Hybrid Quantum State in 2d Dilaton Gravity

Yohan Potaux, Institut Denis Poisson June 1st, 2023

Joint work with Debajyoti Sarkar and Sergey Solodukhin Based on 2112.03855 and 2212.13208 • Information loss problem: is black hole evolution unitary ?

Introduction

- Information loss problem: is black hole evolution unitary ?
- We need to take quantum aspects into account: semi-classical GR, quantized field propagate on a classical background, but can influence its geometry by back-reaction.

Introduction

- Information loss problem: is black hole evolution unitary ?
- We need to take quantum aspects into account: semi-classical GR, quantized field propagate on a classical background, but can influence its geometry by back-reaction.
- Why two dimensions ? Easier to study analytically solvable models, can help to gain some insight. If successful, one may try to generalize to four dimensions.

$$S_{CGHS} = \frac{1}{2\pi} \int_{M} d^{2}x \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\nabla\phi)^{2} + 4\lambda^{2} \right] - \frac{1}{2} (\nabla f)^{2} \right\}$$
(1)

$$S_{CGHS} = \frac{1}{2\pi} \int_{M} d^{2}x \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\nabla\phi)^{2} + 4\lambda^{2} \right] - \frac{1}{2} (\nabla f)^{2} \right\}$$
(1)

: $\phi \rightarrow$ dilaton scalar field, $e^{-\phi} \sim$ radius,

$$S_{CGHS} = \frac{1}{2\pi} \int_{M} d^2 x \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\nabla \phi)^2 + 4\lambda^2 \right] - \frac{1}{2} (\nabla f)^2 \right\}$$
(1)

- : $\phi
 ightarrow$ dilaton scalar field, $e^{-\phi} \sim$ radius,
- $\cdot \, g
 ightarrow$ two-dimensional spacetime metric,
- $\cdot \ \lambda
 ightarrow {
 m cosmological constant,}$
- \cdot $f \rightarrow$ classical matter.

$$S_{CGHS} = \frac{1}{2\pi} \int_{M} d^2 x \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\nabla \phi)^2 + 4\lambda^2 \right] - \frac{1}{2} (\nabla f)^2 \right\}$$
(1)

- : $\phi \rightarrow$ dilaton scalar field, $e^{-\phi} \sim$ radius,
- $\cdot \, g
 ightarrow$ two-dimensional spacetime metric,
- · $\lambda \rightarrow \text{cosmological constant,}$
- \cdot f
 ightarrow classical matter.
- \rightarrow Classical black hole solution, now we need to include quantum matter.

Semi-classical RST model

$$\mathcal{S}_{RST} = \mathcal{S}_{CGHS} - \sum_{i=1}^{2} \frac{\kappa_i}{2\pi} \int d^2 x \sqrt{-g} \left\{ \frac{1}{2} (\nabla \psi_i)^2 + (\psi_i + \phi) R \right\}$$
(2)

(Russo, Susskind, Thorlacius, 1992)

Semi-classical RST model

$$\mathcal{S}_{RST} = \mathcal{S}_{CGHS} - \sum_{i=1}^{2} \frac{\kappa_i}{2\pi} \int d^2 x \sqrt{-g} \left\{ \frac{1}{2} (\nabla \psi_i)^2 + (\psi_i + \phi) R \right\}$$
(2)

(Russo, Susskind, Thorlacius, 1992)

• $\psi_1, \psi_2 \rightarrow$ auxiliary fields to take into account the conformal anomaly, each in a different quantum state, \rightarrow "hybrid" quantum state.

Semi-classical RST model

$$\mathcal{S}_{RST} = \mathcal{S}_{CGHS} - \sum_{i=1}^{2} \frac{\kappa_i}{2\pi} \int d^2 x \sqrt{-g} \left\{ \frac{1}{2} (\nabla \psi_i)^2 + (\psi_i + \phi) R \right\}$$
(2)

(Russo, Susskind, Thorlacius, 1992)

- $\psi_1, \psi_2 \rightarrow$ auxiliary fields to take into account the conformal anomaly, each in a different quantum state, \rightarrow "hybrid" quantum state.
- $\kappa_1, \kappa_2 \rightarrow$ central charges associated to ψ_1, ψ_2 .

+ ψ_1, ψ_2 not completely determined by the equations

• ψ_1, ψ_2 not completely determined by the equations \rightarrow we fix them by choosing boundary conditions (= quantum state),

- ψ_1, ψ_2 not completely determined by the equations \rightarrow we fix them by choosing boundary conditions (= quantum state),
 - \rightarrow impose value of quantum energy density $T^{(q)}$ at flat infinity.

• ψ_1, ψ_2 not completely determined by the equations \rightarrow we fix them by choosing boundary conditions (= quantum state),

 \rightarrow impose value of quantum energy density $T^{(q)}$ at flat infinity.

