Parametrization and localization of Einstein's initial and asymptotic data sets

Philippe G. LeFloch

Sorbonne Université Laboratoire Jacques-Louis Lions Centre National de la Recherche Scientifique Blog: philippelefloch.org

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parametrization and localization of Einstein's initial and asymptotic data sets

Philippe G. LeFloch Sorbonne Université Laboratoire Jacques-Louis Lions Centre National de la Recherche Scientifique Blog: philippelefloch.org

- construction of Einstein's initial data sets
- constraint equations: nonlinear elliptic, underdetermined, degenerate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- asymptotic properties on decay and blow-up
- gluing techniques, parametrization, localization

Parametrization and localization of Einstein's initial and asymptotic data sets

Philippe G. LeFloch Sorbonne Université Laboratoire Jacques-Louis Lions Centre National de la Recherche Scientifique Blog: philippelefloch.org

- construction of Einstein's initial data sets
- constraint equations: nonlinear elliptic, underdetermined, degenerate
- asymptotic properties on decay and blow-up
- gluing techniques, parametrization, localization

Two main objectives in this talk

• Scattering and classification for gravitational bouncing

with Bruno Le Floch (LPTHE, Sorbonne)

Gabriele Veneziano (CERN, Geneva)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Localized seed-to-solution method for isolated systems

with Bruno Le Floch (LPTHE, Sorbonne)

The-Cang Nguyen (Paris)

1. SCATTERING MAPS for GRAVITATIONAL BOUNCING Junctions between spacetimes

Regime of interest

- complex dynamics near singularities
 Belinsky, Khalatnikov, Lifshitz, Damour, etc.
- quiescent regime, monotone behavior oscillation-free

spatial derivatives negligible, observers cannot communicate

Einstein-matter system

scalar field, stiff or compressible fluid

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. SCATTERING MAPS for GRAVITATIONAL BOUNCING Junctions between spacetimes

Regime of interest

complex dynamics near singularities	Belinsky, Khalatnikov, Lifshitz, Damour, etc.
 quiescent regime, monotone behavio 	or oscillation-free
spatial deriv	atives negligible, observers cannot communicate
 Einstein-matter system 	scalar field, stiff or compressible fluid
Junction conditions	asymptotics near a singularity hypersurface
bouncing behavior	contracting/expanding singularity hypersurfaces
beyond Israel junction condition (Penrose, cu	it and paste) regularity hypersurfaces
 Objective: parametrize all meaningf 	ul junctions physically, mathematically
lite	erature: special junctions, symmetric spacetimes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. SCATTERING MAPS for GRAVITATIONAL BOUNCING Junctions between spacetimes

Regime of interest

J

 complex dynamics near singularities 	Belinsky, Khalatnikov, Lifshitz, Damour, etc.
 quiescent regime, monotone behavior 	oscillation-free
spatial deriva	tives negligible, observers cannot communicate
 Einstein-matter system 	scalar field, stiff or compressible fluid
unction conditions	asymptotics near a singularity hypersurface
 bouncing behavior 	contracting/expanding singularity hypersurfaces
 beyond Israel junction condition (Penrose, cut 	and paste) regularity hypersurfaces
 Objective: parametrize all meaningful 	l junctions physically, mathematically
liter	rature: special junctions, symmetric spacetimes

Proposed framework

- work with general spacetimes, asymptotic version of the constraints
- (past, future) singularity scattering data/maps
- classification/parametrization
- S-cyclic spacetime

degrees of freedom

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

S : $(g^-, K^-, \phi_0^-, \phi_1^-) \mapsto (g^+, K^+, \phi_0^+, \phi_1^+)$

ADM formulation

Gaussian foliation by spacelike hypersurfaces

$$\mathcal{M}^{(4)} = \bigcup_{\tau} \mathcal{H}_{\tau}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $g^{(4)} = -d au^2 + g(au)$ $g(au) = g_{ij}(au) dx^i dx^j$ au near zero

ADM formulation

Gaussian foliation by spacelike hypersurfaces

$$\mathcal{M}^{(4)} = \bigcup_{\tau} \mathcal{H}_{\tau}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $g^{(4)} = -d au^2 + g(au)$ $g(au) = g_{ij}(au) dx^i dx^j$ au near zero

Einstein's evolution equations

induced metric g, extrinsic curvature K

 $\partial_{\tau} g_{ij} = -2 \, K_{ij} \qquad \qquad \partial_{\tau} K^i_j = \operatorname{Tr}(K) K^i_j + R^i_j - 8\pi \, M^i_j$

ADM formulation

Gaussian foliation by spacelike hypersurfaces

 $\mathcal{M}^{(4)} = \bigcup_{\tau} \mathcal{H}_{\tau}$

 $g^{(4)}=-d au^2+g(au)$ $g(au)=g_{ij}(au)dx^idx^j$ au near zero

Einstein's evolution equations

induced metric g, extrinsic curvature K

 $\partial_{\tau} g_{ij} = -2 \, \mathcal{K}_{ij} \qquad \qquad \partial_{\tau} \mathcal{K}^{i}_{j} = \operatorname{Tr}(\mathcal{K}) \mathcal{K}^{i}_{j} + \mathcal{R}^{i}_{j} - 8\pi \, \mathcal{M}^{i}_{j}$

 $M_j^i(\phi) = \frac{1}{2}\rho g_j^i + T_j^i - \frac{1}{2}\mathrm{Tr}(T)g_j^i$

Einstein's constraints

Hamiltonian, momentum, nonlinear elliptic

 $R + |K|^2 - \operatorname{Tr}(K^2) = 16\pi\rho$

 $\nabla_i K_i^i - \nabla_i (\mathrm{Tr} K) = 8\pi J_i$

• wave equation $\prod_{g^{(4)}} \phi = 0$ for a scalar field ϕ

expressions for ρ , J_i

ADM formulation

• Gaussian foliation by spacelike hypersurfaces

 $\mathcal{M}^{(4)} = \bigcup_{\tau} \mathcal{H}_{\tau}$

 $g^{(4)}=-d au^2+g(au)$ $g(au)=g_{ij}(au)dx^idx^j$ au near zero

Einstein's evolution equations

induced metric g, extrinsic curvature K

 $\partial_{\tau} g_{ij} = -2 \, K_{ij} \qquad \qquad \partial_{\tau} K_j^i = \operatorname{Tr}(K) K_j^i + R_j^i - 8\pi \, M_j^i$

 $M_j^i(\phi) = \frac{1}{2}\rho g_j^i + T_j^i - \frac{1}{2}\mathrm{Tr}(T)g_j^i$

Einstein's constraints

Hamiltonian, momentum, nonlinear elliptic

 $R + |K|^2 - \operatorname{Tr}(K^2) = 16\pi\rho$

 $\nabla_i K_i^i - \nabla_i (\mathrm{Tr} K) = 8\pi J_i$

• wave equation $\prod_{g^{(4)}} \phi = 0$ for a scalar field ϕ

expressions for ρ , J_i

Behavior near a singularity hypersurface

approximate solution

A typical asymptotic behavior: the Kasner profiles

$$\begin{split} g^{*}_{\text{Kasner}}(\tau, x) &= (-\tau)^{2p_{1}(x)} (dx^{1})^{2} + (-\tau)^{2p_{2}(x)} (dx^{2})^{2} + (-\tau)^{2p_{3}(x)} (dx^{3})^{2} \\ \mathcal{K}^{*}_{\text{Kasner}}(\tau, x) &= \frac{-1}{\tau} \text{diag}(p_{1}, p_{2}, p_{3})(x) \\ \phi^{*}_{\text{Kasner}}(\tau, x) &= \phi^{-}_{0}(x) \log |\tau| + \phi^{-}_{1}(x) \end{split}$$

