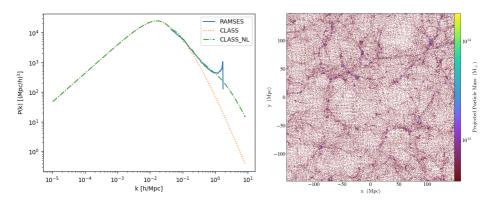
Non-linear structure formation with N-body simulations

Clément Stahl


Observatoire Astronomique de Strasbourg, Université de Strasbourg

7 June 2023

Outline

Why a (super-)computer?

• Linear perturbation theory: a (very good) tool when

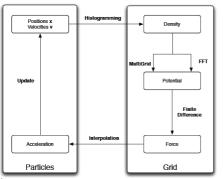
$$\frac{\rho - \bar{\rho}}{\bar{\rho}} \equiv \delta \ll 1 \tag{1}$$

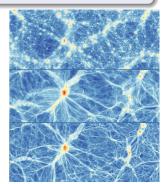
 \bullet Quasi linear scales: $\delta \sim 1$: various analytical approach [NOT the topic today]

- Lagrangian perturbation theory (Buchert 92, Bernardeau & Valageas 08)
- renormalized perturbation theory (Crocce & Scoccimarro 05)
- regularized perturbation theory (RegPT, Bernardeau 15)
- path integral formalism (Valageas 03)
- coarse grained perturbation theory (Matarrese 07)
- renormalization group flow (Pietroni 08)
- kinetic field theory (Bartelmann 19)
- effective field theories (Baumann 10)
 - CLASS-PT
 - PyBird (Pierre Zhang)

 $\rightarrow k \sim 0.3 h/{\rm Mpc}$

 Strong non-linear regime: δ ≫ 1, no analytical approximations for gravitational evolution of matter density perturbations → numerical approach [topic of today :)]


Numerical approach


• Large number of elements (stars, dark matter particles) \rightarrow statistical approach: distribution function in phase space: f_m

 $\Delta \Phi = 4\pi G \bar{\rho} a^2 \delta$

- Dark matter assumed to be composed of $\mathcal{O}(10^6 10^{12})$ particles gravitationally interacting.
- Vlasov-Poisson system : ($\Phi \sim 10^{-5}$, $v \sim 10^{-2}$)

$$\frac{\partial f_{\rm m}}{\partial t} + \frac{v_i}{a^2} \frac{\partial f_{\rm m}}{\partial x^i} - \frac{\partial \Phi}{\partial x^i} \frac{\partial f_{\rm m}}{\partial v_i} = 0$$
⁽²⁾

(3)

Credits : Angulo 21

4/27

Review: Angulo & Hahn 21

Different gravity solvers

- Particle-Particle (Aarseth03)
- Hierarchical Tree (Barnes & Hut 86).
 Exemples of (public) tree codes: PKDGRAV3 (Potter 16) GADGET4 (Springel 20), ChaNGa (Quinn 15).
- Particle-Mesh (Hockney & Eastwood 81).
 Exemples of (public) mesh codes: FASTPM (Feng 16), ENZO (Bryan 97),
 RAMSES (Teyssier 02), AMIGA (Knebe01)

Time evolution

- Once you have calculated the gravitational force for every particle, needs to move the particle according to its dynamics (Newton's law)
- Second order ODE: Runge-Kutta4, or LeapFrog
- Symplectic structure: Kick-Drift-Kick or Drift-Kick-Drift.

Supercalculators

- HPC infrastructure = paralellism. MPI library to communicate among different nodes. OpenMP to speed up directives in nodes computations.
- Computational domain (particles or particles+grid) decomposed into smaller pieces distributed over the nodes.
- Hilbert curve decomposition (<u>note</u>: for very cluttered situation MULTIPLEDOMAINS helps in GADGET4.)

