Comprendre I'Infiniment Grand Introduction to Cosmology Part II

Ch. Yèche, CEA-Saclay, IRFU/DPhP

$$
\text { July 12, } 2023
$$

Summary of Part I

Equivalence principle

a) $\mathrm{m}_{\mathrm{i}} \mathrm{a}=\mathrm{m}_{\mathrm{g}} \mathrm{g} \Rightarrow$ the lead ball and the feather experience the same
Acceleration
$\Rightarrow \mathrm{m}_{\mathrm{i}}=\mathrm{m}_{\mathrm{g}}$ and $\mathrm{a}=\mathrm{g}$
b) they have the same constant speed but appear with the same acceleration

- uniform gravitational field = uniform acceleration

James B. Hartle study effect of acceleration \Rightarrow study gravitation

Light rays are bent - Clocks and Gravitation

- In 1919: Arthur Eddington observes light deviation by the sun during a solar eclipse: - 1.75 arc second $=8.5 \mu \mathrm{rad}$ as predicted by Einstein
- Twice the deflection predicted by first computation (Eq. principle alone)
-Times run slower in a gravitational field!

$$
\Delta t_{B}=\left(1-\frac{\Phi_{A}-\Phi_{B}}{c^{2}}\right) \Delta t_{A}
$$

At the surface of a star: $\phi_{\mathrm{A}}=-\mathrm{GM} / \mathrm{R}$ and far away: $\phi_{\mathrm{B}}=0$

$$
\Delta t_{\infty}=\left(1+\frac{G M}{R c^{2}}\right) \Delta t_{s}
$$

Cosmology - Part II

1. Geometry of the Universe

- Curved spacetime - Metric
- Cosmological principles
- FLWR metric

2. Expansion of the Universe

- Cosmological redshift
- Friedman equation

1) Geometry of the Universe

From 3D space to 4D spacetime

1) In the usual 3D Euclidian

- Define a coordinate system $x^{i}=$ a labeling of space ex plan (x, y) or (r, ϕ)
- We can measure distances with a ruler: $d S^{2}=g_{i j}(x) d x^{i} d x^{j}$

- The metric $\mathrm{g}_{\mathrm{ij}}(\mathrm{x})$ alone totally defines the geometry
- but $d S^{2}=d r^{2}+r^{2} d \phi^{2}$ and $d S^{2}=d x^{2}+d y^{2}$: same geometry we mean $(d x)^{2}$ and not $d\left(x^{2}\right)!$ length ${ }^{2}$ not surface

2) We generalize to a non-Euclidian 4D spacetime

Curved spacetime - Metric

- We generalize the 3D metrics to 4D in special relativity

$$
d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}=\eta_{\alpha \beta} d x^{\alpha} d x^{\beta}
$$

- We generalize in GR with non constant terms $g_{\mu \nu}$

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- The equivalence principle tells, $\Delta \tau_{B}=\left(1-\frac{\Phi_{A}-\Phi_{B}}{c^{2}}\right) \Delta \tau_{A}$
- GR : for a weak and static field, the metric is :

$$
d s^{2}=\underbrace{\left(1+\frac{2 \Phi(x)}{c^{2}}\right)}_{\text {equivalence principle }} c^{2} d t^{2}-\underbrace{\left(1-\frac{2 \Phi(x)}{c^{2}}\right)}_{\mathbf{G R}}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

fixed object $\Delta \tau^{2}=\frac{d s^{2}}{c^{2}}=\left(1+\frac{2 \Phi}{c^{2}}\right) d t^{2} \Rightarrow \Delta \tau_{B}=\left(1-\frac{\Phi_{A}-\Phi_{B}}{c^{2}}\right) \Delta \tau_{A}$

Homogenous and isotropic

- Cosmological principle
- Universe isotropic + homogeneous on large scales
- Universe looks the same whoever and wherever you are
- Isotropic (on large scales)
- CMB very isotropic
- X ray background, radio galaxies
- Homogeneous
- Test with 3D galaxy surveys
- Only at large scales.... >Mic