A typical asymptotic behavior: the Kasner profiles

$$g_{\text{Kasner}}^{*}(\tau, x) = (-\tau)^{2p_{1}(x)} (dx^{1})^{2} + (-\tau)^{2p_{2}(x)} (dx^{2})^{2} + (-\tau)^{2p_{3}(x)} (dx^{3})^{2}$$
$$K_{\text{Kasner}}^{*}(\tau, x) = \frac{-1}{\tau} \text{diag}(p_{1}, p_{2}, p_{3})(x)$$
$$\phi_{\text{Kasner}}^{*}(\tau, x) = \phi_{0}^{-}(x) \log |\tau| + \phi_{1}^{-}(x)$$

- In this case, the singularity data are the
 - Euclidean metric g⁻
 - tensor K^- with constant eigenvectors
 - $K^- \equiv diag(p_1, p_2, p_3)$ in some coordinates
 - exponents p_1, p_2, p_3 possibly depending upon the spatial variable x

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- matter data (ϕ_0^-, ϕ_1^-)
- This is an "asymptotic profile", in a sense we define next.

A typical asymptotic behavior: the Kasner profiles

$$g_{\text{Kasner}}^{*}(\tau, x) = (-\tau)^{2p_{1}(x)} (dx^{1})^{2} + (-\tau)^{2p_{2}(x)} (dx^{2})^{2} + (-\tau)^{2p_{3}(x)} (dx^{3})^{2}$$
$$K_{\text{Kasner}}^{*}(\tau, x) = \frac{-1}{\tau} \text{diag}(p_{1}, p_{2}, p_{3})(x)$$
$$\phi_{\text{Kasner}}^{*}(\tau, x) = \phi_{0}^{-}(x) \log |\tau| + \phi_{1}^{-}(x)$$

- In this case, the singularity data are the
 - Euclidean metric g⁻
 - tensor K^- with constant eigenvectors
 - $K^- \equiv diag(p_1, p_2, p_3)$ in some coordinates
 - exponents p_1, p_2, p_3 possibly depending upon the spatial variable x
 - matter data (ϕ_0^-, ϕ_1^-)
- This is an "asymptotic profile", in a sense we define next.

Our standpoint

- a systematic study of the asymptotic data
- parametrize and analyze an asymptotic version of the Einstein constraints

formulation and parametrization of junction conditions

A singularity hypersurface is a given 3-manifold \mathcal{H} .

Definition

(Past) asymptotic profile associated with some given data $(g^-, K^-, \phi_0^-, \phi_1^-)$ is the ancient geometric flow defined on \mathcal{H} by

 $\tau \in (-\infty, \mathbf{0}) \mapsto (g^*, K^*, \phi^*)(\tau)$

 $g^{*}(\tau) = |\tau|^{2K^{-}}g^{-} \qquad K^{*}(\tau) = \frac{-1}{\tau}K^{-} \qquad \phi^{*}(\tau) = \phi_{0}^{-}\log|\tau| + \phi_{1}^{-}$

A typical example: Kasner profiles

A singularity hypersurface is a given 3-manifold \mathcal{H} .

Definition

(Past) asymptotic profile associated with some given data $(g^-, K^-, \phi_0^-, \phi_1^-)$ is the ancient geometric flow defined on \mathcal{H} by

 $\tau \in (-\infty, \mathbf{0}) \mapsto \left(\mathbf{g}^*, \mathbf{K}^*, \phi^* \right) (\tau)$

 $g^{*}(\tau) = |\tau|^{2\kappa^{-}}g^{-} \qquad \mathcal{K}^{*}(\tau) = \frac{-1}{\tau}\mathcal{K}^{-} \qquad \phi^{*}(\tau) = \phi_{0}^{-}\log|\tau| + \phi_{1}^{-}$

A typical example: Kasner profiles

(Past) singularity initial data set on a 3-manifold \mathcal{H} two symmetric 2-tensor fields (g^-, K^-) Riemannian metric g^- two scalar fields (ϕ_0^-, ϕ_1^-) CMC symmetric (1, 1)-tensor $\operatorname{Tr}(K^-) = 1$ Hamiltonian constraint $1 - |K^-|^2 = 8\pi (\phi_0^-)^2$ momentum constraints $\operatorname{div}_{g^-}(K^-) = 8\pi \phi_0^- d\phi_1^$ which we refer to as the Einstein's asymptotic constraints.

Notation $I(\mathcal{H})$: space of all singularity data $(g^-, K^-, \phi_0^-, \phi_1^-)$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Scattering maps and gluing

Past-to-future singularity scattering map on a manifold $\mathcal H$

 $\mathbf{S}:\mathbf{I}(\mathcal{H})\to\mathbf{I}(\mathcal{H}) \qquad (g^-,K^-,\phi_0^-,\phi_1^-)\mapsto (g^+,K^+,\phi_0^+,\phi_1^+)$

- diffeomorphism-covariant
- ► pointwise or ultra-local map pointwise values only $S(g^-, K^-, \phi_0^-, \phi_1^-)(p)$ depends only on $(g^-, K^-, \phi_0^-, \phi_1^-)(p)$
- quiescent regime $K^- > 0$ and $K^+ > 0$

coordinate invariant

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Scattering maps and gluing

Past-to-future singularity scattering map on a manifold ${\mathcal H}$

 $\mathbf{S}:\mathbf{I}(\mathcal{H})\to\mathbf{I}(\mathcal{H}) \qquad (g^-,K^-,\phi_0^-,\phi_1^-)\mapsto (g^+,K^+,\phi_0^+,\phi_1^+)$

- diffeomorphism-covariant
- ► pointwise or ultra-local map pointwise values only $S(g^-, K^-, \phi_0^-, \phi_1^-)(p)$ depends only on $(g^-, K^-, \phi_0^-, \phi_1^-)(p)$
- quiescent regime $K^- > 0$ and $K^+ > 0$

Singular junction condition

- class of manifolds \mathcal{M}^4 with Lorentzian metric $g^{(4)}$ and scalar field ϕ
- $g^{(4)}$ and ϕ bounded outside a singularity locus $\mathcal{L} \subset \mathcal{M}^4$
- assume the existence of rescaled limits

$$\begin{aligned} (\boldsymbol{g}^{\pm},\boldsymbol{K}^{\pm}) &= \lim_{\substack{\tau \to 0 \\ \tau \gtrless 0}} \left(|\tau|^{2\tau\boldsymbol{K}} \boldsymbol{g}, \ -\tau\boldsymbol{K} \right) \\ (\phi_0^{\pm},\phi_1^{\pm}) &= \lim_{\substack{\tau \to 0 \\ \tau \gtrless 0}} \left(\tau \partial_\tau \phi, \ \phi - \tau \log |\tau| \partial_\tau \phi \right) \end{aligned}$$

coordinate invariant

(日) (同) (三) (三) (三) (○) (○)