Joliot Curie @ TGCC

Jean Zay (IDRIS, Saclay)

6/27

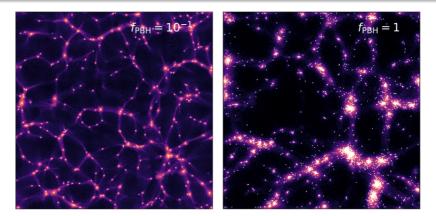
- <u>CSL:</u> 86 344 CPU cores
- V100: 2448 V100 GPUs
- A100: 416 A100 GPUs

Joliot Curie (TGCC, Bruyères-le-Châtel)

- Irene SKL: 79 488 CPU cores
- Irene Rome: 293 376 CPU cores
- Irene V100: 128 V100 GPUs

State of the art simulations

Year	Simulation	Code, Algorithm	Supercomputer, Location	$\frac{\text{Cores}}{[10^3]}$	$N_{ m p} \ [10^{12}]$	$\underset{[h^{-1}\text{Gpc}]}{\text{Box}}$	$[h^{-1} \mathrm{kpc}]$
2014	Dark Sky (Skillman et al. 2014)	2HOT FMM	Titan USA	20	1.1	8	36.8
2017	TianNu (Emberson et al. 2017)	CUBEP ³ M PM-PM-PP	Tianhe-2 China	331	2.97	1.2	13
2017	Euclid Flagship (Potter et al. 2017)	PKDGRAV3 Tree-FMM	PizDaint Switzerland	4	2.0	3.	4.8
2019	Outer Rim (Heitmann et al. 2019)	HACC Tree-PM	Mira USA	524	1.07	3.0	2.84
2019	$\begin{array}{c} \text{Cosmo-}\pi\\ \text{(Cheng et al. 2020)} \end{array}$	CUBE PM-PM	π 2.0 China	20	4.39	3.2	195
2020	Uchuu (Ishiyama et al. 2021)	GreeM Tree-PM	ATERUI-II Japan	<40	2.0	2.0	4.3
2020	Last Journey (Heitmann et al. 2021)	HACC Tree-PM	Mira USA	524	1.24	3.4	3.14
2021	Far Point (Frontiere et al. 2021)	HACC Tree-PM	Summit USA	?	1.86	1	0.8

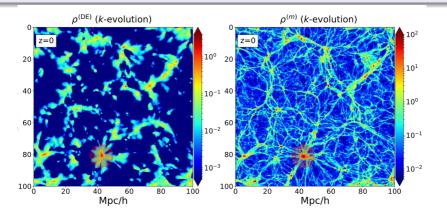

Table 1 List of cosmological simulations with a particle number in excess of 1 trillion (10^{12})

Gordon Bell Prize

'Modified' gravity

Some selected codes (often written on the top of RAMSES or GADGET)

- Axion/Fuzzy Dark matter: SCALAR (Mina 19), May 21, axionCAMB
- f(R) (Zhao 10), ECOSMOG (Li 11, Brax 12), Modified Gravity-GADGET (Puchwein 13), (Arnold 19), MG-GLAM (Ruan 21 & Hernández-Aguayo 21)
- ISIS (Llinares 13), Scalar dark matter: (Hopkins 18)
- MOND: Phantom of RAMSES, Dipolar dark matter, Bi-Poisson
- APBH (Inmar 19)



General Relativity

Instead of Poisson, solve

$$-3\mathcal{H}(\phi' + \mathcal{H}\psi) + \Delta\phi = 4\pi G\bar{\rho}a^2\delta \tag{4}$$

- + 5 other degrees of freedom of GR
 - RayGal (Breton 21)
 - GRAMSES (Barrera-Hinojosa 19)
 - RELIC (Adamek 20), gevolution (Adamek 16)
 - k-evolution (Hassani 19), Asevolution (Christiansen 23)

2 Setting up initial condition: Monofonic

3 Non-linear dynamics: RAMSES

Diagnostic out the output: YT, Pylians

General description

Goal

Convert the (linear) power spectrum into a list of particles' positions + velocities

Draw a realisation of a 3D Gaussian Random field

$$\delta(\vec{x}) \propto \int \frac{d^3 \vec{k}}{(2\pi)^3} \sqrt{P_L(k)} \mathcal{N}_k(0,1) e^{i\vec{k}\cdot\vec{x}},$$
(5)

where $\mathcal{N}(0,1)$ is drawn from a Gaussian random field and P_L is the linear power spectrum (CLASS, CAMB) \rightarrow velocities obtained with linear perturbation theory

