Comprendre l'Infiniment Grand

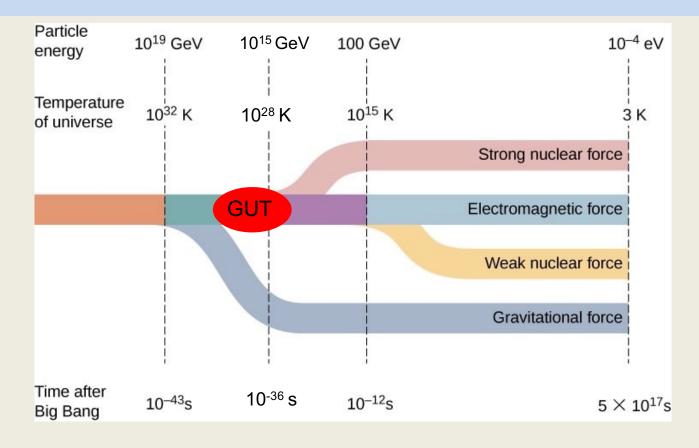
Introduction to Cosmology

Ch. Yèche, CEA-Saclay, IRFU/DPhP

July 11, 2023

Cosmology - Part I

1. Introduction


- Hubble law
- Content of the Universe

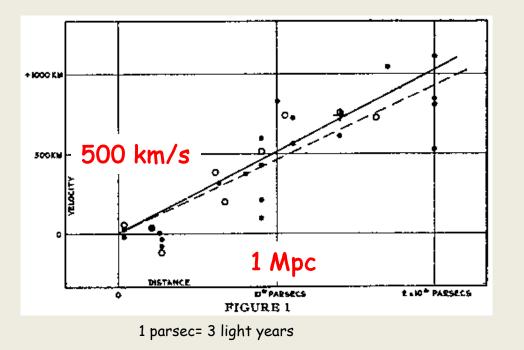
2. Gravitation and General Relativity

- Equivalence principle
- Tests of GR

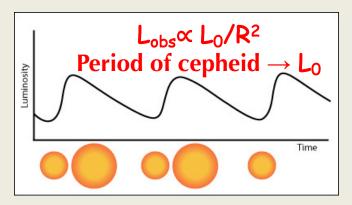
1) Introduction

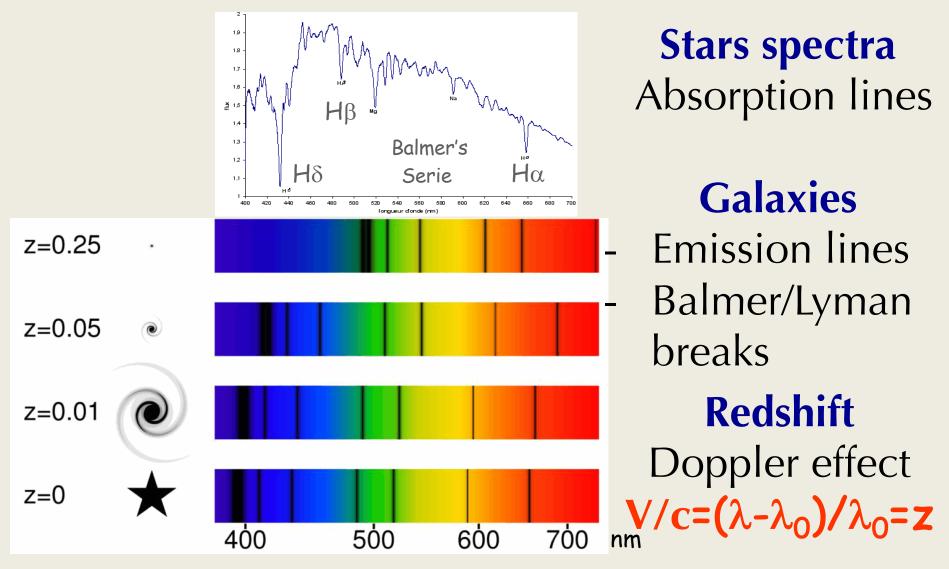
Unification of forces

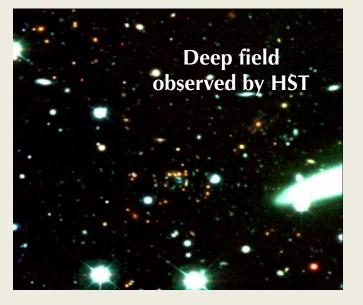
- EW force ~ 100 GeV
- Grand unification Theory (GUT) ~10¹⁵ GeV at 10⁻³⁶s after BB
- Theory of Everything ~10¹⁹ GeV (Planck scale)


Expanding Universe

History of the discovery


> 1914, Slipher: farther the « nebula »


(galaxy) is from us, the more it seems to be escaping away \geq 1927, Lemaître: solutions of Einstein General Relativity for a non static universe \Rightarrow velocity proportional to distance.