FLRW metric

- Homogeneous and isotropic \Rightarrow

Friedmann, Lemaitre, Robertson, Walker metric

$$
d s^{2}=d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

- Isotropic: spherical coordinates $d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$
- Homogeneous: scale factor $R(t)$ due to expansion, it does not depend on (r, θ, ϕ)
- Dimensionless scale factor : $a(t)=R(t) / R\left(t_{0}\right)$ now $a\left(t_{0}\right)=1$ index 0 , means today in the past $a(t)<1$ Big Bang $a(t)=0$

FLRW metric

Friedmann, Lemaitre, Robertson, Walker metric

$$
d s^{2}=d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

$\mathrm{k}=1$: spherical geometry or closed $\quad\left(\sum \alpha>180^{\circ}\right)$
$\mathrm{k}=-1$: hyperbolic geometry or open $\quad\left(\sum \alpha<180^{\circ}\right)$
$\mathrm{k}=0$: flat geometry $\quad\left(\sum \alpha=180^{\circ}\right)$

Comoving distance

- Change of coordinates $r=\sin \chi \quad(k=1$, closed)

$$
\begin{aligned}
& r=\chi \quad(k=0, \text { flat }) \\
& r=\sinh \chi \quad(k=-1 \text {, open) } \\
& d s^{2}=d t^{2}-R^{2}(t)\left[d \chi^{2}+\left\{\begin{array}{c}
\sin ^{2} \chi \\
\chi^{2} \\
\sinh ^{2} \chi
\end{array}\right\}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]\left\{\begin{array}{c}
\text { closed } \\
\text { flat } \\
\text { open }
\end{array}\right\} \\
& \text { sin } \rightarrow \text { spherical } \quad \text { sinh } \rightarrow \text { hyperbolical }
\end{aligned}
$$

- Distance:
- Galaxies remain at $\chi=$ cst (up to small local velocities)
- Physical distance between 2 galaxies: $R(t) \times \Delta \chi$ (Mpc) increases with the expansion
- "comoving" distance : $\mathrm{R}\left(\mathrm{t}_{0}\right) \times \Delta \chi$ is fixed (comoving Mpc)
$=$ distance including the expansion up to $t=\mathrm{t}_{0}$
= independent from Universe expansion

2) Expansion of the Universe

Cosmological redshift

- Radial photon $\mathrm{ds}^{2}=\mathrm{dt}^{2}-\mathrm{R}^{2}(\mathrm{t}) \mathrm{dx}=0 \Rightarrow \mathrm{dx}=\mathrm{dt} / \mathrm{R}$

$$
\chi=\int_{t_{e}}^{t_{r}} \frac{d t}{R(t)}=\int_{t_{e}+\delta t_{e}}^{t_{r}+\delta t_{r}} \frac{d t}{R(t)}
$$

$$
\Rightarrow \int_{t_{e}}^{t_{e}+\delta t_{e}} \frac{d t}{R(t)}=\int_{t_{r}}^{t_{r}+\delta t_{r}} \frac{d t}{R(t)}
$$

$$
\Rightarrow \frac{\delta t_{e}}{R\left(t_{e}\right)}=\frac{\delta t_{r}}{R\left(t_{r}\right)}
$$

$$
1+z_{e} \equiv \frac{\lambda_{r}}{\lambda_{e}}=\frac{\delta t_{r}}{\delta t_{e}}=\frac{R\left(t_{r}\right)}{R\left(t_{e}\right)} \equiv \frac{1}{a\left(t_{e}\right)}
$$

$$
1+z=\frac{1}{a}
$$

« λ is dilating with the Universe»

Redshift: A fundamental concept in cosmology

- Measuring z \rightarrow scale factor a when light emitted
- It is a cosmological redshift, $1+z=1 /$ a can be e.g. $z=1000$ (at CMB) cannot be interpreted as a simple Doppler effect
- In case of Hubble law $\left(\mathrm{v}=\mathrm{H}_{0} \mathrm{~d}\right)$, it is locally interpreted as a Doppler effect
- z is also a measurement of time: e.g. CMB occurred at $z=1100$ (i.e. when $a=0.0009$)