Example of initial condition generators

- mpgrafic
- 2LPTIC
- FASTPM
- N-GENICS (with GADGET)

- MUSIC and Monofonic
- ginnungagap
- genetIC
- Panphasia

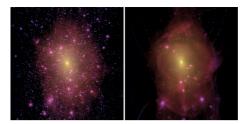
[setup]

GridRes	= 128	# number of grid cells per linear dimension for calculations
		<pre># = particles for sc initial load</pre>
BoxLength	= 300	<pre># length of the box in Mpc/h</pre>
zstart	= 24.0	# starting redshift

<u>Comments:</u> on a laptop, GridRes ~ 128 good to start at early enough time for linear theory to be valid

```
[cosmology]
## transfer = ... specifies the Einstein-Boltzmann plugin module
ParameterSet = Planck2018EE+BAO+SN # specify a pre-defined parameter set,
                                     # or set to 'none' and set manually below
## cosmological parameters. to set. choose ParameterSet = none.
## default values (those not specified) are set to the values
## from 'Planck2018EE+BAO+SN', we currently assume flatness
# Omega m
                 = 0.3158
# Omega b
                = 0.0494
# Omega L
               = 0.6842
# H0
               = 67.321
               = 0.9661
#ns
              = 0.8102
# sigma_8
              = 2.148752e-09 # can use A s instead of sigma 8 when using CLASS
#As
# Tcmb
               = 2.7255
#kp
               = 0.05
               = 2.046
# N ur
# m nu1
                 = 0.06
                 = 0.0
# m nu2
```

Physics beyond ΛCDM in Monofonic


Dark Matter

- Warm Dark Matter: Vanilla (public) monofonic
- ETHOS-like parametrization (Cyr-Racine 15, Murgia 17):

$$P_X/P_{\rm CDM} = \left(1 + (\alpha k)^\beta\right)^{-2\gamma} \tag{6}$$

(WDM: $\beta = \gamma = 2.23$)

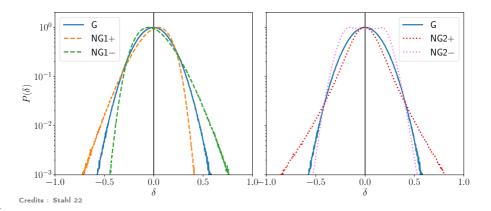
describe decay of the power spectrum of fuzzy dark matter, sterile ν ... Implemented in a separate branch of monofonic (available upon request)

Credits : Angulo 21

Dark Energy

Scalar dark energy and w_0 , w_a in branch of monofonic (available upon request)

Physics beyond ΛCDM in Monofonic

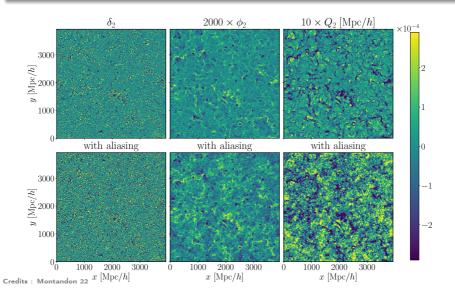

Primordial non-Gaussianities (PNG)

$$\Phi = \Phi_G + f_{\rm NL} \Phi_G^2 + g_{\rm NL} \Phi_G^3 \tag{7}$$

Scale dependant PNG:

$$f_{\rm NL}(k) = f_{\rm NL}^0 \left(\frac{k}{k_0}\right)^{n_{f_{\rm NL}}} \tag{8}$$

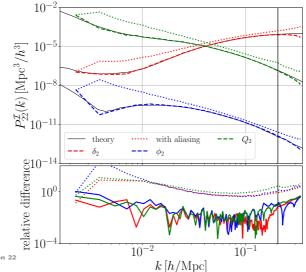
(available upon request)



Nice features of Monofonic: De-aliasing (*)

Aliasing:

numerical error due to sampling of the fields


 \rightarrow most important when multiplying two fields (PNG, nLPT...)