Scattering maps and gluing

Past-to-future singularity scattering map on a manifold \mathcal{H}

 $\mathbf{S}: \mathbf{I}(\mathcal{H}) \to \mathbf{I}(\mathcal{H})$ $(\mathbf{g}^-, \mathbf{K}^-, \phi_0^-, \phi_1^-) \mapsto (\mathbf{g}^+, \mathbf{K}^+, \phi_0^+, \phi_1^+)$

- diffeomorphism-covariant
- pointwise or ultra-local map $S(g^{-}, K^{-}, \phi_{0}^{-}, \phi_{1}^{-})(p)$ depends only on $(g^{-}, K^{-}, \phi_{0}^{-}, \phi_{1}^{-})(p)$
- quiescent regime $K^- > 0$ and $K^+ > 0$

Singular junction condition

- class of manifolds \mathcal{M}^4 with Lorentzian metric $g^{(4)}$ and scalar field ϕ
- $g^{(4)}$ and ϕ bounded outside a singularity locus $\mathcal{L} \subset \mathcal{M}^4$
- assume the existence of rescaled limits

$$(\boldsymbol{g}^{\pm}, \boldsymbol{K}^{\pm}) = \lim_{\substack{\tau \to 0 \\ \tau \gtrless 0}} \left(|\tau|^{2\tau\boldsymbol{K}} \boldsymbol{g}, -\tau\boldsymbol{K} \right)$$
$$(\phi_0^{\pm}, \phi_1^{\pm}) = \lim_{\substack{\tau \to 0 \\ \tau \gtrless 0}} \left(\tau \partial_\tau \phi, \ \phi - \tau \log |\tau| \partial_\tau \phi \right)$$

relation between the past / future singularity data

$$(g^+, K^+, \phi_0^+, \phi_1^+) = \mathbf{S}(g^-, K^-, \phi_0^-, \phi_1^-)$$

coordinate invariant

pointwise values only

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Local gluing at singularities

B. Le Floch, PLF, G. Veneziano

- a three-manifold \mathcal{H}_0 and a quiescence-preserving scattering map $\boldsymbol{\mathsf{S}}$
- past singularity data $({\it g}^-,{\it K}^-,\phi_0^-,\phi_1^-)$ defined on ${\cal H}_0$

Local gluing at singularities

B. Le Floch, PLF, G. Veneziano

- a three-manifold \mathcal{H}_0 and a quiescence-preserving scattering map $\boldsymbol{\mathsf{S}}$
- past singularity data $({\it g}^-,{\it K}^-,\phi_0^-,\phi_1^-)$ defined on ${\cal H}_0$

Then:

- a **S**-spacetime $(\mathcal{M}^{(4)}, g^{(4)})$ with singularity locus \mathcal{H}_0
- a local Gaussian foliation $\mathcal{M}^{(4)} = \bigcup_{\tau \in [\tau_{-1}, \tau_1]} \mathcal{H}_{\tau}$ with time function τ
- the flow $\tau \mapsto (g(\tau), K(\tau), \phi(\tau))$ satisfies the Einstein equations coupled to a scalar field ϕ away from $\tau = 0$
- the junction $(g^+, \mathcal{K}^+, \phi_0^+, \phi_1^+) = \mathbf{S}(g^-, \mathcal{K}^-, \phi_0^-, \phi_1^-)$ holds on \mathcal{H}_0 .

Local gluing at singularities

B. Le Floch, PLF, G. Veneziano

- a three-manifold \mathcal{H}_0 and a quiescence-preserving scattering map $\boldsymbol{\mathsf{S}}$
- past singularity data $({\it g}^-,{\it K}^-,\phi_0^-,\phi_1^-)$ defined on ${\cal H}_0$

Then:

- a **S**-spacetime $(\mathcal{M}^{(4)}, g^{(4)})$ with singularity locus \mathcal{H}_0
- a local Gaussian foliation $\mathcal{M}^{(4)} = \bigcup_{\tau \in [\tau_{-1}, \tau_1]} \mathcal{H}_{\tau}$ with time function τ
- the flow $\tau \mapsto (g(\tau), K(\tau), \phi(\tau))$ satisfies the Einstein equations coupled to a scalar field ϕ away from $\tau = 0$
- ▶ the junction $(g^+, K^+, \phi_0^+, \phi_1^+) = \mathbf{S}(g^-, K^-, \phi_0^-, \phi_1^-)$ holds on \mathcal{H}_0 .

If \mathcal{H} is compact:

- ▶ shrinking volume of the slices $\operatorname{Vol}_{g(\tau)}(\mathcal{H}_{\tau}) \to 0$
 - crushing singularity: mean curvature blowup $\lim_{\tau \to 0} \tau H(\tau) = -1$ on \mathcal{H}_{τ}
 - curvature singularity spacetime scalar (and Weyl) curvature

 $\lim_{\tau \to 0^{\pm}} \tau^2 R^{(4)}(\tau) = -8\pi (\phi_0^{\pm})^2$ on \mathcal{H}_{τ}

2. CLASSIFICATION OF GRAVITATIONAL SCATTERING MAPS

Proposed strategy

locality property

for any $p \in \mathcal{H}$

 $\mathsf{S}(g^-, \mathsf{K}^-, \phi_0^-, \phi_1^-)(p)$ depends upon $(g^-, \mathsf{K}^-, \phi_0^-, \phi_1^-)(p)$

and possibly derivatives at the point p, only

A singularity scattering map S is said to be

a ultra-local map if

pointwise values only

 ${f S}(g^-,K^-,\phi_0^-,\phi_1^-)(p)$ depends only on $(g^-,K^-,\phi_0^-,\phi_1^-)(p)$

2. CLASSIFICATION OF GRAVITATIONAL SCATTERING MAPS Proposed strategy

locality property

for any $p \in \mathcal{H}$

 $\mathsf{S}(g^-, \mathcal{K}^-, \phi_0^-, \phi_1^-)(p)$ depends upon $(g^-, \mathcal{K}^-, \phi_0^-, \phi_1^-)(p)$

and possibly derivatives at the point p, only

A singularity scattering map S is said to be

a ultra-local map if

pointwise values only

 $\mathsf{S}(g^-, \mathsf{K}^-, \phi_0^-, \phi_1^-)(p)$ depends only on $(g^-, \mathsf{K}^-, \phi_0^-, \phi_1^-)(p)$

• a conformal map if $g^*(\tau_-)$ and $g^*(\tau_+)$ differ by a conformal factor

for some $\tau_- < 0 < \tau_+$

• a rigidly conformal map if g^+ and g^- differ by a conformal factor

2. CLASSIFICATION OF GRAVITATIONAL SCATTERING MAPS Proposed strategy

locality property

for any $p \in \mathcal{H}$

 $\mathsf{S}(g^-, \mathcal{K}^-, \phi_0^-, \phi_1^-)(p)$ depends upon $(g^-, \mathcal{K}^-, \phi_0^-, \phi_1^-)(p)$

and possibly derivatives at the point p, only

A singularity scattering map S is said to be

a ultra-local map if

pointwise values only

 ${f S}(g^-,K^-,\phi_0^-,\phi_1^-)(p)$ depends only on $(g^-,K^-,\phi_0^-,\phi_1^-)(p)$

