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» construction of Einstein's initial data sets
» constraint equations: nonlinear elliptic, underdetermined, degenerate
» asymptotic properties on decay and blow-up

» gluing techniques, parametrization, localization

Two main objectives in this talk

e Scattering and classification for gravitational bouncing
with Bruno Le Floch (LPTHE, Sorbonne)
Gabriele Veneziano (CERN, Geneva)

e Localized seed-to-solution method for isolated systems
with Bruno Le Floch (LPTHE, Sorbonne)
The-Cang Nguyen (Paris)



1. SCATTERING MAPS for GRAVITATIONAL BOUNCING
Junctions between spacetimes
Regime of interest
> complex dynamics near singularities Belinsky, Khalatnikov, Lifshitz, Damour, etc.

» quiescent regime, monotone behavior oscillation-free

spatial derivatives negligible, observers cannot communicate

» Einstein-matter system scalar field, stiff or compressible fluid
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> complex dynamics near singularities Belinsky, Khalatnikov, Lifshitz, Damour, etc.
» quiescent regime, monotone behavior oscillation-free

spatial derivatives negligible, observers cannot communicate

» Einstein-matter system scalar field, stiff or compressible fluid
Junction conditions asymptotics near a singularity hypersurface
> bouncing behavior contracting/expanding
singularity hypersurfaces

> beyond Israel junction condition (Penrose, cut and paste) regularity hypersurfaces

» Objective: parametrize all meaningful junctions physically, mathematically

literature: special junctions, symmetric spacetimes
Proposed framework
» work with general spacetimes, asymptotic version of the constraints
» (past, future) singularity scattering data/maps
S: (g7 K ¢g. 1)~ (7. KT, 0g . ¢))
> classification/parametrization degrees of freedom

» S-cyclic spacetime
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Behavior near a singularity hypersurface approximate solution

(g%, K*, 6%)(7)
m (&% K" 88, 6))
T>Om<g,m¢wf)

T7<0 (g*,K*,¢*)(T)
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e In this case, the singularity data are the

— Euclidean metric g~
— tensor K~ with constant eigenvectors

— K~ = diag(p1, p2, p3) in some coordinates
— exponents p1, p2, p3 possibly depending upon the spatial variable x
— matter data (¢g , ¢ )

e This is an “asymptotic profile”, in a sense we define next.
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e In this case, the singularity data are the

— Euclidean metric g~
— tensor K~ with constant eigenvectors

— K~ = diag(p1, p2, p3) in some coordinates
— exponents p1, p2, p3 possibly depending upon the spatial variable x
— matter data (¢g , ¢ )

e This is an “asymptotic profile”, in a sense we define next.

Our standpoint
> a systematic study of the asymptotic data
> parametrize and analyze an asymptotic version of the Einstein constraints

» formulation and parametrization of junction conditions



A singularity hypersurface is a given 3-manifold #.

Definition

(Past) asymptotic profile associated with some given data (g~, K, ¢g , ¢7 ) is
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A singularity hypersurface is a given 3-manifold #.

Definition

(Past) asymptotic profile associated with some given data (g~, K, ¢g , ¢7 ) is
the ancient geometric flow defined on H by

TE (70070) e (g*vK*v¢*)(T)

e = _ -1 _ ‘ o L
g (M =I1""¢g K'(r)=—K ¢*(7) = ¢g log|r| + ¢

A typical example: Kasner profiles

(Past) singularity initial data set on a 3-manifold #
two symmetric 2-tensor fields (g7, K™)
Riemannian metric g two scalar fields (¢, , ¢; )

CMC symmetric (1,1)-tensor Tr(K ) =1
Hamiltonian constraint 1—|K | =8n(d)?

momentum constraints div,— (K™) =87 ¢ do;

which we refer to as the Einstein’s asymptotic constraints.
”

Notation I(#): space of all singularity data (g, K™, ¢g , 91 )



Scattering maps and gluing

Past-to-future singularity scattering map on a manifold A
S:1(H) - I(H) (87 K™ ¢9,01) — (87, K", ¢4, 01)
> diffeomorphism-covariant coordinate invariant