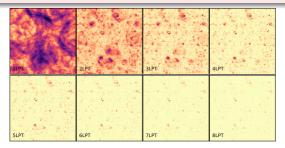
Nice features of Monofonic: De-aliasing (*)

Orszag's 3/2 rule

implemented in monofonic (Orszag 71)

Credits : Montandon 22

Nice features of Monofonic (*)


Transiants

Linear perturbation theory has two solutions: the growing modes ($\propto a(t)$ in matter domination) and the decaying mode ($\propto a^{-3/2}$). Numerical error to neglect decaying mode at early time \rightarrow transiant Crocce 06.

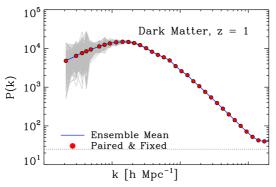
Push perturbation theory to higher order, to start simulation later, so that decaying modes had time to decay.

- 2LPTIC code
- 3LPT (start simulation at z = 7) in vanilla Monofonic and recursion relations nLPT implemented in a branch of Monofonic (Rampf 20)

LPTorder = 3 # order of the LPT to be used (1,2 or 3)

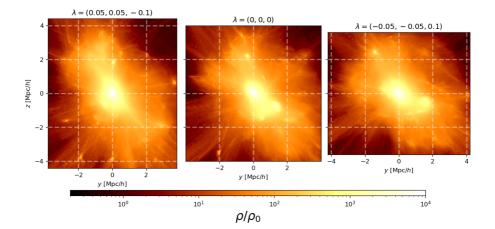
Nice features of Monofonic (*)

DoFixing = no # do mode fixing à la Angulo&Pontzen (https://arxiv.org/abs/1603.05253) DoInversion = no # invert phases (for paired simulations)


Fixing: draw the amplitude from a Dirac-delta

the phase θ_k is drawn from $[0, 2\pi]$

$$\delta(\vec{x}) \propto \int \frac{d^3 \vec{k}}{(2\pi)^3} \sqrt{P_L(k)} e^{i\theta_k} e^{i\vec{k}\cdot\vec{x}},$$
(9)


no more Gaussian random field realisation!

 $\mathsf{Paired} = \mathsf{take}$ the same simulation with $\theta_k + \pi$

Anisotropic simulations (*)

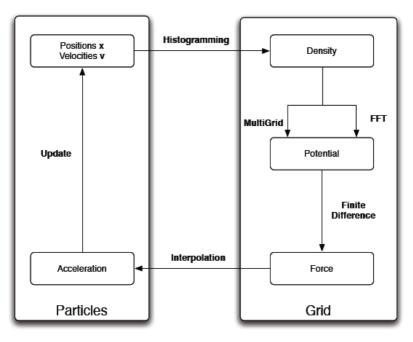
Use below for anisotropic large scale tidal field ICs up to 2LPT
see Stuecker+2020 (https://arxiv.org/abs/2003.06427)
LSS_aniso_lx = +0.1
LSS_aniso_ly = +0.1
LSS_aniso_lz = -0.2

Possible outputs

```
[output]
## format = .... specifies the output plugin module
##> RAMSES / GRAFIC2 compatible format
# format
                       = grafic2
# filename
                 = ics ramses
# grafic use SPT = no # if no then uses PPT, otherwise linear SPT
##> Gadget-2/3 'fortran unformatted binary'-style format
# format
                 = gadget2
# filename
                 = ics gadget.dat
# UseLonaids
                = false
##> Gadget-2/3 HDF5 format
                 = gadget hdf5
# format
# filename
                 = ics gadget.hdf5
##> Arepo HDF5 format (virtually identical to gadget hdf5)
# format
                 = AREPO
# filename
                 = ics arepo.hdf5
##> HACC compatible generic-io format
# format
                 = genericio
# filename
                 = ics hacc
##> SWIFT compatible HDF5 format. Format broadly similar to gadget hdf5 but in a single
##> file even when using MPI. No h-factors for position and masses and no sqrt(a)-factor for the velocities.
##> IDs are stored using 64-bits unless UseLongids is set to false.
# format
                 = SWIFT
# filename
                 = ics_swift.hdf5
# UseLonaids
                = true
##> Generic HDF5 output format for testing or PT-based calculations
# format
                 = generic
# filename
                 = debug.hdf5
# generic out eulerian = yes # if yes then uses PPT for output
```

don't forget to uncomment the desired output (RAMSES, for this tutorial)