• a conformal map if $g^*(au_-)$ and $g^*(au_+)$ differ by a conformal factor

for some $\tau_- < 0 < \tau_+$

• a rigidly conformal map if g^+ and g^- differ by a conformal factor

Conditions satisfied at the junction

we rely on the asymptotic constraints

```
 \begin{array}{ll} \mathsf{CMC} \text{ symmetric } (1,1)\text{-tensor } \mathcal{K}^- & \mathsf{Tr}(\mathcal{K}^-) = 1 \\ \mathsf{Hamiltonian \ constraint} & 1 - |\mathcal{K}^-|^2 = \\ \mathsf{momentum \ constraints} & \mathsf{div}_{g^-}(\mathcal{K}^-) \end{array}
```

 $\mathbf{Tr}(\mathcal{K}^{-}) = 1$ $1 - |\mathcal{K}^{-}|^{2} = 8\pi (\phi_{0}^{-})^{2}$ $\mathbf{div}_{g^{-}}(\mathcal{K}^{-}) = 8\pi \phi_{0}^{-} d\phi_{1}^{-}$ $\mathbf{div}_{g^{-}}(\mathcal{K}^{-}) = 8\pi \phi_{0}^{-} d\phi_{1}^{-}$

- general solutions without symmetry restrictions
 - existence of singularity data satisfying the asymptotic constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

used to "probe" the properties enjoyed at the junction

- general solutions without symmetry restrictions
 - existence of singularity data satisfying the asymptotic constraints
 - used to "probe" the properties enjoyed at the junction
- all possible "degrees of freedom" for the scattering maps
 - our main discovery: parametrized by a few functions only

first the subclass of rigidly conformal maps

next the general maps

- general solutions without symmetry restrictions
 - existence of singularity data satisfying the asymptotic constraints
 - used to "probe" the properties enjoyed at the junction
- all possible "degrees of freedom" for the scattering maps
 - our main discovery: parametrized by a few functions only

first the subclass of rigidly conformal maps next the general maps

Classification and flexible framework

 uncovered all possible classes of junction geometrically / physically meaningful conformal/non-conformal spacelike/null/timelike scalar field stiff fluid compressible fluid a complete classification

- general solutions without symmetry restrictions
 - existence of singularity data satisfying the asymptotic constraints
 - used to "probe" the properties enjoyed at the junction
- all possible "degrees of freedom" for the scattering maps
 - · our main discovery: parametrized by a few functions only

first the subclass of rigidly conformal maps next the general maps

Classification and flexible framework

uncovered all possible classes of junction geometrically / physically meaningful

conformal/non-conformal spacelike/null/timelike

scalar field stiff fluid compressible fluid

a complete classification

(日) (日) (日) (日) (日) (日) (日) (日)

 discovered three universal laws constrain macroscopic aspects of spacetime junction regardless of their origin from different microscopic corrections

a guide to uncover specific structures

Rigidly conformal bounces

B. Le Floch, PLF, G. Veneziano

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Only two classes of ultra-local spacelike *rigidly conformal* singularity scattering maps for self-gravitating scalar fields:

Rigidly conformal bounces

B. Le Floch, PLF, G. Veneziano

Only two classes of ultra-local spacelike *rigidly conformal* singularity scattering maps for self-gravitating scalar fields:

• Isotropic rigidly conformal bounce $S_{\lambda,\omega}^{iso, conf}$

 $g^+ = \lambda^2 g^ K^+ = \delta/3$ $\phi_0^+ = 1/\sqrt{12\pi}$ $\phi_1^+ = \varphi$

parametrized by a conformal factor $\lambda=\lambda(\phi_0^-,\phi_1^-,\det K^-)>0$ and a constant φ

Rigidly conformal bounces

B. Le Floch, PLF, G. Veneziano

Only two classes of ultra-local spacelike *rigidly conformal* singularity scattering maps for self-gravitating scalar fields:

• Isotropic rigidly conformal bounce $S_{\lambda,\omega}^{\text{iso, conf}}$

 $g^+ = \lambda^2 g^ K^+ = \delta/3$ $\phi_0^+ = 1/\sqrt{12\pi}$ $\phi_1^+ = \varphi$

parametrized by a conformal factor $\lambda=\lambda(\phi_0^-,\phi_1^-,\det K^-)>0$ and a constant φ

- Non-isotropic rigidly conformal bounce S^{ani, conf}_{f,c}
 - $g^{+} = c^{2} \mu^{2} g^{-} \qquad \qquad K^{+} = \mu^{-3} (K^{-} \delta/3) + \delta/3$ $\phi_{0}^{+} = \mu^{-3} \phi_{0}^{-} / F'(\phi_{1}^{-}) \qquad \qquad \phi_{1}^{+} = F(\phi_{1}^{-})$

Rigidly conformal bounces

B. Le Floch, PLF, G. Veneziano

Only two classes of ultra-local spacelike *rigidly conformal* singularity scattering maps for self-gravitating scalar fields:

• Isotropic rigidly conformal bounce $S_{\lambda,\omega}^{\text{iso, conf}}$

 $g^+ = \lambda^2 g^ K^+ = \delta/3$ $\phi_0^+ = 1/\sqrt{12\pi}$ $\phi_1^+ = \varphi$

parametrized by a conformal factor $\lambda=\lambda(\phi_0^-,\phi_1^-,\det K^-)>0$ and a constant φ

- Non-isotropic rigidly conformal bounce S^{ani, conf} f,c
 - $g^{+} = c^{2} \mu^{2} g^{-} \qquad \qquad K^{+} = \mu^{-3} (K^{-} \delta/3) + \delta/3$ $\phi_{0}^{+} = \mu^{-3} \phi_{0}^{-} / F'(\phi_{1}^{-}) \qquad \qquad \phi_{1}^{+} = F(\phi_{1}^{-})$

parametrized by a constant c > 0 and a function $f : \mathbb{R} \to [0, +\infty)$

 $\mu(\phi_0,\phi_1) = \left(1 + 12\pi(\phi_0)^2 f(\phi_1)\right)^{1/6} \qquad F(\phi_1) = \int_0^{\phi_1} (1 + f(\varphi))^{-1/2} d\varphi$

Rigidly conformal bounces

B. Le Floch, PLF, G. Veneziano

Only two classes of ultra-local spacelike *rigidly conformal* singularity scattering maps for self-gravitating scalar fields:

• Isotropic rigidly conformal bounce $S_{\lambda,\omega}^{\text{iso, conf}}$

 $g^+=\lambda^2 g^ K^+=\delta/3$ $\phi^+_0=1/\sqrt{12\pi}$ $\phi^+_1=arphi$

parametrized by a conformal factor $\lambda=\lambda(\phi_0^-,\phi_1^-,\det K^-)>0$ and a constant φ

- Non-isotropic rigidly conformal bounce S^{ani, conf} f,c
 - $g^{+} = c^{2} \mu^{2} g^{-} \qquad \qquad K^{+} = \mu^{-3} (K^{-} \delta/3) + \delta/3$ $\phi_{0}^{+} = \mu^{-3} \phi_{0}^{-} / F'(\phi_{1}^{-}) \qquad \qquad \phi_{1}^{+} = F(\phi_{1}^{-})$

parametrized by a constant c > 0 and a function $f : \mathbb{R} \rightarrow [0, +\infty)$

$$\mu(\phi_0,\phi_1) = \left(1 + 12\pi(\phi_0)^2 f(\phi_1)\right)^{1/6} \qquad F(\phi_1) = \int_0^{\phi_1} (1 + f(\varphi))^{-1/2} d\varphi$$

General classification

where now λ is a two-tensor, Φ a "canonical transformation", c a constant.

