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1. SCATTERING MAPS for GRAVITATIONAL BOUNCING

Junctions between spacetimes
Regime of interest

§ complex dynamics near singularities Belinsky, Khalatnikov, Lifshitz, Damour, etc.

§ quiescent regime, monotone behavior oscillation-free

spatial derivatives negligible, observers cannot communicate

§ Einstein-matter system scalar field, stiff or compressible fluid

Junction conditions asymptotics near a singularity hypersurface

§ bouncing behavior contracting/expanding

singularity hypersurfaces

§ beyond Israel junction condition (Penrose, cut and paste) regularity hypersurfaces

§ Objective: parametrize all meaningful junctions physically, mathematically

literature: special junctions, symmetric spacetimes

Proposed framework

§ work with general spacetimes, asymptotic version of the constraints

§ (past, future) singularity scattering data/maps

S : pg´,K´, φ´0 , φ
´
1 q ÞÑ pg`,K`, φ`0 , φ

`
1 q

§ classification/parametrization degrees of freedom

§ S-cyclic spacetime
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Vicinity of a spacelike singularity
ADM formulation

§ Gaussian foliation by spacelike hypersurfaces Mp4q
“

Ť

τ Hτ

g p4q “ ´dτ 2
` gpτq gpτq “ gijpτqdx

idx j
τ near zero

§ Einstein’s evolution equations induced metric g , extrinsic curvature K

Bτgij “ ´2Kij BτK
i
j “ TrpKqK i

j ` R i
j ´ 8πM i

j

M i
j pφq “

1
2
ρ g i

j ` T i
j ´

1
2
TrpT qg i

j

§ Einstein’s constraints Hamiltonian, momentum, nonlinear elliptic

R ` |K |2 ´ TrpK 2
q “ 16πρ ∇iK

i
j ´∇jpTrKq “ 8πJj

§ wave equation lgp4qφ “ 0 for a scalar field φ expressions for ρ, Ji

Behavior near a singularity hypersurface approximate solution

τ ą 0

τ ă 0

pg˚,K˚, φ˚qpτq

pg`,K`, φ`0 , φ
`
1 q

pg´,K´, φ´0 , φ
´
1 q

pg˚,K˚, φ˚qpτq
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A typical asymptotic behavior: the Kasner profiles

g˚Kasnerpτ, xq “ p´τq
2p1pxqpdx1

q
2
` p´τq2p2pxqpdx2

q
2
` p´τq2p3pxqpdx3

q
2

K˚Kasnerpτ, xq “
´1

τ
diagpp1, p2, p3qpxq

φ˚Kasnerpτ, xq “ φ´0 pxq log |τ | ` φ´1 pxq

‚ In this case, the singularity data are the

– Euclidean metric g´

– tensor K´ with constant eigenvectors

– K´ ” diagpp1, p2, p3q in some coordinates

– exponents p1, p2, p3 possibly depending upon the spatial variable x

– matter data pφ´0 , φ
´
1 q

‚ This is an “asymptotic profile”, in a sense we define next.

Our standpoint

§ a systematic study of the asymptotic data

§ parametrize and analyze an asymptotic version of the Einstein constraints

§ formulation and parametrization of junction conditions
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A singularity hypersurface is a given 3-manifold H.

Definition

(Past) asymptotic profile associated with some given data pg´,K´, φ´0 , φ
´
1 q is

the ancient geometric flow defined on H by

τ P p´8, 0q ÞÑ
`

g˚,K˚, φ˚
˘

pτq

g˚pτq “ |τ |2K
´

g´ K˚pτq “
´1

τ
K´ φ˚pτq “ φ´0 log |τ | ` φ´1

A typical example: Kasner profiles

(Past) singularity initial data set on a 3-manifold H
two symmetric 2-tensor fields pg´,K´q

two scalar fields pφ´0 , φ
´
1 qRiemannian metric g´

CMC symmetric p1, 1q-tensor TrpK´q “ 1

Hamiltonian constraint 1´ |K´|2 “ 8π pφ´0 q
2

momentum constraints divg´pK
´
q “ 8π φ´0 dφ´1

which we refer to as the Einstein’s asymptotic constraints.