» pointwise or ultra-local map pointwise values only
S(g™, K™, 90,91 )(p) depends only on (g7, K™, ¢y, ¢1 )(p)

» quiescent regime K~ >0and KT >0
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> diffeomorphism-covariant coordinate invariant

» pointwise or ultra-local map pointwise values only
S(g™, K™, 90,91 )(p) depends only on (g7, K™, ¢y, ¢1 )(p)

» quiescent regime K~ >0and KT >0

Singular junction condition
» class of manifolds M* with Lorentzian metric g and scalar field ¢
> g<4) and ¢ bounded outside a singularity locus £ < M*

» assume the existence of rescaled limits
+ gt . K
(g%, K*) = lim (|7[*""g, —7K)

20

r >0 (¢0,61) = lim (r0:¢, & — 7log|7|0-¢)
pT <0 720

relation between the past / future singularity data

(85 K*, og,07) =S(g K ,¢g,01)
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coupled to a scalar field ¢ away from 7 =0
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— a three-manifold H, and a quiescence-preserving scattering map S

— past singularity data (g=, K™, ¢y , ¢7 ) defined on Ho
Then:
> a S-spacetime (M<4>,g(4)) with singularity locus Ho

» a local Gaussian foliation M®) = U ]HT with time function 7

T€[T_1,71
» the flow 7 — (g(7), K(7), ¢(7)) satisfies the Einstein equations
coupled to a scalar field ¢ away from 7 =0

» the junction (g, K", ¢, 01) =S(g , K, ¢, ,$7 ) holds on Ho.

If H is compact:

» shrinking volume of the slices Volg(7y(H+) — 0
» crushing singularity: mean curvature blowup lim,—oTH(T) = —1 on H,
» curvature singularity spacetime scalar (and Weyl) curvature

lim, o+ T2 RW (1) = —8m(4F)? on H,




2. CLASSIFICATION OF GRAVITATIONAL SCATTERING MAPS

Proposed strategy
locality property forany pe H
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and possibly derivatives at the point p, only
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Proposed strategy
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and possibly derivatives at the point p, only

A singularity scattering map S is said to be

» a ultra-local map if pointwise values only
S(g7, K™, g ,¢1)(p) depends only on (g7, K™, ¢ , 61 )(p)
» a conformal map if g*(7—) and g*(r.) differ by a conformal factor

for some 7 < 0 < 74

» a rigidly conformal map if g™ and g~ differ by a conformal factor

Conditions satisfied at the junction we rely on the asymptotic constraints
CMC symmetric (1,1)-tensor K~ Tr(K™ ) =1
Hamiltonian constraint 1— K |? =8 (¢p)°

momentum constraints div,_ (K7) = 8w ¢y dopy
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» general solutions without symmetry restrictions

» existence of singularity data satisfying the asymptotic constraints

» used to “probe” the properties enjoyed at the junction

» all possible ‘“degrees of freedom” for the scattering maps

» our main discovery: parametrized by a few functions only
first the subclass of rigidly conformal maps

next the general maps
Classification and flexible framework

» uncovered all possible classes of junction geometrically / physically meaningful
conformal/non-conformal  spacelike/null/timelike

scalar field  stiff fluid compressible fluid

a complete classification

» discovered three universal laws constrain macroscopic aspects of spacetime junction
regardless of their origin from different microscopic corrections

a guide to uncover specific structures
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Main classification results

Rigidly conformal bounces B. Le Floch, PLF, G. Veneziano

Only two classes of ultra-local spacelike rigidly conformal singularity scattering
maps for self-gravitating scalar fields:

» Isotropic rigidly conformal bounce Sii?gawnf
gt =X\g~ KT =6/3 ¢ =1/v/127 o =@
parametrized by a conformal factor A\ = X(¢ , ¢; ,det K~ ) > 0 and a constant ¢

ani, conf

> Non-isotropic rigidly conformal bounce S;;

g" =g K™ =p*(K™ —6/3)+6/3
bg =n "o [F'(47) ¢ = F(¢1)
parametrized by a constant ¢ > 0 and a function f: R — [0, +0)
p(o, é1) = (1 + 127 (¢0)*f ($1))"/° F(¢1) = 3 (1 + £())"Y2de

4

General classification

Only two classes of ultra-local spacelike, singularity scattering maps

ani

> Isotropic bounce S > Non-isotropic bounce S3".

where now A is a two-tensor, ® a “canonical transformation”, ¢ a constant.
v

More conveniently stated as three laws, as follows.