1929, Hubble: Relation distance – velocity thanks to cepheid in extragalactic "nebula"

How do we measure velocity?

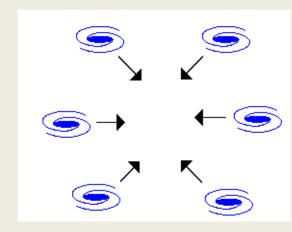
Expanding Universe

Hubble's law V=H₀ D

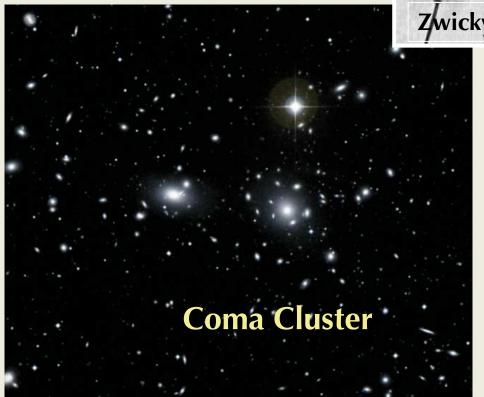
➤ Measurement of the velocity of galaxies with their redshift (z) Doppler effect : $v/c=(λ-λ_0)/λ_0=z$ ➤ Increasing z ⇒ Back in time

What value of H₀?

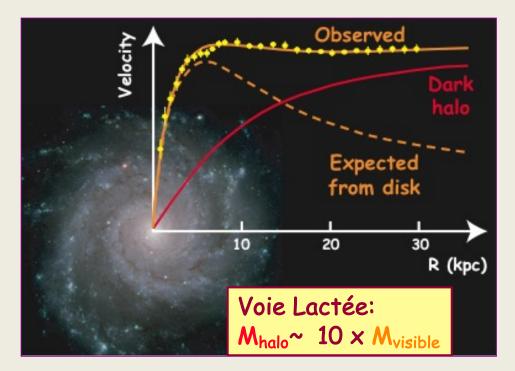
Controversial and controverted measurement.


What about gravitation?

- It will slow the expansion of the universe for dark matter - Deceleration.
- It will accelerate the expansion of the universe for "repulsive" matter - Acceleration.


Discovery of Dark Matter

Zwicky, 1933


"Invisible" matter

Galaxy cluster.
Peculiar velocity of galaxies too high.
Virial theorem.
Visible galaxies are about 1-10% of the total mass.

$$E_p + 2 E_c = 0$$

 $E_c = 1/2 \text{ M v}^2 \text{ and } E_p = -\frac{1}{2} \text{ GM}^2/\text{R}$
M = 2Rv²/G

1970: how to weigh galaxies?

