ECLAIR: a complete toolbox for cosmological inference

Stéphane Ilić IJCLab, Orsay

> Atelier Outils de l'action Dark Energy @ IAP, 05/06/2023

Introduction: back in 2016-2017

Several "CosmoBoxes" on the market :

- CosmoMC
- MontePython
- · CosmoSIS
- Cobaya

. . .

...but none entirely satisfying for my needs

My "needs":

- Juggling with many cosmological models (and as many Boltzmann solvers)
- Non trivial exploration of parameter space (priors, constraints...)
- A (relatively) big cluster to exploit

Generalized Dark Matter (GDM, Hu 1998)

- Defined for FLRW, linear perturbations
- <u>Background</u>: (non-zero) equation of state $w(\tau)$
- <u>Perturbations</u>: sound speed $c_s^2(\tau, k)$ & viscosity $c_{vis}^2(\tau, k)$
- Standard eqs. for density contrast & velocity divergence
- Continuity & Euler eqs. : requires closure equations (here by Hu):

$$\Pi_{g} \equiv \frac{\delta P_{g}}{\bar{\rho}_{g}} = c_{a}^{2} \delta_{g} + (c_{s}^{2} - c_{a}^{2}) \hat{\Delta}_{g}^{\text{rest frame}} \qquad \dot{\Sigma}_{g} = -3\mathcal{H}\Sigma_{g} + \frac{4}{1+w} c_{\text{vis}}^{2} \hat{\Theta}_{g}^{\text{Newt.}}$$

$$\begin{pmatrix} c_{a}^{2} = \frac{\dot{P}_{g}}{\dot{\rho}_{g}} = w - \frac{\dot{w}}{3\mathcal{H}(1+w)} \end{pmatrix}$$

$$4$$

My "needs":

- Juggling with many cosmological models (and as many Boltzmann solvers)
- Non trivial exploration of parameter space (priors, constraints...)
- A (relatively) big cluster to exploit

S-ilic / ECLAIR Public	c] Pull requests 🕟 Actions 🖽 Proj	ects 🖽 Wiki 🕕 Security 🗠 Insigi	hts ශි Settings	
	ې master ج پې 2 branches و s-ilic Some cosmetics + added	> 0 tags blobs in .input file	Go to file Add file - <> Code - fb958c7 on Mar 9 (94 commits	About Ensemble of Codes for Likelihood Analysis, Inference, and Reporting
	 inputs likelihoods .gitignore ECLAIR_maximizer.py ECLAIR_mcmc.py ECLAIR_parser.py ECLAIR_plots.py 	Minimal implementation of zeus sam Added SPT3G_2020 likelihood Added gitignore file + BK18 folders Minimal implementation of zeus sam Some cosmetics + added blobs in .in Bug fix in parser Bug fix in plotting script	npler 4 months ago 2 years ago 2 years ago 2 years ago put file 3 months ago 4 months ago 2 years ago	 □ Readme
	 □ LICENSE □ README.md □ README.md 	Tweaks to parser (including debug_n Update README.md	ikolibood Applycic	No releases published Create a new release Packages No packages published Publish your first package
	Author: Stéphane Ilić	d Reporting	ikeimood Analysis,	Contributors 3

- Two (fairly) short files in Python: main (~200 lines) & parser (500)
- Human-readable/tweakable, well-commented (I hope !)

===·Free·MCMC·parameters·==

Control about the literation of the stand of the second state of t
Syntax should be "type par_name start min max width" where:
* "type": "var_class" if a CLASS parameter, otherwise "var"
* "par_name": parameter name (as known in CLASS or likelihoods)
* "start": mean of Gaussian used to initialize walkers positions
* "min/max": hard bounds (i.e. prior) on parameter value
* "width": std dev of Gaussian used to initialize walkers positions
Note:
If an array of parameter needs to be passed to CLASS, append "_val_N" to
to each parameter where the integer N marks their position in the array
Example: "m ncdm val 0", "m ncdm val 1" for the masses of 2 neutrinos

Class parameters

var_class omega_b 0.02222 0.0.0.0.0.0.0001
var_class omega_cdm 0.1197 0.00.00.002
var_class H067.045.090.0 .0.1
var_class tau_reio 0.076 0.01 0.01 0.8 0.01
var_class ln10^{10}A_s 3.096 2.0 4.0 0.01
var_class n_s 0.977 0.8 1.2 0.01

Likelihood parameters

var A_planck 1. 0.9 1.1 0.002

===•Priors•on•parameters•==

-- Uniform and Gaussian priors are implemented, with respective syntax: -- * uni_prior par_name lower upper -- * gauss_prior par_name mean stddev

gauss prior A planck 1. 0.0025

== Fixed parameters ==

-- Syntax should be "type par_name value" where: -- * "type" : "fix_class" if a CLASS parameter, otherwise "fix" -- * "par_name": parameter name (as known in CLASS or likelihoods) -- * "value": parameter value (can be a string)