• Hartle-Hawking state: $T^{(q)} \xrightarrow{\infty}$ thermality

• ψ_1, ψ_2 not completely determined by the equations \rightarrow we fix them by choosing boundary conditions (= quantum state),

 \rightarrow impose value of quantum energy density $T^{(q)}$ at flat infinity.

- Hartle-Hawking state: $T^{(q)} \rightarrow$ thermality
- **Boulware** state: $T^{(q)} \rightarrow 0$

• For Hartle-Hawking and Boulware states: solutions are known (see *e.g.* Sarkar, Solodukhin, Potaux, 2022).

- For Hartle-Hawking and Boulware states: solutions are known (see *e.g.* Sarkar, Solodukhin, Potaux, 2022).
- Hartle-Hawking: radiation observed at $\infty \Rightarrow$ well suited to physical particles (central charge $\kappa > 0$).

- For Hartle-Hawking and Boulware states: solutions are known (see *e.g.* Sarkar, Solodukhin, Potaux, 2022).
- Hartle-Hawking: radiation observed at $\infty \Rightarrow$ well suited to physical particles (central charge $\kappa > 0$).
- Boulware: no radiation observed at $\infty \Rightarrow$ well suited to non-physical particles (*e.g.* ghosts, central charge $\kappa < 0$).

- For Hartle-Hawking and Boulware states: solutions are known (see *e.g.* Sarkar, Solodukhin, Potaux, 2022).
- Hartle-Hawking: radiation observed at $\infty \Rightarrow$ well suited to physical particles (central charge $\kappa > 0$).
- Boulware: no radiation observed at $\infty \Rightarrow$ well suited to non-physical particles (*e.g.* ghosts, central charge $\kappa < 0$).
- **Question**: what happens when both physical and non-physical particles are present ?

- For Hartle-Hawking and Boulware states: solutions are known (see *e.g.* Sarkar, Solodukhin, Potaux, 2022).
- Hartle-Hawking: radiation observed at $\infty \Rightarrow$ well suited to physical particles (central charge $\kappa > 0$).
- Boulware: no radiation observed at $\infty \Rightarrow$ well suited to non-physical particles (*e.g.* ghosts, central charge $\kappa < 0$).
- **Question**: what happens when both physical and non-physical particles are present ?

ightarrow hybrid quantum state with $\kappa_1 > 0$ and $\kappa_2 < 0$,

 \rightarrow we focus on the $\kappa = \kappa_1 + \kappa_2 < 0$ case.

Static solution

Structure of a Damour-Solodukhin wormhole (no singularity, no horizon),

 \rightarrow black hole mimicker.

Dynamical solution

Dynamical solution

 $\cdot\,$ Creation of an apparent horizon ${\cal H}$ but still no singularity.

Dynamical solution

- \cdot Creation of an apparent horizon ${\cal H}$ but still no singularity.
- What about the radiation entropy ?

Define radiation entropy at infinity by

$$\partial_{-}S = 2\pi(-x^{-})T_{--}^{(q)} \tag{3}$$

 $(dS = T^{-1}dE$ in asymptotically flat coordinates).

$$\partial_{-}S = 2\pi(-x^{-})T^{(q)}_{--}$$
 (3)

 $(dS = T^{-1}dE$ in asymptotically flat coordinates).

 \rightarrow Page Curve, sign of unitary evolution (Page, 2013).

 Boulware particles drastically change the static spacetime geometry: from black hole with Hawking radiation (Hartle-Hawking state) to completely regular spacetime with a wormhole throat.

- Boulware particles drastically change the static spacetime geometry: from black hole with Hawking radiation (Hartle-Hawking state) to completely regular spacetime with a wormhole throat.
- They also help in recovering all the information of the system, as the Page curve shows.

- Boulware particles drastically change the static spacetime geometry: from black hole with Hawking radiation (Hartle-Hawking state) to completely regular spacetime with a wormhole throat.
- They also help in recovering all the information of the system, as the Page curve shows.
- Is this reproducible in four dimensions ?

Thank you!

• Static solution:

$$\Omega = (\kappa_1 + \kappa_2)\phi + e^{-2\phi} = -\lambda^2 x^+ x^- - \frac{\kappa_2}{2} \ln(-\lambda^2 x^+ x^-) + \frac{M}{\lambda}$$
(4)

• Dynamical solution:

$$\Omega = -\lambda^2 x^+ \left(x^- + \frac{m}{\lambda^3 x_0^+} \right) - \frac{\kappa_2}{2} \ln(-\lambda^2 x^+ x^-) + \frac{M+m}{\lambda}$$
(5)

where m is the energy of the shock wave.