Universal laws of quiescent bounces B. Le Floch, PLF, G. Veneziano

» First law: scaling of Kasner exponents

Our classification uncovers three universal laws obeyed by any ultra-local

bounce. First, Kasner exponents are scaled as
There exists a (dissipation) constant v € R such that
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matter momentum g ~ ¢0
— depending solely on Kasner exponents scalar invariant det(K_)

— preserving the volume form in the phase space d7my A d¢
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Our classification uncovers three universal laws obeyed by any ultra-local

bounce. First, Kasner exponents are scaled as
There exists a (dissipation) constant v € R such that
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= |g Kbefore

spatial metric g in synchronous gauge, volume factor |g|
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» Second law: ‘canonical transformation’ of scalar field

The undergoes the transformation: minimally coupled massless scalar ¢
— there exists a nonlinear map ®: (g, )~ — (74, ¢)"

matter momentum g ~ ¢0
— depending solely on Kasner exponents scalar invariant det(K_)

— preserving the volume form in the phase space d7my A d¢

» Third law: directional metric scaling

g+ = exp((ro + 01K + 02K2)g_

nonlinear scaling in each proper direction of K

~ = 0: isotropic scattering, no restriction og, o1, 02
7 # 0: non-isotropic scattering, explicit formulas in terms of @, ~
o
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Figure: Cyclic spacetime arising from colliding plane gravitational waves
» Left: area A of plane-symmetry orbits = height of spacetime “bubbles”
» Right: singular locus A = 0 across which we apply the junction relation
(8% k™ 05, 61) = (€ g™ k™ g b1 +y)
» For this example of junction, the global evolution problem is well-posed in
a class of “cyclic spacetimes”.
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Figure: Image of equally-spaced constant-(¢, /r~) (vertical lines) and

constant-¢; (curved lines)

> under the matter map ® of the Pre Big Bang scenario

> It preserves d(¢g /r)déT so each region has the same area.
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Figure: Bianchi | symmetric modified matter bounces
» Lagrangian £ = %¢2 — 2|¢‘€7¢2/2/tb + ef‘z’z/tg for fixed t; , ¢y , and wy
(normalized to 1).
» Each color corresponds to one value of ¢;

» which affects the t — +o0 asymptotics for w ~ wy (t — t) and
d~¢f Inw+ (¢7 — ¢ Inwyd) manifest in the two plots.



4. LOCALIZATION AT SPACELIKE INFINITY

Existence of initial data sets

“prescribed curvature problem”
manifold (M, g, k) with finitely many asymptotic ends

unknowns: Riemannian metric g and symmetric (0, 2)-tensor field k

extrinsic curvature in the dynamical picture
matter content: scalar field H, : M — R vector field M,

Einstein's Hamiltonian and momentum constraints

Ry + (Trgk)® — |k|3 = H. Divg (k — (Trgk)g) = M.




4. LOCALIZATION AT SPACELIKE INFINITY

Existence of initial data sets

“prescribed curvature problem”
» manifold (M, g, k) with finitely many asymptotic ends

» unknowns: Riemannian metric g and symmetric (0, 2)-tensor field k

extrinsic curvature in the dynamical picture
» matter content: scalar field H. : M — R vector field M,

» Einstein’'s Hamiltonian and momentum constraints

Ry + (Trgk)® — |k|3 = H. Divg (k — (Trgk)g) = M.

