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Introduction

• Information loss problem: is black hole evolution unitary ?

• We need to take quantum aspects into account:

semi-classical GR, quantized field propagate on a classical

background, but can influence its geometry by

back-reaction.

• Why two dimensions ? Easier to study analytically solvable

models, can help to gain some insight. If successful, one

may try to generalize to four dimensions.
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Classical CGHS model

SCGHS =
1
2π

∫
M

d2x
√
−g

{
e−2φ

[
R+4(∇φ)2+4λ2

]
− 1
2
(∇f )2

}
(1)

(Callan, Giddings, Harvey, Strominger, 1992)

• φ→ dilaton scalar field, e−φ ∼ radius,

• g→ two-dimensional spacetime metric,

• λ→ cosmological constant,

• f → classical matter.

→ Classical black hole solution, now we need to include

quantum matter.
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Semi-classical RST model

SRST = SCGHS −
2∑
i=1

κi
2π

∫
d2x

√
−g

{
1
2
(∇ψi)2 + (ψi + φ)R

}
(2)

(Russo, Susskind, Thorlacius, 1992)

• ψ1, ψ2 → auxiliary fields to take into account the

conformal anomaly, each in a different quantum state,

→ ”hybrid” quantum state.

• κ1, κ2 → central charges associated to ψ1, ψ2.
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Quantum states

• ψ1, ψ2 not completely determined by the equations

→ we fix them by choosing boundary conditions

(= quantum state),

→ impose value of quantum energy density T(q) at flat

infinity.

• Hartle-Hawking state: T(q) −→
∞

thermality

• Boulware state: T(q) −→
∞

0
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Hybrid quantum state

• For Hartle-Hawking and Boulware states: solutions are

known (see e.g. Sarkar, Solodukhin, Potaux, 2022).

• Hartle-Hawking: radiation observed at∞ ⇒ well suited to

physical particles (central charge κ > 0).

• Boulware: no radiation observed at∞ ⇒ well suited to

non-physical particles (e.g. ghosts, central charge κ < 0).

• Question: what happens when both physical and

non-physical particles are present ?

→ hybrid quantum state with κ1 > 0 and κ2 < 0,

→ we focus on the κ = κ1 + κ2 < 0 case.
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Static solution

Structure of a Damour-Solodukhin wormhole (no singularity,

no horizon),

→ black hole mimicker. 7



Dynamical solution

• Creation of an apparent horizon H but still no singularity.

• What about the radiation entropy ?
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Page curve

Define radiation entropy at infinity by

∂−S = 2π(−x−)T(q)−− (3)

(dS = T−1dE in asymptotically flat coordinates).

→ The change in entropy at infinity look like

→ Page Curve, sign of unitary evolution (Page, 2013).
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Conclusion

• Boulware particles drastically change the static spacetime

geometry: from black hole with Hawking radiation

(Hartle-Hawking state) to completely regular spacetime

with a wormhole throat.

• They also help in recovering all the information of the

system, as the Page curve shows.

• Is this reproducible in four dimensions ?
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Thank you!
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Full solutions

• Static solution:

Ω = (κ1+κ2)φ+e−2φ = −λ2x+x−−κ2
2

ln(−λ2x+x−)+M
λ
(4)

• Dynamical solution:

Ω = −λ2x+
(
x− +

m
λ3x+0

)
− κ2

2
ln(−λ2x+x−) + M+m

λ
(5)

where m is the energy of the shock wave.
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