More conveniently stated as three laws, as follows.

Universal laws of quiescent bounces B. Le Floch, PLF, G. Veneziano

First law: scaling of Kasner exponents

Our classification uncovers three universal laws obeyed by any ultra-local bounce. First, Kasner exponents are scaled as There exists a (dissipation) constant $\gamma \in \mathbb{R}$ such that

$$|g^+|^{1/2} \mathring{K}^+ = -\gamma \, |g^-|^{1/2} \mathring{K}^-_{
m before}$$

spatial metric g in synchronous gauge, volume factor $|g|^{1/2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

traceless part \mathring{K} of the extrinsic curvature (as a (1,1) tensor)

Universal laws of quiescent bounces B. Le Floch, PLF, G. Veneziano

First law: scaling of Kasner exponents

Our classification uncovers three universal laws obeyed by any ultra-local bounce. First, Kasner exponents are scaled as There exists a (dissipation) constant $\gamma \in \mathbb{R}$ such that

 $|g^+|^{1/2} \mathring{K}^+ = -\gamma \, |g^-|^{1/2} \mathring{K}^-_{
m before}$

spatial metric g in synchronous gauge, volume factor $|g|^{1/2}$

traceless part \mathring{K} of the extrinsic curvature (as a (1,1) tensor)

Second law: 'canonical transformation' of scalar field

The undergoes the transformation: minimally coupled massless scalar ϕ

- there exists a nonlinear map $\Phi: (\pi_{\phi}, \phi)^{-} \mapsto (\pi_{\phi}, \phi)^{+}$

matter momentum $\pi_{\phi} \sim \phi_0$

– depending solely on Kasner exponents scalar invariant $\text{det}(\mathring{\mathcal{K}}_{-})$

- preserving the volume form $\,$ in the phase space $d\pi_\phi \wedge d\phi$

Universal laws of quiescent bounces B. Le Floch, PLF, G. Veneziano

First law: scaling of Kasner exponents

Our classification uncovers three universal laws obeyed by any ultra-local bounce. First, Kasner exponents are scaled as There exists a (dissipation) constant $\gamma \in \mathbb{R}$ such that

 $|g^+|^{1/2} \mathring{K}^+ = -\gamma \, |g^-|^{1/2} \mathring{K}^-_{ ext{before}}$

spatial metric g in synchronous gauge, volume factor $|g|^{1/2}$

traceless part \mathring{K} of the extrinsic curvature (as a (1,1) tensor)

Second law: 'canonical transformation' of scalar field

The undergoes the transformation: minimally coupled massless scalar ϕ

- there exists a nonlinear map $\Phi: (\pi_{\phi}, \phi)^{-} \mapsto (\pi_{\phi}, \phi)^{+}$

matter momentum $\pi_{\phi} \sim \phi_0$

– depending solely on Kasner exponents scalar invariant $\text{det}(\mathring{\mathcal{K}}_{-})$

– preserving the volume form $\,$ in the phase space $d\pi_\phi \wedge d\phi$

Third law: directional metric scaling

 $g^+ = \exp(\sigma_0 + \sigma_1 K + \sigma_2 K^2)g^-$

nonlinear scaling in each proper direction of K

 $\gamma = 0$: isotropic scattering, no restriction $\sigma_0, \sigma_1, \sigma_2$

 $\gamma \neq$ 0: non-isotropic scattering, explicit formulas in terms of Φ,γ

3. FURTHER READING References

- Joint with Bruno Le Floch and Gabriele Veneziano
 - Universal scattering laws for quiescent bouncing cosmology

Physical Review D (2021)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Cyclic spacetimes through singularity scattering maps.
 The laws of quiescent bounces
 J. High Energy Physics (2022)
- Cyclic spacetimes through singularity scattering maps. Plane-symmetric gravitational collisions

Class. Quantum Gravity (2022)

3. FURTHER READING References

- Joint with Bruno Le Floch and Gabriele Veneziano
 - Universal scattering laws for quiescent bouncing cosmology

Physical Review D (2021)

- Cyclic spacetimes through singularity scattering maps. The laws of quiescent bounces
 J. High Energy Physics (2022)
- Cyclic spacetimes through singularity scattering maps. Plane-symmetric gravitational collisions

Class. Quantum Gravity (2022)

- Joint with Bruno Le Floch
 - On the global evolution of self-gravitating matter. Nonlinear interactions in Gowdy symmetry Arch. Rational Mech. Analysis (2019)
 - Compensated compactness and corrector stress tensor for the Einstein equations in T2 symmetry
 Portugaliae Math (2020)
 - Scattering maps for interfaces in self-gravitating matter flows Preprint (2023)

ArXiv:2005.11324, ArXiv:2106.09666, ArXiv:1912.12981, etc.

Some illustrations...

Figure: Cyclic spacetime arising from colliding plane gravitational waves

- Left: area A of plane-symmetry orbits = height of spacetime "bubbles"
- Right: singular locus A = 0 across which we apply the junction relation

 $(g^+, k^+, \phi_0^+, \phi_1^+) = (e^{2(k^- - 1/3)}g^-, k^-, \phi_0^-, \phi_1^- + \phi_0^-)$

 For this example of junction, the global evolution problem is well-posed in a class of "cyclic spacetimes".

Figure: Image of equally-spaced constant- (ϕ_0^-/r^-) (vertical lines) and constant- ϕ_1^- (curved lines)

• under the matter map Φ of the Pre Big Bang scenario

$$\beta^+ = -\beta^-, \ u_+ = u_-$$

• It preserves $d(\phi_0^{\pm}/r^{\pm})d\phi_1^{\pm}$ so each region has the same area.

Figure: Bianchi I symmetric modified matter bounces

• Lagrangian $\mathcal{L} = \frac{1}{2}\dot{\phi}^2 - 2|\dot{\phi}|e^{-\phi^2/2}/t_b + e^{-\phi^2}/t_b^2$ for fixed t_0^-, ϕ_0^- , and ω_0^- (normalized to 1).

- ▶ which affects the $t \to +\infty$ asymptotics for $\omega \simeq \omega_0^+(t t_0^+)$ and $\phi \simeq \phi_0^+ \ln \omega + (\phi_1^+ \phi_0^+ \ln \omega_0^+)$ manifest in the two plots.