Notation IpHq: space of all singularity data pg´,K´, φ´0 , φ
´
1 q
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Scattering maps and gluing

Past-to-future singularity scattering map on a manifold H
S : IpHq Ñ IpHq pg´,K´, φ´0 , φ

´
1 q ÞÑ pg`,K`, φ`0 , φ

`
1 q

§ diffeomorphism-covariant coordinate invariant

§ pointwise or ultra-local map pointwise values only

Spg´,K´, φ´0 , φ
´
1 qppq depends only on pg´,K´, φ´0 , φ

´
1 qppq

§ quiescent regime K´ ą 0 and K` ą 0

Singular junction condition

§ class of manifolds M4 with Lorentzian metric g p4q and scalar field φ

§ g p4q and φ bounded outside a singularity locus L ĂM4

§ assume the existence of rescaled limits

pg˘,K˘q “ lim
τÑ0
τż0

`

|τ |2τKg , ´τK
˘

pφ˘0 , φ
˘
1 q “ lim

τÑ0
τż0

`

τBτφ, φ´ τ log |τ |Bτφ
˘

relation between the past / future singularity data

pg`,K`, φ`0 , φ
`
1 q “ Spg´,K´, φ´0 , φ

´
1 q

‚

p

τ ą 0

τ ă 0
L
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U “
Ť

τ Hτ

‚

p

τ ą 0
τ ă 0

L

Local gluing at singularities B. Le Floch, PLF, G. Veneziano

– a three-manifold H0 and a quiescence-preserving scattering map S

– past singularity data pg´,K´, φ´0 , φ
´
1 q defined on H0

Then:

§ a S-spacetime pMp4q, g p4qq with singularity locus H0

§ a local Gaussian foliation Mp4q
“

Ť

τPrτ´1,τ1s
Hτ with time function τ

§ the flow τ ÞÑ pgpτq,Kpτq, φpτqq satisfies the Einstein equations

coupled to a scalar field φ away from τ “ 0

§ the junction pg`,K`, φ`0 , φ
`
1 q “ Spg´,K´, φ´0 , φ

´
1 q holds on H0.

If H is compact:

§ shrinking volume of the slices VolgpτqpHτ q Ñ 0

§ crushing singularity: mean curvature blowup limτÑ0 τHpτq “ ´1 on Hτ

§ curvature singularity spacetime scalar (and Weyl) curvature

limτÑ0˘ τ
2Rp4qpτq “ ´8πpφ˘0 q

2 on Hτ
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2. CLASSIFICATION OF GRAVITATIONAL SCATTERING MAPS

Proposed strategy
locality property for any p P H

S
`

g´,K´, φ´0 , φ
´
1

˘

ppq depends upon
`

g´,K´, φ´0 , φ
´
1

˘

ppq

and possibly derivatives at the point p, only

A singularity scattering map S is said to be

§ a ultra-local map if pointwise values only

Spg´,K´, φ´0 , φ
´
1 qppq depends only on pg´,K´, φ´0 , φ

´
1 qppq

§ a conformal map if g˚pτ´q and g˚pτ`q differ by a conformal factor

for some τ´ ă 0 ă τ`

§ a rigidly conformal map if g` and g´ differ by a conformal factor

Conditions satisfied at the junction we rely on the asymptotic constraints

CMC symmetric p1, 1q-tensor K´ TrpK´q “ 1

Hamiltonian constraint 1´ |K´|2 “ 8π pφ´0 q
2

momentum constraints divg´ pK
´
q “ 8π φ´0 dφ´1
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§ general solutions without symmetry restrictions

§ existence of singularity data satisfying the asymptotic constraints

§ used to “probe” the properties enjoyed at the junction

§ all possible “degrees of freedom” for the scattering maps

§ our main discovery: parametrized by a few functions only
first the subclass of rigidly conformal maps

next the general maps

Classification and flexible framework

§ uncovered all possible classes of junction geometrically / physically meaningful

conformal/non-conformal spacelike/null/timelike

scalar field stiff fluid compressible fluid

a complete classification

§ discovered three universal laws constrain macroscopic aspects of spacetime junction

regardless of their origin from different microscopic corrections

a guide to uncover specific structures
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Main classification results

Rigidly conformal bounces B. Le Floch, PLF, G. Veneziano

Only two classes of ultra-local spacelike rigidly conformal singularity scattering
maps for self-gravitating scalar fields:

§ Isotropic rigidly conformal bounce Siso, conf
λ,ϕ

g` “ λ2g´ K` “ δ{3 φ`0 “ 1{
?