Notation
It is convenient to introduce the (2,0)-tensor h by h:= (k — Trg(k)g)mj
1
H(g, h) = Rs + 5(Trgh)2 — |n2 M(g, h) = Divgh
g(g7 h) = (H7 M) (g> h) = (H*7 M*)

In the dynamical picture, G(g, h) is a spacetime vector.
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» Conformal method Lichnerowicz (1960s), Choquet-Bruhat, Chrusciel, Corvino, Delay,

Dilts, Galloway, Gicquaud, Holst, Isenberg, Maxwell, Mazzeo, Miao, Pollack, Schoen, etc.

» Variational method  Corvino, Corvino-Schoen, Chrusciel-Delay, Carlotto-Schoen, etc.

Major achievements

» existence of initial data, explicit constructions, physically relevant solutions

> general relativity, Riemannian geometry

» numerous classes of solutions: compact, various types of asymptotic ends

» including gluing techniques, combine two different solutions together

» A. Carlotto, The general relativistic constraint equations, Living Reviews
in Relativity (2021).



Localization in initial data sets
Shielding gravity at infinity
» asymptotically Euclidean initial data sets

» phenomena of anti-gravity (or shielding) Carlotto and Schoen

. . o Chrusciel and Delay
» solutions that are localized at infinity

» The Positive Mass Theorem implies restrictions on gluing at infinity.

» identically Euclidian near infinity except in a cone

» Other recent developments
> S. Aretakis, S. Czimek, |. Rodnianski: characteristic gluing problem
> Y.-C. Mao and Z.-K. Tao: localization “a la Carlotto-Schoen” in narrow domains



Localization in initial data sets
Shielding gravity at infinity
» asymptotically Euclidean initial data sets

» phenomena of anti-gravity (or shielding) Carlotto and Schoen

. . o Chrusciel and Delay
» solutions that are localized at infinity

» The Positive Mass Theorem implies restrictions on gluing at infinity.
» identically Euclidian near infinity except in a cone

» Other recent developments
> S. Aretakis, S. Czimek, |. Rodnianski: characteristic gluing problem
> Y.-C. Mao and Z.-K. Tao: localization “a la Carlotto-Schoen” in narrow domains

Localization with (super-)harmonic control

> Improve upon Carlotto-Schoen's theory

» solutions with sub-harmonic control rP with p € ("52, n— 2)
» conjecture: gluing should be possible at harmonic level

» Localization results with harmonic and super-harmonic control
» PLF & The-Cang Nguyen, 2020: The seed-to-solution method for
the Einstein constraint equations

» Bruno Le Floch & PLF, 2023: The localized seed-to-solution
method for the construction of Einstein’s initial data sets
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5. LOCALIZATION AT SUPER-HARMONIC RATES

Theorem. The seed-to-solution parametrization (PLF & T-C Nguyen)

and a localized version by Bruno Le Floch & PLF

Given any seed data set (M, g1, h1) on a 3-manifold (with a single end, say):
a Riemannian metric g1 and a symmetric two-tensor h;

satisfying (suitable smallness conditions and) 1/2 < pc < min(1, pm)
1/2 < pu < +©

g1 = gew + O(r™"°) hy = O(r~P¢7)

Hgi, ) = O(r™?) M(gi, ) = O(r72)

there exists a solution (g, h) to the vacuum Einstein equations G(g, h) = 0.
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5. LOCALIZATION AT SUPER-HARMONIC RATES

Theorem. The seed-to-solution parametrization (PLF & T-C Nguyen)

and a localized version by Bruno Le Floch & PLF

Given any seed data set (M, g1, h1) on a 3-manifold (with a single end, say):
a Riemannian metric g1 and a symmetric two-tensor h;

satisfying (suitable smallness conditions and) 1/2 < pc < min(1, pm)
1/2 < pu < +©

g1 = gew + O(r™"°) hy = O(r~P¢7)

Hgi, ) = O(r™?) M(gi, ) = O(r=™7%)

there exists a solution (g, h) to the vacuum Einstein equations G(g, h) = 0.

> Sub-harmonic decay: py <1

g=g +0O(r ") h=hy +O(rPv1

» Harmonic decay: py = 1 H(g1, h) and M(g1, h1) in L'(M)
g=g+2+o(r?) h=h+0O(r?)