4. LOCALIZATION AT SPACELIKE INFINITY Existence of initial data sets

"prescribed curvature problem"

- manifold (M, g, k) with finitely many asymptotic ends
- unknowns: Riemannian metric g and symmetric (0, 2)-tensor field k

extrinsic curvature in the dynamical picture

• matter content: scalar field H_{\star} : $\mathbf{M} \to \mathbb{R}_+$

vector field M_{\star}

Einstein's Hamiltonian and momentum constraints

 $R_g + (\mathrm{Tr}_g k)^2 - |k|_g^2 = H_\star \qquad \operatorname{Div}_g (k - (\mathrm{Tr}_g k)g) = M_\star$

4. LOCALIZATION AT SPACELIKE INFINITY Existence of initial data sets

"prescribed curvature problem"

- manifold (M, g, k) with finitely many asymptotic ends
- unknowns: Riemannian metric g and symmetric (0, 2)-tensor field k

extrinsic curvature in the dynamical picture

- matter content: scalar field $H_* : \mathbb{M} \to \mathbb{R}_+$ vector field M_*
- Einstein's Hamiltonian and momentum constraints

 $R_{g} + (\mathrm{Tr}_{g}k)^{2} - |k|_{g}^{2} = H_{\star} \qquad \mathrm{Div}_{g}(k - (\mathrm{Tr}_{g}k)g) = M_{\star}$

Notation

It is convenient to introduce the (2,0)-tensor h by $h := (k - \operatorname{Tr}_g(k)g)^{\sharp\sharp}$

$$\begin{aligned} \mathcal{H}(g,h) &\coloneqq R_g + \frac{1}{2} \big(\mathrm{Tr}_g h \big)^2 - |h|_g^2 & \mathcal{M}(g,h) &\coloneqq \mathrm{Div}_g h \\ \mathcal{G}(g,h) &\coloneqq \big(\mathcal{H}, \mathcal{M} \big)(g,h) = (H_\star, M_\star) \end{aligned}$$

In the dynamical picture, $\mathcal{G}(g, h)$ is a spacetime vector.

Vast and rich literature

- Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay, Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.
- Variational method Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Vast and rich literature

- Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay, Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.
- Variational method Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Major achievements

existence of initial data, explicit constructions, physically relevant solutions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

general relativity, Riemannian geometry

Vast and rich literature

- Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay, Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.
- Variational method Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Major achievements

- existence of initial data, explicit constructions, physically relevant solutions
- general relativity, Riemannian geometry
- numerous classes of solutions: compact, various types of asymptotic ends
- including gluing techniques, combine two different solutions together
- A. Carlotto, *The general relativistic constraint equations*, Living Reviews in Relativity (2021).

Localization in initial data sets

Shielding gravity at infinity

- asymptotically Euclidean initial data sets
- phenomena of anti-gravity (or shielding)
- solutions that are localized at infinity
 - The Positive Mass Theorem implies restrictions on gluing at infinity.
 - identically Euclidian near infinity except in a cone
- Other recent developments
 - S. Aretakis, S. Czimek, I. Rodnianski: characteristic gluing problem
 - Y.-C. Mao and Z.-K. Tao: localization "a la Carlotto-Schoen" in narrow domains

Carlotto and Schoen Chruściel and Delay

Localization in initial data sets

Shielding gravity at infinity

- asymptotically Euclidean initial data sets
- phenomena of anti-gravity (or shielding)
- solutions that are localized at infinity
 - The Positive Mass Theorem implies restrictions on gluing at infinity.
 - identically Euclidian near infinity except in a cone
- Other recent developments
 - S. Aretakis, S. Czimek, I. Rodnianski: characteristic gluing problem
 - Y.-C. Mao and Z.-K. Tao: localization "a la Carlotto-Schoen" in narrow domains

Localization with (super-)harmonic control

- Improve upon Carlotto-Schoen's theory
 - solutions with sub-harmonic control

conjecture: gluing should be possible at harmonic level

- Localization results with harmonic and super-harmonic control
 - PLF & The-Cang Nguyen, 2020: The seed-to-solution method for the Einstein constraint equations
 - Bruno Le Floch & PLF, 2023: The localized seed-to-solution method for the construction of Einstein's initial data sets

Carlotto and Schoen Chruściel and Delay

 r^p with $p \in \left(\frac{n-2}{2}, n-2\right)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Theorem. The seed-to-solution parametrization
and a localized version by Bruno Le Floch & PLF(PLF & T-C Nguyen)Given any seed data set (\mathbf{M}, g_1, h_1) on a 3-manifold (with a single end, say):
a Riemannian metric g_1 and a symmetric two-tensor h_1
satisfying (suitable smallness conditions and) $1/2 < p_G \leq \min(1, p_M)$
 $1/2 < p_M < +\infty$ $g_1 = g_{\mathsf{Eucl}} + \mathcal{O}(r^{-p_G})$ $h_1 = \mathcal{O}(r^{-p_G-1})$
 $\mathcal{H}(g_1, h_1) = \mathcal{O}(r^{-p_M-2})$ $\mathcal{M}(g_1, h_1) = \mathcal{O}(r^{-p_M-2})$ there exists a solution (g, h) to the vacuum Einstein equations $\mathcal{G}(g, h) = 0$. $\mathcal{O}(r)$

Theorem. The seed-to-solution parametrization (PLF & T-C Nguyen) and a localized version by Bruno Le Floch & PLF Given any seed data set (M, g_1, h_1) on a 3-manifold (with a single end, say): a Riemannian metric g_1 and a symmetric two-tensor h_1 satisfying (suitable smallness conditions and) $1/2 < p_G \leq \min(1, p_M)$ $1/2 < p_M < +\infty$ $h_1 = \mathcal{O}(r^{-p_G-1})$ $g_1 = g_{\text{Eucl}} + \mathcal{O}(r^{-\rho_G})$ $\mathcal{M}(g_1, h_1) = \mathcal{O}(r^{-p_M - 2})$ $\mathcal{H}(g_1,h_1) = \mathcal{O}(r^{-p_M-2})$ there exists a solution (g, h) to the vacuum Einstein equations $\mathcal{G}(g, h) = 0$. ▶ Sub-harmonic decay: p_M < 1</p>

 $g = g_1 + \mathcal{O}(r^{-p_M})$ $h = h_1 + \mathcal{O}(r^{-p_M-1})$

Theorem. The seed-to-solution parametrization (PLF & T-C Nguyen) and a localized version by Bruno Le Floch & PLF Given any seed data set (M, g_1, h_1) on a 3-manifold (with a single end, say): a Riemannian metric g_1 and a symmetric two-tensor h_1 satisfying (suitable smallness conditions and) $1/2 < p_G \leq \min(1, p_M)$ $1/2 < p_M < +\infty$ $h_1 = \mathcal{O}(r^{-p_G-1})$ $g_1 = g_{\text{Eucl}} + \mathcal{O}(r^{-\rho_G})$ $\mathcal{M}(g_1, h_1) = \mathcal{O}(r^{-p_M - 2})$ $\mathcal{H}(g_1,h_1) = \mathcal{O}(r^{-p_M-2})$ there exists a solution (g, h) to the vacuum Einstein equations $\mathcal{G}(g, h) = 0$. ▶ Sub-harmonic decay: p_M < 1</p>