Hubble parameter

- Assume $\mathrm{t}_{\mathrm{e}} \sim \mathrm{t}_{0}$ (locally) $\Rightarrow \mathrm{a} \sim 1$, small z

$$
\begin{aligned}
& 1+z=\frac{1}{a} \quad z=\frac{v}{c}=\frac{1-a}{a}=\frac{\dot{a} \Delta t}{a} \quad \Rightarrow \quad v=\frac{\dot{a}}{a}(c \Delta t) \\
& v=\frac{\dot{a}}{a} D \\
& \text { Hubble law with } \quad H_{0}=\frac{\dot{a}\left(t_{0}\right)}{a\left(t_{0}\right)}=H\left(t_{0}\right)
\end{aligned}
$$

- Hubble parameter $H(t) \equiv \frac{\dot{a}(t)}{a(t)}$
- H_{0} is not very precisely measured, we define

$$
h \equiv \frac{H_{0}}{100(\mathrm{~km} / \mathrm{s}) / \mathrm{Mpc}} \approx 0.7
$$

- cosmological results in units like $h^{-1} \mathrm{Mpc}$ numerical result independent of h

Thermodynamic

- a volume V including a fixed number of particles
(i.e. galaxies !)

$$
d E=-P d V \quad E=\rho V
$$

- the physical volume is $\mathrm{V}=\mathrm{a}^{3}(\mathrm{t}) \mathrm{V}_{\text {com }}\left(\mathrm{V}_{\text {com }}=\right.$ comoving volume $)$
$d_{t}\left(\rho a^{3} V_{\text {com }}\right)=-P d_{t}\left(a^{3} V_{\text {com }}\right) \quad$ but $V_{\text {com }}=\operatorname{cst}=V_{0}$

$$
\mathrm{d}_{\mathrm{t}}\left[\rho(\mathrm{t}) \mathrm{a}^{3}(\mathrm{t})\right]=-\mathrm{P}(\mathrm{t}) \mathrm{d}_{\mathrm{t}}\left[\mathrm{a}^{3}(\mathrm{t})\right]
$$

matter, radiation

- Matter:

$$
d_{t}\left[\begin{array}{ll}
{[} & \left.a^{3}\right]=-P \quad d_{t}\left[a^{3}\right]
\end{array}\right.
$$

Galaxies may be approximated as a pressure-less gas: galaxies have no velocity relative to the overall expansion

$$
\begin{gathered}
\Rightarrow d_{\mathrm{t}}\left[\rho_{\mathrm{m}} \mathrm{a}^{3}\right]=0 \\
\rho_{\mathrm{m}}(\mathrm{t})=\rho_{\mathrm{m}}\left(\mathrm{t}_{0}\right) \mathrm{a}^{-3}(\mathrm{t})
\end{gathered}
$$

- Pure radiation (black body) Stefan's law: $\quad \rho_{r}=g \frac{\pi^{2}}{30} \frac{\left(k_{B} T\right)^{4}}{(\hbar c)^{3}}$ Thermodynamics: $\mathrm{P}_{\mathrm{r}}=(1 / 3) \rho_{\mathrm{r}}$

$$
d_{t}\left[\rho a^{3}\right]=-(1 / 3) \rho d_{t}\left[a^{3}\right] \Rightarrow 4 \rho a^{3} d(a)+a^{4} d(\rho)=0
$$

$$
\begin{array}{ll}
\rho_{r}(t)=\rho_{r}\left(t_{0}\right) a^{-4}(t) & a^{-3} \text { for volume } \\
T(t)=T\left(t_{0}\right) / a(t) & a^{-1} \text { since } E \propto \lambda^{-1}
\end{array}
$$

Vacuum

- "Vacuum is not empty"
virtual particle-antiparticle pairs
- Results in a vacuum energy density constant in space and time

$$
\begin{gathered}
d_{t}\left[\rho a^{3}\right]=-P d_{t}\left[a^{3}\right] \quad \Rightarrow \quad \rho d_{t}\left[a^{3}\right]=-P d_{t}\left[a^{3}\right] \\
P_{v}=-\rho_{v}=\operatorname{cst}<0
\end{gathered}
$$

- Vacuum pressure is negative!
- Vacuum energy equivalent to cosmological constant or a form of dark energy: $\rho_{v}=\Lambda /(8 \pi G)$ in Einstein equation