CLASS parameters

fix_class output tCl,pCl,lCl
fix_class lensing yes
fix_class l_max_scalars 2508
fix_class "non linear" halofit
fix_class modes s
fix_class N_ur 2.0328
fix_class N_ncdm 1
fix class m_ncdm 0.06

My "needs":

- Juggling with many cosmological models (and as many Boltzmann solvers)
- Non trivial exploration of parameter space (priors, constraints...)
- A (relatively) big cluster to exploit

- Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)
- Human-readable/tweakable, well-commented (I hope !)
- Working with any CLASS variant, no modification required

==- CLASS -==

---Select the version of CLASS to be used (give name of Python wrapper)

- Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)
- Human-readable/tweakable, well-commented (I hope !)
- Working with any CLASS variant, no modification required
- Growing number of likelihoods/datasets implemented (easy to add new ones)

===·Likelihoods·==			
Syntax-should-be For-a-detailed- "likelihoods"-fo	e "likelihood name_of_likelihood" list of available likelihoods, see like older	elihoods.md in	
likelihood • Planck	2018_highTTTEEElite		
ECLAIR / likelihoods /			
s-ilic Added SPT3G_2020 likelihood			
Name			
a	JLA	Planck2018_highTTlite	
ACTPol_lite_DR4_all	Pantheon	Planck2018_lensCMBdep	
ACTPol_lite_DR4_for_Planck	Planck2015_highTT	Planck2018_lensCMBmarg	
ACTPol_lite_DR4_onlyEE	Planck2015_highTTTEEE	Planck2018_lowBB	
ACTPol_lite_DR4_onlyTE	Planck2015_highTTTEEElite	Planck2018_lowEE	
ACTPol_lite_DR4_onlyTT	Planck2015_highTTlite	Planck2018_lowEEBB	
BAO_2014	Planck2015_lensT	Planck2018_lowTT	
BAO_2018	Planck2015_lensTP		
BK15	Planck2015_lowTEB		
BK18	Planck2015 lowTT		
H0_F20			
H0_HST			
H0_R18	Planck2018_highTTTEEE		
H0 R19	Planck2018_highTTTEEElite		

File Edit View Go	Bookmarks Help			
\leftarrow Back \checkmark \rightarrow	Forward 👻 🛧 🔇	C 🛅	📃 🖻 50% 🕀	List View 🔻 Q
Places 👻 🗙	🖍 🖣 🛅 silic 🛛 So	cience JAM	JAM_likelihoods BAO_2	2014
Computer	TMP_JAM		× BAO_2014	×
Silic	Name	👻 Size	Туре	Date Modified
File System	nitpy	1.2 kB	Python script	Tue 18 Sep 2018 01:38:45 CEST
Documents				
🔃 Downloads				
🗊 Music				
Dictures				
🛅 Videos				
👼 Trash				
Devices				
🐻 403 GB Volume				
Bookmarks	"initpy" selected (1.2 kB), Free space: 13.7	GB	

import numpy as np

```
### BAO "2014" data (used in Planck 2015 as ext. data)
def get loglike(class input, likes input, class run):
\cdots \cdot \ln l \cdot = \cdot 0.
rs = class run.rs drag()
# 6DF from 1106.3366
....z, data, error = 0.106, 0.327, 0.015
da = class run.angular distance(z)
dr = z / class run.Hubble(z)
dv = (da^{**2} \cdot (1 + z)^{**2} \cdot (1 + z)^{**2})
theo = rs / dv
lnl += -0.5 * (theo - data)**2. / error**2.
# BOSS LOWZ & CMASS DR10&11 from 1312.4877
....z, data, error = 0.32, 8.47, 0.17
da = class run.angular distance(z)
dr = z / class run.Hubble(z)
dv = (da**2. * (1+z)**2. * dr)**(1./3.)

....theo = dv / rs

\....lnl += -0.5 * (theo - data)**2. / error**2.
....z, data, error = 0.57, 13.77, 0.13
da = class run.angular distance(z)
dr = z / class run.Hubble(z)
dv = (da * 2. * (1 + z) * 2. * dr) * (1. / 3.)
theo = dv / rs
lnl += -0.5 * (theo - data)**2. / error**2.
# SDSS DR7 MGS from 1409.3242
z, data, error = 0.15, 4.47, 0.16
da = class run.angular distance(z)
dr = z / class run.Hubble(z)
dv = (da**2. * (1 + z)**2. * dr)**(1. / 3.)
· · · · theo · = · dv · / · rs
\...lnl += -0.5 * (theo - data)**2. / error**2.
# Return log(like)
••••return•lnl
```

My "needs":

- Juggling with many cosmological models (and as many Boltzmann solvers)
- Non trivial exploration of parameter space (priors, constraints...)
- <u>A (relatively) big cluster to exploit</u>

- Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)
- Human-readable/tweakable, well-commented (I hope !)
- Working with any CLASS variant, no modification required
- Growing number of likelihoods/datasets implemented (easy to add new ones)
- MCMC algorithm : Affine-Invariant Ensemble sampling