 $g = g_1 + \mathcal{O}(r^{-p_M})$

• Harmonic decay: $p_M = 1$ $g = g_1 + \frac{\tilde{m}}{r} + o(r^{-1})$ $h = h_1 + \mathcal{O}(r^{-p_M-1})$

 $\mathcal{H}(g_1, h_1)$ and $\mathcal{M}(g_1, h_1)$ in $L^1(M)$ $h = h_1 + \mathcal{O}(r^{-2})$

Theorem. The seed-to-solution parametrization (PLF & T-C Nguyen) and a localized version by Bruno Le Floch & PLF Given any seed data set (M, g_1, h_1) on a 3-manifold (with a single end, say): a Riemannian metric g_1 and a symmetric two-tensor h_1 satisfying (suitable smallness conditions and) $1/2 < p_G \leq \min(1, p_M)$ $1/2 < p_M < +\infty$ $h_1 = \mathcal{O}(r^{-p_G-1})$ $g_1 = g_{\text{Eucl}} + \mathcal{O}(r^{-p_G})$ $\mathcal{M}(g_1,h_1) = \mathcal{O}(r^{-p_M-2})$ $\mathcal{H}(g_1,h_1) = \mathcal{O}(r^{-p_M-2})$ there exists a solution (g, h) to the vacuum Einstein equations $\mathcal{G}(g, h) = 0$. ▶ Sub-harmonic decay: p_M < 1</p> $g = g_1 + \mathcal{O}(r^{-p_M})$ $h = h_1 + \mathcal{O}(r^{-p_M-1})$ $\mathcal{H}(\mathbf{g}_1, \mathbf{h}_1)$ and $\mathcal{M}(\mathbf{g}_1, \mathbf{h}_1)$ in $L^1(M)$ • Harmonic decay: $p_M = 1$ $g = g_1 + \frac{\tilde{m}}{r} + o(r^{-1})$ $h = h_1 + \mathcal{O}(r^{-2})$ • Super-harmonic decay: $p_M > 1$ $p = \min(p_G + 1, p_M, 2)$ $g = g_1 + \frac{\tilde{m}}{r} + \mathcal{O}(r^{-p})$ $h = h_1 + \mathcal{O}(r^{-2})$ Mass modulator $\widetilde{m} = \widetilde{m}(g_1, h_1) = \text{const.} \int_{\mathbf{M}} \mathcal{H}(g_1, h_1) \, dV_{g_1} + \mathcal{O}(\mathcal{G}(g_1, h_1)^2)$

Carlotto and Schoen

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions

- \mathscr{C}_a : cone with (possibly arbitrarily small) angle $a \in (0, 2\pi)$
- $\mathscr{C}_{a+\varepsilon}^{c}$: complement of the same cone with (slightly) larger angle $a + \varepsilon$
- $\mathcal{T}_a^{\varepsilon}$: remaining transition region

Carlotto and Schoen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions

- \mathscr{C}_a : cone with (possibly arbitrarily small) angle $a \in (0, 2\pi)$
- $\mathscr{C}_{a+\varepsilon}^{c}$: complement of the same cone with (slightly) larger angle $a + \varepsilon$
- $\mathcal{T}_a^{\varepsilon}$: remaining transition region

 \mathscr{C}_{a} and $\mathscr{C}_{a+\varepsilon}^{c}$: the metric <u>coincides</u> with Euclidean/Schwarzschild ones solve the vacuum Einstein equations in the transition region $\mathscr{T}_{a,\varepsilon}$

Carlotto and Schoen

- Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions

- \mathscr{C}_a : cone with (possibly arbitrarily small) angle $a \in (0, 2\pi)$
- $\mathscr{C}_{a+\varepsilon}^{c}$: complement of the same cone with (slightly) larger angle $a + \varepsilon$
- $\mathcal{T}_a^{\varepsilon}$: remaining transition region

 \mathscr{C}_a and $\mathscr{C}_{a+\varepsilon}^c$: the metric <u>coincides</u> with Euclidean/Schwarzschild ones solve the vacuum Einstein equations in the transition region $\mathscr{T}_{a,\varepsilon}$

- Sub-harmonic control in $\mathscr{T}_{a,\varepsilon}$, that is, r^{-p} with $p \in (1/2, 1)$
- Question raised by Carlotto and Schoen

Euclidean

construct solutions (with prescribed asymptotic) enjoying the 1/r harmonic decay in <u>all angular directions</u> $1/r^{\rho}$ region Schwarzschild $1/r^{\rho}$ region

Asymptotic localization at super-harmonic rates

slightly relax the localization condition

- asymptotic at a super-harmonic rate to prescribed metrics
- physically as natural as the exact localization problem

Asymptotic localization at super-harmonic rates

slightly relax the localization condition

- asymptotic at a super-harmonic rate to prescribed metrics

asympt. Eucl.

Theorem. The asymptotic localization problem (PLF–Nguyen)

- Vacuum Einstein equations on a manifold M with a single asymptotic end
- Decompose asymptotic infinity into three asymptotic angular regions

 $\mathscr{C}_{\mathsf{a}} \cup \mathscr{C}^{\mathsf{c}}_{\mathsf{a}+\varepsilon} \cup \mathscr{T}_{\mathsf{a},\varepsilon} \subset \mathbb{R}^3$

asympt. Schwarzschild

1/r region

Asymptotic localization at super-harmonic rates

slightly relax the localization condition

- asymptotic at a super-harmonic rate to prescribed metrics

asympt. Eucl.

Theorem. The asymptotic localization problem (PLF–Nguyen)

- Vacuum Einstein equations on a manifold M with a single asymptotic end
- Decompose asymptotic infinity into three asymptotic angular regions

 $\mathscr{C}_{\mathsf{a}} \cup \mathscr{C}_{\mathsf{a}+\varepsilon}^{\mathsf{c}} \cup \mathscr{T}_{\mathsf{a},\varepsilon} \subset \mathbb{R}^3$

asympt. Schwarzschild

1/r region

By considering (for instance) the Euclidean metric g_{Eucl} and the Schwarzschild metric $g_{\text{Sch}} = (1 + 2m_{\text{Sch}}/r) g_{\text{Eucl}}$ (with mass $m_{\text{Sch}} > 0$), there exists a solution to the vacuum Einstein equations $\mathcal{G}(g, h) = 0$:

$$g = g_{\text{Eucl}} + \mathcal{O}(r^{-q}) \qquad \text{in } \mathscr{C}^{c}_{a+\varepsilon}$$

$$g = g_{\text{Sch}} + \mathcal{O}(r^{-q}) \qquad \text{in } \mathscr{C}_{a} \qquad q \in (1,2)$$

$$g = g_{\text{Eucl}} + \mathcal{O}(r^{-1}) \qquad \text{in } \mathscr{T}_{a,\varepsilon}$$

parametrization

based on a localized seed-to-solution data set

(ロ)、(型)、(E)、(E)、 E) のQの

- regularity and norms for the gluing
- possibly low decay (with infinite energy in the case $1/r^{1/2}$)
- matter fields

parametrization

based on a localized seed-to-solution data set

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- regularity and norms for the gluing
- possibly low decay (with infinite energy in the case $1/r^{1/2}$)
- matter fields
- super-harmonic control in localized angular domains
 - continuous dependence estimates, sharp decay
 - analysis of linearized operators, localized solutions
 - analysis of the decay of nonlinearities