Galactic rotation curves

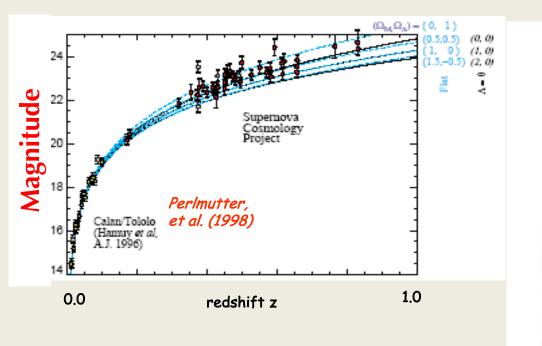
Final proof by measuring the velocity of stars within galaxies
 Work of Vera Rubin and Kent Ford in the 70'

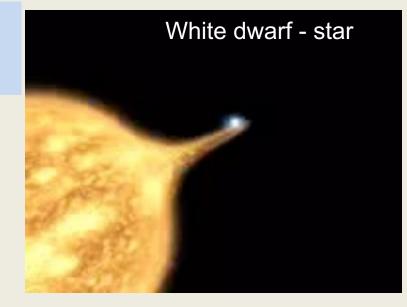
Newton Law

$$E_{c} + E_{p} = 0$$
$$V_{rot} = \sqrt{\frac{2GM}{R}}$$

Constant rotation curve

Halo of Dark Matter

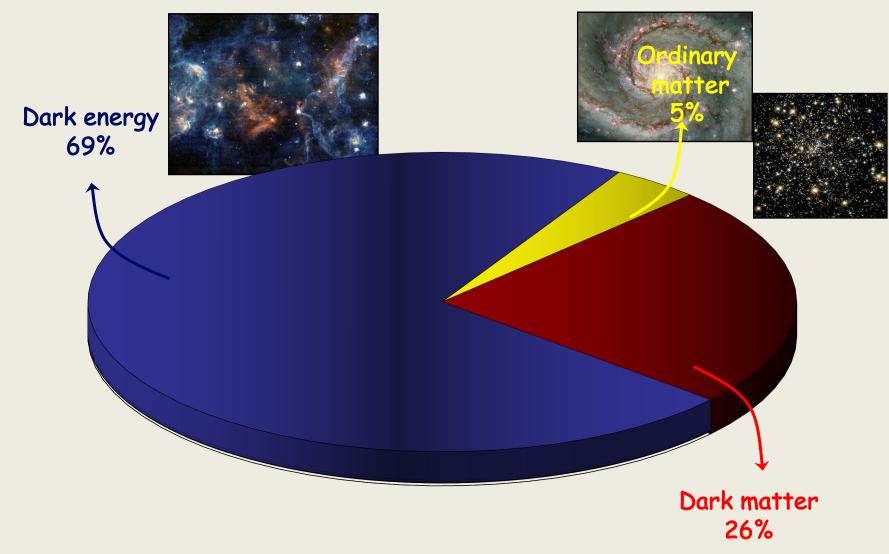

Dark energy


Discovery with supernovae

> In 1998, Hubble diagram (magnitude \leftrightarrow z) with standard candles (SN Ia)

$L_{obs} \propto L_0/R^2$

Acceleration of expanding Universe



 ~2/3 of Dark Energy repulsive for gravitation
 ~1/3 "classical"

matter

Content of the Universe

Summary - Content of the Universe

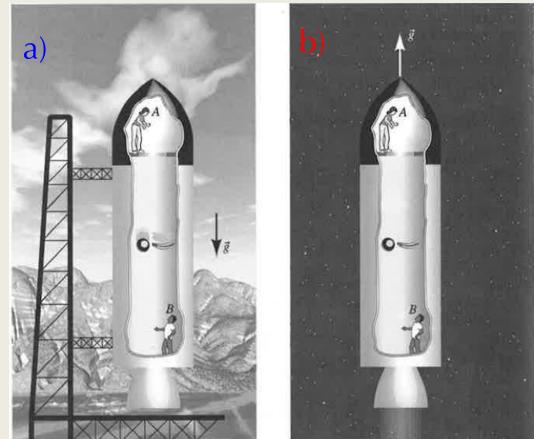
- Radiation 5 10⁻⁵
 - Cosmic microwave background (CMB) + neutrinos
- Ordinary matter (baryonic) $\sim 5\% \sim 1$ proton / 4 m³
 - galaxies (stars, interstellar gas, dust)
 - typical galaxy: $10^{12} M_{\odot}$
 - $<\!\!\rho_{visible}\!\!> = 10^{-31} \text{ g} \ / \ cm^3 \qquad 0.2\%$
 - intergalactic gas
- Dark matter ~26%, many evidences:
 - star rotation curves in galaxies
 - galaxy rotation curves in clusters
 - structure development, ...
- Dark energy ~69%
- Acceleration of the Universe expansion (SNIa)