» Super-harmonic decay: py > 1 p = min(pe + 1, pm, 2)
g=g + ? +0O(r°) h=h + O(rfz)

Mass modulator m = (g1, ) = const. {, H(g1, m) dVg, + O(G(g1, h1)?)




Exact localization at sub-harmonic rates
Carlotto and Schoen

— Vacuum constraint Einstein equations

Decompose asymptotic infinity into three angular regions
» %> cone with (possibly arbitrarily small) angle a € (0, 27)
» €5,.: complement of the same cone with (slightly) larger angle a + ¢

» TS remaining transition region
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Decompose asymptotic infinity into three angular regions
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» €5,.: complement of the same cone with (slightly) larger angle a + ¢
» TS remaining transition region

%> and €, .: the metric coincides with Euclidean/Schwarzschild ones

solve the vacuum Einstein equations in the transition region .7, .

— Sub-harmonic control in 7, ., that is, r " with p € (1/2,1)

— Question raised by Carlotto and Schoen

construct solutions (with prescribed asymptotic)

enjoying the 1/r harmonic decay in all angular directions
1/rP region

/ ™ Schwarzschild

I
Euclldear\1 ;

/
~o_-7 1/rP region



Asymptotic localization at super-harmonic rates
slightly relax the localization condition
— asymptotic at a super-harmonic rate to prescribed metrics

— physically as natural as the exact localization problem
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— Vacuum Einstein equations on a manifold M with a single asymptotic end
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Theorem. The asymptotic localization problem (PLF-Nguyen)

— Vacuum Einstein equations on a manifold M with a single asymptotic end

— Decompose asymptotic infinity into three asymptotic angular regions
G U ECEew Toe CR®
By considering (for instance) the Euclidean metric geua and the Schwarzschild
metric gsch = (1 + 2msch/r) geuer (With mass mse, > 0),
there exists a solution to the vacuum Einstein equations G(g, h) = 0:

& = 8Eud + O(riq) in %ﬁ,s
g =gseh + O(r 9 in %, ge(1,2)

g = geud + O(ril) in 7.
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Only a SKETCH of our results
(M, €, go, ho): cone-like, asymptotically Euclidian, reference set
(g1, h): seed data set localized to Q

» Strongly tame: (pc,qc) = (52, 3) and (pm, qu) > (n—2,n— 1)

» Strongly effective (ps,qx) > (n—2,n—1)



Theorem. Localized gluing beyond harmonic decay Bruno LF & PLF, 2023

For each (pg, gs, pm, qu)-localized seed data set (g1, h1, Hx, M4) there exists a
modulated seed data set

(&1, ) = (g1, ) + sup,_; o localized harmonic terms at each end

goos

Mo SE@ M)+ Y (Im] +|P)
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goos
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le = &ilgGp.,p + 1= Pl
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: partition of unity for the asymptotic ends
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For each (pg, gs, pm, qu)-localized seed data set (g1, h1, Hx, M4) there exists a
modulated seed data set

(&1, %1) = (g1, m) + supa,1 5 localized harmonic terms at each end

goos

go,Qq*P’\'g(ghhl) Z (|m;‘+|Pa*‘)

a=1,2,...

+ H|M(g1, hi) — M*H|

le = &ilgGp.,p + 1= Pl

N—-2,«
Q,g0,p+2,P—2

N—1,«

E(g1,m) = H!H(gl7 hi) — H. H Q,g0,9+1,P—1

the scalars m; = mj} (g1, h1, H.) and vectors P; = P} (g1, h1, M.) being

N 1
m} = 167 (Hs — H(gr, h)) kX dVg,
P = o J gl,hl)) KaX> dVy,

: partition of unity for the asymptotic ends
v

ADM energy-momentum (m,, P, ) of the localized harmonic contributions

sup |ma—ma‘+’P —P; }<5g1,h1)
a=1,2,.

At each asymptotic end A =~ distance to 02
N (121 =&l + " (10(g — &)l + b= Bul) + ¢ |o(h — Bu)[) — 0