parametrization

based on a localized seed-to-solution data set

- regularity and norms for the gluing
- possibly low decay (with infinite energy in the case $1/r^{1/2}$)
- matter fields
- super-harmonic control in localized angular domains
 - continuous dependence estimates, sharp decay
 - analysis of linearized operators, localized solutions
 - analysis of the decay of nonlinearities
- global evolution problem
 nonlinear stability of Minkowski spacetime
 - evolution under weak decay or strong decay conditions
 - massive matter fields, no scaling-invariance PLF-Yue Ma (Xi'an, China)

parametrization

based on a localized seed-to-solution data set

- regularity and norms for the gluing
- possibly low decay (with infinite energy in the case $1/r^{1/2}$)
- matter fields
- super-harmonic control in localized angular domains
 - continuous dependence estimates, sharp decay
 - analysis of linearized operators, localized solutions
 - analysis of the decay of nonlinearities
- global evolution problem nonlinear stability of Minkowski spacetime
 - evolution under weak decay or strong decay conditions
 - massive matter fields, no scaling-invariance PLF-Yue Ma (Xi'an, China)

Only a SKETCH of our results

 $(\mathbf{M}, \Omega, g_0, h_0)$: cone-like, asymptotically Euclidian, reference set

 (g_1, h_1) : seed data set localized to Ω

- Strongly tame: $(p_G, q_G) \ge (\frac{n-2}{2}, \frac{n}{2})$ and $(p_M, q_M) > (n-2, n-1)$
- Strongly effective $(p_{\star}, q_{\star}) > (n 2, n 1)$

Theorem. Localized gluing beyond harmonic decay Bruno LF & PLF, 2023

For each (p_G, q_G, p_M, q_M) -localized seed data set $(g_1, h_1, H_\star, M_\star)$ there exists a modulated seed data set

 $(\widetilde{g}_1, \widetilde{h}_1) = (g_1, h_1) + \sup_{a=1,2,...}$ localized harmonic terms at each end

 $\|g - \widetilde{g}_1\|_{g_0,\Omega,P^\star,P}^{N,\alpha} + \|h - \widetilde{h}_1\|_{g_0,\Omega,q_\star,P}^{N,\alpha} \lesssim \mathcal{E}(g_1,h_1) + \sum_{a=1,2,\dots} \left(|m_a^\star| + |P_a^\star|\right)$

Theorem. Localized gluing beyond harmonic decay Bruno LF & PLF, 2023

For each (p_G, q_G, p_M, q_M) -localized seed data set $(g_1, h_1, H_\star, M_\star)$ there exists a modulated seed data set

$$\begin{split} (\widetilde{g}_1,\widetilde{h}_1) &= (g_1,h_1) + \sup_{a=1,2,\dots} \text{ localized harmonic terms at each end} \\ \|g - \widetilde{g}_1\|_{g_0,\Omega,p_\star,P}^{N,\alpha} + \|h - \widetilde{h}_1\|_{g_0,\Omega,q_\star,P}^{N,\alpha} \lesssim \mathcal{E}(g_1,h_1) + \sum_{a=1,2,\dots} \left(|m_a^\star| + |P_a^\star|\right) \end{split}$$

 $\mathcal{E}(g_1, h_1) = \left\| \left| \mathcal{H}(g_1, h_1) - \mathcal{H}_{\star} \right\|_{\Omega, g_0, p+2, P-2}^{N-2, \alpha} + \left\| \left| \mathcal{M}(g_1, h_1) - \mathcal{M}_{\star} \right\|_{\Omega, g_0, q+1, P-1}^{N-1, \alpha} \right| \right|$

the scalars $m_a^{\star} = m_a^{\star}(g_1, h_1, H_{\star})$ and vectors $P_a^{\star} = P_a^{\star}(g_1, h_1, M_{\star})$ being

$$\begin{split} m_a^\star &:= \frac{1}{16\pi} \int_{\mathsf{M}} \left(H_\star - \mathcal{H}(g_1, h_1) \right) \kappa_a \lambda^2 \, dV_{g_1} \\ P_a^\star &:= \frac{1}{8\pi} \int_{\mathsf{M}} \left(M_\star - \mathcal{M}(g_1, h_1) \right) \kappa_a \lambda^2 \, dV_{g_1} \end{split}$$

 κ_a : partition of unity for the asymptotic ends

Theorem. Localized gluing beyond harmonic decay Bruno LF & PLF, 2023

For each (p_G, q_G, p_M, q_M) -localized seed data set $(g_1, h_1, H_\star, M_\star)$ there exists a modulated seed data set

$$\begin{split} (\widetilde{g}_1,\widetilde{h}_1) &= (g_1,h_1) + \sup_{a=1,2,\dots} \text{ localized harmonic terms at each end} \\ \|g - \widetilde{g}_1\|_{g_0,\Omega,p_\star,P}^{N,\alpha} + \|h - \widetilde{h}_1\|_{g_0,\Omega,q_\star,P}^{N,\alpha} \lesssim \mathcal{E}(g_1,h_1) + \sum_{a=1,2,\dots} \left(|m_a^\star| + |P_a^\star|\right) \end{split}$$

 $\mathcal{E}(g_1, h_1) = \left\| \left| \mathcal{H}(g_1, h_1) - H_\star \right\|_{\Omega, g_0, p+2, P-2}^{N-2, \alpha} + \left\| \left| \mathcal{M}(g_1, h_1) - M_\star \right\|_{\Omega, g_0, q+1, P-1}^{N-1, \alpha} \right| \right|$

the scalars $m_a^{\star} = m_a^{\star}(g_1, h_1, H_{\star})$ and vectors $P_a^{\star} = P_a^{\star}(g_1, h_1, M_{\star})$ being

$$\begin{split} m_a^\star &:= \frac{1}{16\pi} \int_{\mathsf{M}} \left(H_\star - \mathcal{H}(g_1, h_1) \right) \kappa_a \lambda^2 \, dV_{g_1} \\ P_a^\star &:= \frac{1}{8\pi} \int_{\mathsf{M}} \left(M_\star - \mathcal{M}(g_1, h_1) \right) \kappa_a \lambda^2 \, dV_{g_1} \end{split}$$

 κ_a : partition of unity for the asymptotic ends

ADM energy-momentum $(\widetilde{m}_a, \widetilde{P}_a)$ of the localized harmonic contributions

$$\sup_{a=1,2,\dots} \left| \widetilde{m}_a - m_a^\star \right| + \left| \widetilde{P}_a - P_a^\star \right| \lesssim \mathcal{E}(g_1, h_1)$$

At each asymptotic end $\lambda \simeq \text{distance to } \partial\Omega$ $\lambda^{P} \Big(\mathbf{r}^{n-2} | \mathbf{g} - \widetilde{\mathbf{g}}_{1} | + \mathbf{r}^{n-1} \left(|\partial(\mathbf{g} - \widetilde{\mathbf{g}}_{1})| + |\mathbf{h} - \widetilde{\mathbf{h}}_{1}| \right) + \mathbf{r}^{n} |\partial(\mathbf{h} - \widetilde{\mathbf{h}}_{1})| \Big) \to 0$