12π φ`1 “ ϕ

parametrized by a conformal factor λ “ λpφ´0 , φ
´
1 , det K´q ą 0 and a constant ϕ

§ Non-isotropic rigidly conformal bounce Sani, conf
f ,c

g` “ c2µ2g´ K` “ µ´3
pK´ ´ δ{3q ` δ{3

φ`0 “ µ´3φ´0 {F
1
pφ´1 q φ`1 “ F pφ´1 q

parametrized by a constant c ą 0 and a function f : RÑ r0,`8q

µpφ0, φ1q “
`

1` 12πpφ0q
2f pφ1q

˘1{6 Fpφ1q “
şφ1

0 p1` f pϕqq´1{2dϕ

General classification

Only two classes of ultra-local spacelike, singularity scattering maps
§ Isotropic bounce Siso

λ,ϕ
§ Non-isotropic bounce Sani

Φ,c

where now λ is a two-tensor, Φ a “canonical transformation”, c a constant.

More conveniently stated as three laws, as follows.
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Universal laws of quiescent bounces B. Le Floch, PLF, G. Veneziano

§ First law: scaling of Kasner exponents

Our classification uncovers three universal laws obeyed by any ultra-local
bounce. First, Kasner exponents are scaled as

There exists a (dissipation) constant γ P R such that

|g`|1{2K̊` “ ´γ |g´|1{2K̊´before

spatial metric g in synchronous gauge, volume factor |g |1{2

traceless part K̊ of the extrinsic curvature (as a p1, 1q tensor)

§ Second law: ‘canonical transformation’ of scalar field

The undergoes the transformation: minimally coupled massless scalar φ

– there exists a nonlinear map Φ: pπφ, φq
´
ÞÑ pπφ, φq

`

matter momentum πφ „ φ0

– depending solely on Kasner exponents scalar invariant detpK̊´q

– preserving the volume form in the phase space dπφ ^ dφ

§ Third law: directional metric scaling

g` “ exp
`

σ0 ` σ1K ` σ2K
2
˘

g´

nonlinear scaling in each proper direction of K
γ “ 0: isotropic scattering, no restriction σ0, σ1, σ2

γ ‰ 0: non-isotropic scattering, explicit formulas in terms of Φ, γ
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Some illustrations...

Figure: Cyclic spacetime arising from colliding plane gravitational waves

§ Left: area A of plane-symmetry orbits = height of spacetime “bubbles”

§ Right: singular locus A “ 0 across which we apply the junction relation

pg`, k`, φ`0 , φ
`
1 q “ pe

2pk´´1{3qg´, k´, φ´0 , φ
´
1 ` φ

´
0 q

§ For this example of junction, the global evolution problem is well-posed in
a class of “cyclic spacetimes”.
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Figure: Image of equally-spaced constant-pφ´0 {r
´
q (vertical lines) and

constant-φ´1 (curved lines)

§ under the matter map Φ of the Pre Big Bang scenario

β` “ ´β´, u` “ u´

§ It preserves dpφ˘0 {r
˘
qdφ˘1 so each region has the same area.
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Figure: Bianchi I symmetric modified matter bounces

§ Lagrangian L “ 1
2

9φ2
´ 2| 9φ|e´φ

2{2
{tb ` e´φ

2

{t2
b for fixed t´0 , φ

´
0 , and ω´0

(normalized to 1).

§ Each color corresponds to one value of φ´1

§ which affects the t Ñ `8 asymptotics for ω » ω`0 pt ´ t`0 q and
φ » φ`0 lnω ` pφ`1 ´ φ

`
0 lnω`0 q manifest in the two plots.