1 Motivation and general considerations


2 Setting up initial condition: Monofonic

3 Non-linear dynamics: RAMSES

Diagnostic out the output: YT, Pylians

RAMSES in one slide

Example of input file for RAMSES

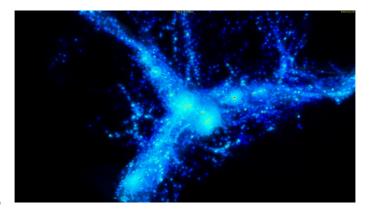
```
&RUN_PARAMS
cosmo=.true.
pic=.true.
poisson=.true.
hydro=.false.
nrestart=0
nremap=1
nsubcycle=1,2
ncontrol=1
verbose=.false.
/
```

```
&AMR_PARAMS
levelmin=7
levelmax=12
nexpand=1
ngridmax=2000000
npartmax=3000000
/
```

```
&INIT_PARAMS
filetype='grafic'
initfile(1)='../music/ics_ramses/level_007/'
/
&OUTPUT_PARAMS
foutput=1000
noutput=1
/
&REFINE_PARAMS
m refine=6*8.,
```

```
levelmin and levelmax control the minimal and maximal level of refinement of the RAMSES grid.
```

Hydrodynamics in RAMSES (*)


```
&RUN_PARAMS
cosmo=.true.
poisson=.true.
ordering='hilbert'
nremap=20
nsubcycle=1,30*2
nrestart=55
hydro=.true.
ncontrol=1
sink=.true.
sinkprops=.true.
/
```

```
&HYDRO_PARAMS
gamma=1.6666667
courant_factor=0.8
slope_type=1
pressure_fix=.true.
scheme='muscl'
riemann='hllc'
/
```

NewHorizon El Gordo cluster &PHYSICS PARAMS haardt madau=.true. cooling=.true. z reion=10.0 z ave=1d-3 n star=0.1d0 eps star=0.02 del star=50d0 T2 star=1d4 g star=1.3333334 f ek=1d0 Mseed=1d5 sink AGN=.true. bondi=.true. drag=.true. X floor=1d-2 eAGN K=1d0 eAGN T=0.15d0 TAGN=0.0 r gal=50.0d0 sigmav max=1d15 T2maxAGN=1d10 boost acc=2d0 boost drag=2d0 metal=.true. eta sn=0.3d0 vield=0.05d0 f w=10d0 t delay=10d0

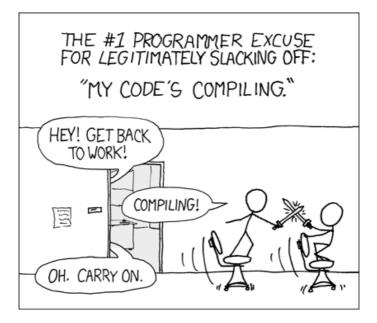
Things to bear in mind when running a simulation

- $\bullet\,$ Distances larger than ~ 0.33 box size L affected by periodic boundary condition
- Cosmic variance effects due to box size L (pairing...)
- Check gravitational softening length ϵ (typically $\frac{1}{30}L/N^{1/3}$)
- Distances smaller than 2-3 cells size or $3\times\epsilon$ affected by numerical error (unresolved force)
- Too large time step can introduce error in particle trajectories

Credits : NewHorizon

For this tutorial:

- Visualization with YT^a
- Power spectrum with Pylians^b
- Halo Mass Function with YT theoretical line with colossus^c


They are very well documented and with a large community helping and developing!

^acan also give you access to data including underlying gravity fields (rotation curves, modified gravity...), 3D visualization (volume rendering), derived quantities...

 $^{b}{\rm can}$ also give you density field, real space correlation function, bispectrum, voids, redshift space distorsion...

 $^{\rm c}{\rm can}$ also give you halo mass function and halo bias, density profiles, splashback radius, concentration

Other tools include POWMES, Pynbody, Nbodykit, bskit, Hipster, Corrfunc, HALOTOOLS, ytree, Glnemo, uns_io...