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

...and end up sitting in the "interesting" region of parameter space

$$\pi(x) \propto \exp\left(\frac{-(x_1 - x_2)^2}{2\epsilon} - \frac{(x_1 + x_2)^2}{2}\right)$$

== MCMC ===
=======
Select the MCMC sampler to be used (default "emcee")
Possible choices:
* "emcee" (https://emcee.readthedocs.io)
* "zeus" (https://zeus-mcmc.readthedocs.io)
#which_sampler emcee

```
-- Setting for parallel computing (default "none") --
-- Current choices :
-- * "none": no parallelization
-- * "multiprocessing N": OpenMP parallelization with N threads
#parallel none
-- Set the number of walkers (default "prop to 2") --
-- Current choices :
-- * "custom N": number of walkers fixed to X
-- ** "prop_to · N": number of walkers is N times the number of free parameters --
-- Note: ---
-- Number of walkers has to be at least twice the number of free parameters
#n walkers prop to 2
-- Number of MCMC steps --
n steps 10000
-- MCMC thinning factor (default no thinning) --
.....
#thin by 1
-- MCMC temperature of the MCMC (default 1.) --
#temperature 1.
-- Optional keyword arguments for sampler --
_____
---Note:
-- Syntax should be "sampler kwarg kwarg name kwarg"
     #sampler kwarg moves MCMCsampler.moves.StretchMove(a=2)
```

- Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)
- Human-readable/tweakable, well-commented (I hope !)
- Working with any CLASS variant, no modification required
- Growing number of likelihoods/datasets implemented (easy to add new ones)
- MCMC algorithm : Affine-Invariant Ensemble sampling
- Intuitive visualization scripts to assess convergence

Visualization tools

Visualization tools

- Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)
- Human-readable/tweakable, well-commented (I hope !)
- Working with any CLASS variant, no modification required
- Growing number of likelihoods/datasets implemented (easy to add new ones)
- MCMC algorithm : Affine-Invariant Ensemble sampling
- Intuitive visualization scripts to assess convergence
- Contour plot scripts (interfaced with getdist)

Contour plots

My "needs":

- Juggling with many cosmological models (and as many Boltzmann solvers)
- <u>Non trivial exploration of parameter space</u> (priors, constraints...)
- A (relatively) big cluster to exploit

- Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)
- Human-readable/tweakable, well-commented (I hope !)
- Working with any CLASS variant, no modification required
- Growing number of likelihoods/datasets implemented (easy to add new ones)
- MCMC algorithm : Affine-Invariant Ensemble sampling
- Intuitive visualization scripts to assess convergence
- Contour plot scripts (interfaced with getdist)
- Convenient custom parser :"constraint" and "deriv" features

ECLAIR parsing features

_____ == Parameters special settings == -- Put constraints on parameters ---- Syntax should be "constraint XXX = YYY", where XXX is the parameter ---- forced to be equal to YYY. In XXX and YYY: ---- * YYY can be any fonction of any number of parameters ---- * use syntax class[par name] if a CLASS parameter involved ---- * use syntax likes[par name] if a likelihood parameter is involved #constraint class[omega b] = class[omega cdm] + 5 * class[H0] -- Request some derived parameters in output ---- Syntax should be "deriv par name quantity requested", where: -- * "par name": name of derived parameter as will be stored in chain (cannot ---- contain any space) -- * "quantity requested": any command/function, where: ------CLASS wrapper accessible via "class run" instance -- - CLASS background quantities accessible via "bg" dictionnary ---- - CLASS thermodynamical quantities accessible via "th" dictionnary --------CLASS parameters accessible via "class input" dictionnary ------nuisance parameters accessible via "likes input" dictionnary #deriv my H0 bg['H [1/Mpc]'][-1]*299792.458 #deriv sigma 8 class run.sigma8()

+ can put priors on any derived parameter

- Two (fairly) short files in Python 2/3 : main (~200) & parser (~500)
- Human-readable/tweakable, well-commented (I hope !)
- Working with any CLASS variant, no modification required
- Growing number of likelihoods/datasets implemented (easy to add new ones)
- MCMC algorithm : Affine-Invariant Ensemble sampling
- Intuitive visualization scripts to assess convergence
- Contour plot scripts (interfaced with getdist)
- Convenient custom parser :"constraint" and "deriv" features
- Robust minimizer combining simulated annealing & ensemble sampling (SAVES ?)

Minimizing with ECLAIR

MCMC step

Minimizing with ECLAIR

Minimizing with ECLAIR

+ Bayesian evidence computing
(+ profile likelihood, work in progress)

 $c_p^2 = c_s^2 + \frac{8}{15}c_v^2$

$$(c_s^2, c_v^2) > 0$$

$$c_p^2 = c_s^2 + \frac{8}{15}c_v^2$$

<u>Frequentist approach :</u> Computation of the "profile likelihood"

1D grid on given parameter, minimize likelihood wrt all other parameters

Thank you for your attention !