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Testing the laws of gravity at cosmological scales

Why modified gravity?

−→ probe gravity at cosmological scales (less constrained than at local scales)

−→ the nature of dark energy remains unknown

The LSS formation as a probe of gravity

The formation of the Large-Scale Structure (LSS) of the Universe is mainly

driven by gravity:

−→ small initial fluctuations (inflation) grow by gravitational collapse

−→ formation of galaxy clusters and groups

+ accelerated expansion driven by an unknown dark energy component

⇒ interesting playground to probe simultaneously the laws of gravity and the

nature of dark energy
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Measuring the structure of the Universe

−→ One of the objectives of the ongoing (DESI) and future (Euclid, LSST)

next generation large surveys.

EUCLID satellite. LSST telescope.

−→ Theoretical predictions will be required in order to interpret the

observations.
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Cosmological N-body simulations

−→ In the non-linear regime (k ≳ 0.1 hMpc−1) it is easier to discriminate

between different dark energy and modified gravity models.

−→ N-body simulations are required to obtain accurate theoretical predictions

(but are very time consuming...).
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Faster predictions: emulator approach

N-body simulations give accurate predictions but are very time consuming.

−→ too slow to be used in an MCMC.

Solution : Build an emulator.

−→ Interpolate between the results of a set of simulations, run with different

cosmological parameters.
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The f (R) gravity model

Simple MG model, with an extra term in the action:

SEH =
c4

16πG

∫
d4x

√−g [R − 2Λ] −→ c4

16πG

∫
d4x

√−g [R + f (R)]

−→ New (in addition to gµν) dynamical scalar field fR = df
dR (scalar-tensor

family).

−→ Depending on the form of f (R) this model can:

• produce cosmic acceleration,

• exhibit a screening mechanism ⇒ GR recovered in high density

environments (where gravity is well constrained).
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The Hu & Sawicki model (2007)

The Hu & Sawicki model:

f (R) = −m2 c1(R/m
2)n

c2(R/m2)n + 1
with m2 ≡ ΩmH

2
0

In the high density limit, fixing c1/c2 = 6ΩΛ/Ωm:

f (R) ≃ −2Λ +
c1
c22

m2

(
m2

R

)n

−−−−→
R≫m2

−2Λ

−→ Closely reproduces the expansion history of ΛCDM.

−→ Deviations from GR disappear in high density environments (CMB, solar

system).

−→ Two remaining free parameters: n and c1/c
2
2 ∼ fR0 .
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Cosmological simulations in f (R) gravity

N-body cosmological simulations with ecosmog [Li et al. 2012, Bose et al.

2017], a modified version of ramses [Teyssier 2002].

−→ optimized f (R) solver limited to n = 1, remaining free parameter: fR0 .

Newtonian limit:
1

a2
∇2ϕ =

4

3
× 4πGδρ− 1

6
δR(fR) &

1

a2
∇2fR =

1

3
[δR(fR)− 8πGδρ]

Simulations:

• Volume:
(
328.125h−1Mpc

)3

• 5123 dark matter particles

• Mass resolution: mp ∼ 2 · 1010h−1M⊙

• ∼ 2–10 slower than ΛCDM
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Influence de f (R) sur la distribution de matière
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Left: Initial spectrum (start of the simulation).

Right: Final spectrum (end of the simulation).

−→ The power spectrum is amplified by f (R) gravity.

−→ This amplification is stronger at non-linear scales (k > 0.1 hMpc−1).
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Power spectrum boost due to f (R) gravity
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Power spectrum boost:

• cancellation of large

scale variance

• cancellation of

numerical resolution

errors

• only three parameters:

fR0 , Ωm and σ8

−→ reduced computational

needs.

Strategy: emulate the boost B(k), using pairs of f (R)CDM and ΛCDM

simulations.

Caveat: ΛCDM emulator required to get the full power spectrum.
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Sampling the parameter space

Latin Hypercube Sampling (LHS):

• 90 training models (blue)

• 20 validation models (orange)
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−→ 5 pairs of ΛCDM & f (R)CDM simulations per model

−→ a total of 1100 simulations ⇒∼ 3Mh
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Data compression & emulation

We want to build an emulator for B(k ; θi ), where different k-bins (Nk ≃ 100)

are highly correlated between each other.

−→ We can compress the data with a Principal Component Analysis (PCA):

B(k ; θi ) =
NPCA∑

j=1

αj(θi )ϕj(k) + ϵ

where the ϕj(k) are a set of (empirical) orthogonal basis functions.

−→ 5 independent αj(θi ) coefficients

are enough to fully describe the power

spectrum boost.

−→We build an emulator for each αj(θi )

with a Gaussian Processes Regression.
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Emulator design

  

Standard procedure: [Habib et al. 2007], [Lawrence et al. 2010], [Lawrence et al.

2017], [Nishimichi et al. 2019], [Angulo et al. 2021], [Arnold et al. 2022] and others.

−→ PCA + GP using scikit-learn [Pedregosa et al. 2011]. 12/15



Emulator validation
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Emulation errors smaller than 1% for:

• 0.03hMpc−1 < k < 10hMpc−1,

• 0 < z < 2.

Additional checks:

• large scale variance errors < 1%

• small scale resolution errors < 3%

for k < 7hMpc−1

−→ Accurate and fast (∼ 10ms) emulator able to predict the matter power

spectrum boost in f (R)CDM cosmology.

−→ Such an emulator could be used to constrain f (R) gravity with weak

lensing analyses.
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Now publicly available

−→ arXiv:2303.08899

−→ Emulator available as a

python package:

https://gitlab.obspm.fr/

e-mantis/e-mantis

14/15

https://gitlab.obspm.fr/e-mantis/e-mantis
https://gitlab.obspm.fr/e-mantis/e-mantis


Future developments

−→ New observables:

• DM halo power spectrum multipoles (RSD)

• DM halo mass function

• DM halo density profiles

−→ New simulations currently running:

• additional simulations in f (R) gravity

• extension to other cosmologies, such as wCDM

Stay tuned!

−→ Our simulation data are available upon request: don’t hesitate to contact

us.
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Thank you!
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Comparison with other predictions

e-MANTIS vs Winther et al. (2019) fitting formula

−→ Only depends on fR0 .



Comparison with other predictions

e-MANTIS vs Ramachandra et al. (2021) emulator

−→ Based on COLA simulations, less accurate than N-body at small scales.



Comparison with other predictions

e-MANTIS vs FORGE (Arnold et al. 2022) emulator

−→ Based on N-body, using a different simulation code (arepo vs ramses).
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