For eigenstates of momentum kj. = k. Riq take:

hi:/td3t62(t)‘a_f'€ia)eit[%kf]v Bi:/ﬂgdz(t)\a—/iia)eit[uﬁi]



Gravity S-matrix on SD background via sigma model
Amplitudes are functionals M|h, h;] of gravitational data:
> he C*(PTg, O(2))for fully nonlinear SD part,
» hi € C°(PTg,O(—6)),i=1,...,k, ASD perturbations.
» For eigenstates of momentum kj. = k. Riq take:
at a1 at —
R B e e
PrOpOSition (Adapted from [Adamo, M. & Sharma, 2103.16984] to split signature. )

The amplitude for k ASD perturbations on SD background h is

=

M(h, h,-):/ S%[h, Z, o] det’ H Z)D3Zido; .
(S1><IPTR)k

Here S2°[h, Z;, o}] is the on-shell Sigma model action and

—

)\,-/\j)

(Z) = { S (? )

i
o i=1.




|deas in proof: the complete tree-level S-matrix
» Expand h = hy,1 + ...+ h, to 1st order in each h;,
momentum e-states, to give full perturbative amplitude.
» On shell action expands as tree correlator
S k41 + - 4+ hn Zioil = (Vi,y - Vi) tree + O(H?).
» Here the ‘vertex operators’ are V), = faD (oj)do;.
» Propagators for Sp give Poisson bracket {, }
[8 h; o h]

<h h >tree -

» Matrix-tree theorem then gives

n ..
<hk+1 . -hn>tree = det’H H hia Hij = [Z]J ) i?'é / etc.
i=k+1



|deas in proof: the complete tree-level S-matrix
» Expand h = hy,1 + ...+ h, to 1st order in each h;,
momentum e-states, to give full perturbative amplitude.
» On shell action expands as tree correlator

S k41 + - 4+ hn Zioil = (Vi,y - Vi) tree + O(H?).
» Here the ‘vertex operators’ are Vj, = faD hi(cj)do;.
» Propagators for Sp give Poisson bracket {, }
0,h; 0,h; if .
P | N U I

O'j—O'j O','—O'j

» Matrix-tree theorem then gives

n Iy
1 . .
<hk+1 Ce hn>tree = det /H I | h,‘, H’/ = 0'[1]0' s i #] etc.
i=k+1 e

n k
~ M(h;, B :/ det "H det'H hido; || hi(Z)D3Zdo; .
(hi. ) (81)1x (RP3)k j_lk_L J /il} i(£)D°Zido;

This is now equivalent to the Cachazo-Skinner formula.



Relation to Einstein-Hilbert action at k = 2

[Adamo, M, Sharma, 2103.16984] .
At k = 2, Mobius symmetry trivialises o integrals & det "H so

Mh, by, by] = /dzmdzuz el 22l 5081, 7, Z]

> Writing x*% = (u$, ug) this a space-time integral

Ml Bl = [ dxchor e S Lh, g o

Proposition
Let Q(x) := SP°[h, 1, n2]. Then Q2 is the Plebanskis first
potential (Kahler scalar) for the SD background metric
2 _ P9 44,08
asc = W dugdus .
The second variation of the Einstein-Hilbert action

52Sguh, by, hp] = / d*xe'kitR) X Q(x) = M(h, by, hy]

(Follows from Plebanski gravity action. )



Summary & conclusions

Geometry:

» Split signature SD vacuum metrics on S? x S? with
7 ~ 8! x 8" x R ++ C™ generating functions h on RP®,
defines deformed real slice PTg c CP3.

> Split signature twistors avoid ‘lightray’ or Cech-Dolbeault
transform manifesting Lw; ., directly.
Slogan: SD gravity phase space = Lwy", /LWy o

Sigma model:

» Reconstruction via open holomorphic discs leads to chiral
open sigma model that computes gravity amplitudes.

» MHYV formula gives theory underlying tree formalism of
Bern et. al. from 1998 & equals the Einstein-Hilbert action.

> Framework gives Lw{", _ action on full amplitude via vertex
operators that generate gravitons.
(Real generators are passive with vanishing charges).



Discussion

Exotic symmetries:
» Action of Lwy ., generator h on n-graviton amplitude
generates n + 1th graviton in sigma model OPE language.
» det’HdetH integrand < Lwy_ ., on PT and Lm on PT*.

> Lwy, . suffices at MHV; both needed beyond MHV but
dont commute!

» In ambitwistor-string, we can analyse vertex operators for
both sectors Vj, Vi with OPEs

Vh-Vir ~ Vg + .o but Vh-Vz ~ mess (1)

but mess resolves into scattering equations.
1-loop all +
» 1-loop all + becomes bubble in background on disc.
» Remains Lwy, o invariant.



Thank you!



Flat holography: the split signature story from .#
A celestial torus
Now .# =R x S' x S' with real coords (u, A\, X), A = A1/ Xo.
- % (dudR — dAdA + Rodi2 + R6dA? + . ) ,
where R=1/r,and .# = {R = 0}.
» The 0,5 are now real asymptotic shears that encode
respectively SD and ASD gravitational data.
» Twistors intersect .# in null geodesic circles in A = const.:
- 827 -
u=2(\N), e =o(Z,\N).
~» Zollfrei projective structure on each A = const..
» |n general 3 nonlinear correspondence [Lebrun & M, JbifiGeom. 02

ds®

{Zollfrei proj. str. «» o} AN {h(U)}.

» In linear theory map is analogue of radon transform

o(u, X\ \) = 85/ dt h(u® + th% \,) -



Lwi. ., symmetries of sigma model

Recall, Lwy ., = A-dependent Poisson diffeos of p%-plane.
» For sigma model action

S[Zo)] = Im /Dda [110511] + jim 2hdo

Poisson diffeo with Hamiltonian g(W) gives
0
lu’ _{ga a}_eaﬁ g’ 6h:{hag}
ouP

» Symmetry = 6h = 0 = g holomorphic, dng = 0.

» If g is real ~ diffeomorphism of PTg, coordinate freedom.
Cf, supertranslations, BMS etc..

» If g is imaginary, defines an infinitesimal generating
function ~» perturbation i.e. graviton, perturbation of metric.



Quantization

» Einstein gravity tree = tree sigma model correlator (MHV).
» Does full quantum sigma model correlator «+» gravity loops?

. 1 i ] (17)%(2))
(12)2n g A2 202 exp {&r;M (122 ] .
» Does quantum sigma model realize W, or W-gravity?
» Moyal quantization of ;%-plane and ‘palatial twistors’?
Questions:
» N = 8 formulation with S, symmetry?

» Axiomatize correspondence between celestial OPES and
twistor sigma model/ambitwistor string OPEs.

[Adamo, Casali, Sharma, Wei, arxiv: 2111.02279]