4. LOCALIZATION AT SPACELIKE INFINITY

Existence of initial data sets
“prescribed curvature problem”

§ manifold pM, g , kq with finitely many asymptotic ends

§ unknowns: Riemannian metric g and symmetric p0, 2q-tensor field k

extrinsic curvature in the dynamical picture

§ matter content: scalar field H‹ : M Ñ R` vector field M‹

§ Einstein’s Hamiltonian and momentum constraints

Rg ` pTrgkq
2
´ |k|2g “ H‹ Divg

`

k ´ pTrgkqg
˘

“ M‹

Notation

It is convenient to introduce the p2, 0q-tensor h by h :“
`

k ´ Trg pkqg
˘77

Hpg , hq :“ Rg `
1

2

`

Trgh
˘2
´ |h|2g Mpg , hq :“ Divgh

Gpg , hq :“
`

H,M
˘

pg , hq “ pH‹,M‹q

In the dynamical picture, Gpg , hq is a spacetime vector.
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Vast and rich literature

§ Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay,

Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.

§ Variational method Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Major achievements

§ existence of initial data, explicit constructions, physically relevant solutions

§ general relativity, Riemannian geometry

§ numerous classes of solutions: compact, various types of asymptotic ends

§ including gluing techniques, combine two different solutions together

§ A. Carlotto, The general relativistic constraint equations, Living Reviews
in Relativity (2021).
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Localization in initial data sets
Shielding gravity at infinity

§ asymptotically Euclidean initial data sets

§ phenomena of anti-gravity (or shielding) Carlotto and Schoen

Chruściel and Delay
§ solutions that are localized at infinity

§ The Positive Mass Theorem implies restrictions on gluing at infinity.

§ identically Euclidian near infinity except in a cone

§ Other recent developments
§ S. Aretakis, S. Czimek, I. Rodnianski: characteristic gluing problem
§ Y.-C. Mao and Z.-K. Tao: localization “a la Carlotto-Schoen” in narrow domains

Localization with (super-)harmonic control

§ Improve upon Carlotto-Schoen’s theory

§ solutions with sub-harmonic control rp with p P
`

n´2
2
, n ´ 2

˘

§ conjecture: gluing should be possible at harmonic level

§ Localization results with harmonic and super-harmonic control

§ PLF & The-Cang Nguyen, 2020: The seed-to-solution method for
the Einstein constraint equations

§ Bruno Le Floch & PLF, 2023: The localized seed-to-solution
method for the construction of Einstein’s initial data sets



Localization in initial data sets
Shielding gravity at infinity

§ asymptotically Euclidean initial data sets

§ phenomena of anti-gravity (or shielding) Carlotto and Schoen
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Carlotto, Schoen, Chrusciel, Delay (2017) PLF-TC Nguyen (2020) B. Le Floch-PLF (2023)

sub-harmonic localization harmonic asymptotic localization harmonic localization



5. LOCALIZATION AT SUPER-HARMONIC RATES

Theorem. The seed-to-solution parametrization (PLF & T-C Nguyen)
and a localized version by Bruno Le Floch & PLF

Given any seed data set pM, g1, h1q on a 3-manifold (with a single end, say):
a Riemannian metric g1 and a symmetric two-tensor h1

satisfying (suitable smallness conditions and) 1{2 ă pG ď minp1, pMq
1{2 ă pM ă `8

g1 “ gEucl `Opr´pG q h1 “ Opr´pG´1
q

Hpg1, h1q “ Opr´pM´2
q Mpg1, h1q “ Opr´pM´2

q

there exists a solution pg , hq to the vacuum Einstein equations Gpg , hq “ 0.

§ Sub-harmonic decay: pM ă 1

g “ g1 `Opr´pM q h “ h1 `Opr´pM´1
q

§ Harmonic decay: pM “ 1 Hpg1, h1q and Mpg1, h1q in L1
pMq

g “ g1 `
rm
r
` opr´1

q h “ h1 `Opr´2
q

§ Super-harmonic decay: pM ą 1 p “ minppG ` 1, pM , 2q

g “ g1 `
rm
r
`Opr´p

q h “ h1 `Opr´2
q

Mass modulator rm “ rmpg1, h1q “ const.
ş

M
Hpg1, h1q dVg1 `OpGpg1, h1q

2
q
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Exact localization at sub-harmonic rates
Carlotto and Schoen

– Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions

§ Ca: cone with (possibly arbitrarily small) angle a P p0, 2πq

§ C c
a`ε: complement of the same cone with (slightly) larger angle a` ε

§ T ε
a : remaining transition region

Ca and C c
a`ε: the metric coincides with Euclidean/Schwarzschild ones

solve the vacuum Einstein equations in the transition region Ta,ε

– Sub-harmonic control in Ta,ε, that is, r´p with p P p1{2, 1q

– Question raised by Carlotto and Schoen

construct solutions (with prescribed asymptotic)
enjoying the 1{r harmonic decay in all angular directions

1{rp region

1{rp region

Euclidean

Schwarzschild
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Asymptotic localization at super-harmonic rates
slightly relax the localization condition

– asymptotic at a super-harmonic rate to prescribed metrics

– physically as natural as the exact localization problem 1{r region

1{r region

asympt. Eucl.

asympt. Schwarzschild

Theorem. The asymptotic localization problem (PLF–Nguyen)

– Vacuum Einstein equations on a manifold M with a single asymptotic end

– Decompose asymptotic infinity into three asymptotic angular regions

Ca Y C c
a`ε Y Ta,ε Ă R3

By considering (for instance) the Euclidean metric gEucl and the Schwarzschild
metric gSch “ p1` 2mSch{rq gEucl (with mass mSch ą 0),
there exists a solution to the vacuum Einstein equations Gpg , hq “ 0:

g “ gEucl `Opr´q
q in C c

a`ε

g “ gSch `Opr´q
q in Ca q P p1, 2q

g “ gEucl `Opr´1
q in Ta,ε
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Exact localization at super-harmonic rates

§ parametrization based on a localized seed-to-solution data set

§ regularity and norms for the gluing
§ possibly low decay (with infinite energy in the case 1{r 1{2)
§ matter fields

§ super-harmonic control in localized angular domains

§ continuous dependence estimates, sharp decay
§ analysis of linearized operators, localized solutions
§ analysis of the decay of nonlinearities

§ global evolution problem nonlinear stability of Minkowski spacetime

§ evolution under weak decay or strong decay conditions
§ massive matter fields, no scaling-invariance PLF–Yue Ma (Xi’an, China)

Only a SKETCH of our results

pM,Ω, g0, h0q: cone-like, asymptotically Euclidian, reference set

pg1, h1q: seed data set localized to Ω

§ Strongly tame: ppG , qG q ě p
n´2

2
, n

2
q and ppM , qMq ą pn ´ 2, n ´ 1q

§ Strongly effective pp‹, q‹q ą pn ´ 2, n ´ 1q
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Theorem. Localized gluing beyond harmonic decay Bruno LF & PLF, 2023

For each ppG , qG , pM , qMq-localized seed data set pg1, h1,H‹,M‹q there exists a
modulated seed data set

prg1, rh1q “ pg1, h1q ` supa“1,2,... localized harmonic terms at each end

}g ´ rg1}
N,α
g0,Ω,p‹,P

` }h ´ rh1}
N,α
g0,Ω,q‹,P

À Epg1, h1q `
ÿ

a“1,2,...

`

|m‹a | ` |P
‹
a |
˘

Epg1, h1q “
�

�Hpg1, h1q ´ H‹
�

�

N´2,α

Ω,g0,p`2,P´2
`
�

�Mpg1, h1q ´M‹
�

�

N´1,α

Ω,g0,q`1,P´1

the scalars m‹a “ m‹a pg1, h1,H‹q and vectors P‹a “ P‹a pg1, h1,M‹q being

m‹a :“
1

16π

ż

M

`

H‹ ´Hpg1, h1q
˘

κaλ
2 dVg1

P‹a :“
1

8π

ż

M

`

M‹ ´Mpg1, h1q
˘

κaλ
2 dVg1

κa : partition of unity for the asymptotic ends

ADM energy-momentum p rma, rPaq of the localized harmonic contributions

sup
a“1,2,...

ˇ

ˇ

rma ´m‹a
ˇ

ˇ`
ˇ

ˇ rPa ´ P‹a
ˇ

ˇ À Epg1, h1q

At each asymptotic end λ » distance to BΩ

λP
´

rn´2
|g ´ rg1| ` rn´1

´

|Bpg ´ rg1q| ` |h ´ rh1|

¯

` rn |Bph ´ rh1q|

¯

Ñ 0
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