Friedman equation

- Einstein Eq. $\Rightarrow\left(\frac{\dot{R}}{R}\right)^{2}+\frac{k}{R^{2}}=\frac{8 \pi \rho}{3} \quad$ (Friedmann Eq.)
- Critical density today for which the Universe is flat $(\mathrm{k}=0)$

$$
\mathrm{t}=\mathrm{t}_{0}: \quad \frac{8 \pi \rho_{c}}{3}=\left(\frac{\dot{R}}{R}\right)_{0}^{2}=\left(\frac{\dot{a}}{a}\right)_{0}^{2}=H_{0}^{2}
$$

$$
\rho_{c}=\frac{3 H_{0}^{2}}{8 \pi}=1.88 \times 10^{-29} h^{2} \mathrm{~g} / \mathrm{cm}^{3} \sim 5 \text { protons } / \mathrm{m}^{3}
$$ note h^{2} factor

- We introduce

$$
\Omega_{m} \equiv \frac{\rho_{m}\left(t_{0}\right)}{\rho_{c}}, \quad \Omega_{r} \equiv \frac{\rho_{r}\left(t_{0}\right)}{\rho_{c}}, \quad \Omega_{v} \equiv \frac{\rho_{v}\left(t_{0}\right)}{\rho_{c}}
$$

$$
\Omega_{\mathrm{T}}=\Omega_{\mathrm{m}}+\Omega_{\mathrm{r}}+\Omega_{\mathrm{v}}=\rho_{0} / \rho_{\mathrm{c}}\left(\Omega_{\mathrm{x}}, \text { at } \mathrm{t}=\mathrm{t}_{0}, \text { should be } \Omega_{\mathrm{x}}^{0}\right)_{20}
$$

Friedman equation

- $\quad \rho(a)=\rho_{m}\left(t_{0}\right) a^{-3}+\rho_{r}\left(t_{0}\right) a^{-4}+\rho_{v}\left(t_{0}\right)$

$$
=\rho_{c}\left(\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}\right)
$$

$$
\left(\frac{\dot{a}}{a}\right)^{2}=H_{0}^{2}\left[\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}+\left(1-\Omega_{T}\right) a^{-2}\right]
$$

Simplification: for a flat Universe ($\mathrm{k}=0 \Rightarrow 1-\Omega_{\mathrm{T}}=\mathbf{0}$)

Content of the Universe

Age of the Universe

$$
\left(\frac{\dot{a}}{a}\right)^{2}=H_{0}^{2}\left[\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}+\left(1-\Omega_{T}\right) a^{-2}\right]
$$

- many quantities may be computed from this equation by expressing in terms of ' a ' and \dot{a} / a
- e.g. the age of the universe : $\quad d t=\frac{d t}{d a} d a=\frac{d a}{\dot{a}}=\frac{d a}{a(\dot{a} / a)}$

$$
t=H_{0}^{-1} \int_{0}^{1} \frac{d a}{a\left[\Omega_{m} a^{-3}+\Omega_{r} a^{-4}+\Omega_{v}+\left(1-\Omega_{T}\right) a^{-2}\right]^{1 / 2}}
$$

- $H_{0}=70(\mathrm{~km} / \mathrm{s}) / M p c=\frac{70 \mathrm{~km} / \mathrm{s}}{10^{6} \times 3.262 \times 1 \mathrm{an} \times 300000 \mathrm{~km} / \mathrm{s}}$,

$$
\mathrm{H}_{0}{ }^{-1}=14.10^{9} \text { years }
$$

Age of the Universe

- Note: - our Universe is flat ($\mathrm{k}=0 \Rightarrow \Omega_{\mathrm{T}}=1$)
- one may often neglect $\Omega_{\mathrm{r}}=910^{-5} \quad\left(\Omega_{\mathrm{m}}=0.3, \Omega_{\mathrm{v}}=0.7\right)$
- Simplification of the equation:

$$
t=H_{0}^{-1} \int_{0}^{a} \frac{d a}{a\left(\Omega_{r} a^{-4}+\Omega_{m} a^{-3}+\Omega_{v}\right)^{1 / 2}}
$$

- Universe with just matter $\Omega \mathrm{m} \approx 1$

$$
t(a)=H_{0}^{-1} \int_{0}^{a} \frac{d a}{a^{-1 / 2}}=H_{0}^{-1} \int_{0}^{a} a^{1 / 2} d a=\frac{2}{3} H_{0}^{-1} a^{3 / 2}
$$

T $\sim 9.10^{9}$ years, incompatible with the age of the first galaxies

Epochs of the universe

$\rho(a)=\rho_{c r i t}\left(\Omega_{v}+\frac{\Omega_{m}}{a^{3}}+\frac{\Omega_{r}}{a^{4}}\right)$

- beginning
(' a^{\prime} very small) radiation dominates
- then mater dominates
- "recently" vacuum (or dark energy) dominates

Python Code for Cosmology

> Install python code in conda environment

\# create conda environment
conda create --name cosmo_env --yes python=3.9 numpy matplotlib conda activate cosmo_env
\# install cosmoprimo
python -m pip install git+https://github.com/adematti/pyclass python -m pip install git+https://github.com/cosmodesi/cosmoprimo

Python Code for Cosmology

```
import matplotlib.pyplot as plt
import numpy as np
from cosmoprimo import *
# Reference cosmology
cosmo_planck = fiducial.Planck2018FullFlatLCDM()
ba = cosmo_planck.get_background(engine='class')
fig = plt.figure(1,figsize=(10.0,10.0))
z = np.linspace(0., 100000, 100000)
t = ba.time(z)
a=1/(1+z) # cosmoprimo is in comoving distance !!!
r_m = ba.rho_m(z)/a**3
r_r = ba.rho_r(z)/a**3
r_I = ba.rho_Lambda(z)/a**3
```

```
plt.subplot(211)
```

plt.subplot(211)
plt.plot(t,a, color='red')
plt.plot(t,a, color='red')
plt.xlim((1.0e-6,13.8))
plt.xlim((1.0e-6,13.8))
plt.xlabel(' Universe age [Gy] ',fontsize=20)
plt.xlabel(' Universe age [Gy] ',fontsize=20)
plt.ylabel('Scale factor $a(t)$',fontsize=20)
plt.ylabel('Scale factor $a(t)$',fontsize=20)
plt.subplot(212)
plt.subplot(212)
plt.plot(t,r_m, color='red', label='$\\rho_m$')
plt.plot(t,r_m, color='red', label='$\\rho_m$')
plt.plot(t,r_r, color='blue', label='$\\rho_r$')
plt.plot(t,r_r, color='blue', label='$\\rho_r$')
plt.plot(t,r_l, color='green', label='$\\rho_{\Lambda}$')
plt.plot(t,r_l, color='green', label='$\\rho_{\Lambda}$')
plt.xlim((1.0e-6,13.8))
plt.xlim((1.0e-6,13.8))
plt.xscale('log')
plt.xscale('log')
plt.yscale('log')
plt.yscale('log')
plt.xlabel(' Universe age [Gy] ',fontsize=20)
plt.xlabel(' Universe age [Gy] ',fontsize=20)
plt.ylabel('Density',fontsize=20)
plt.ylabel('Density',fontsize=20)
plt.legend(loc='center left',fontsize=20)
plt.legend(loc='center left',fontsize=20)
plt.show()

```
plt.show()
```


Thermal history of the Universe

- At beginning: T and density are very large
all particle species in equilibrium $\quad \nu+\bar{\nu} \leftrightarrow e^{+}+e^{-}$
v : neutrino
- When reaction rate $\Gamma(t)<\dot{a}(t) / a(t)=H(t)$
the reaction is no longer fast enough to maintain equilibrium / expansion: particle abundance is frozen e.g.: T ~ 1 MeV, t ~ 1s, v^{\prime} s decouple
- When T decreases particles may get bound : $-\mathrm{T} \sim 0.1 \mathrm{MeV}, \mathrm{t} \sim 3 \mathrm{mn}: \quad \mathrm{p}+\mathrm{n} \rightarrow$ light nuclei primordial nucleosynthesis
- $\mathrm{T} \sim 0.3 \mathrm{eV}, \mathrm{t} \sim 400000$ years: $\mathrm{e}+$ nuclei \rightarrow atoms

Timeline of Universe history

History of the Universe