2) Gravitation and General Relativity

Gravitation and relativity

- 1905 : Special Relativity
- Incompatible with Newton F

$$=\frac{Gm_{1}m_{2}}{\left|r_{1}(t)-r_{2}(t)\right|^{2}}$$


- Instantaneous force, $r_1(t)$ et $r_2(t)$ at the same t
- Newton = approximation of a more fundamental theory $F = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r_{12}^2}$ Coulomb law approximation of Maxwell eq.
- 1915 : General relativity
- Not just a new theory of gravitation
- But a revolution in our conception of space and time
- Gravitation = curvature of spacetime \rightarrow Pure geometry

Equivalence principle

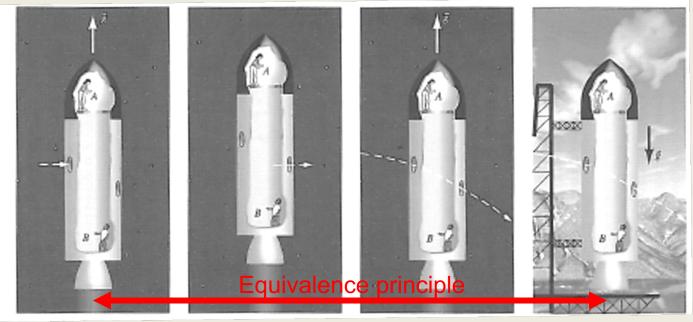
a) $m_i a = m_g g \Rightarrow$ the lead ball and the feather experience the same Acceleration $\Rightarrow m_i = m_g$ and a=g

b) they have the same constant speed but appear with the same acceleration

uniform gravitational field
 uniform acceleration

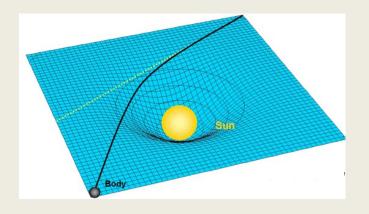
James B. Hartle

study effect of acceleration \Rightarrow study gravitation

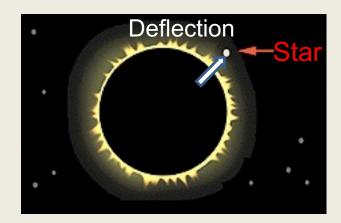

Equivalence principle

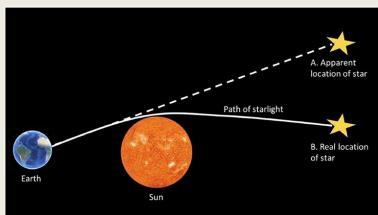
Equivalence Principle: An experiment in a freely falling laboratory, small enough and over a sufficiently small duration, is indistinguishable from the same experiment in an inertial frame away from all sources of gravitation

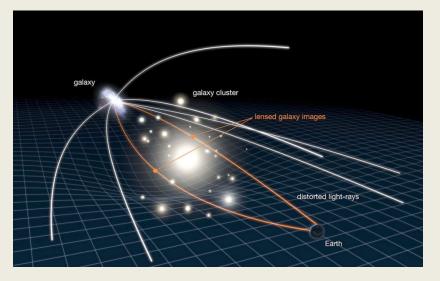
Gravity can be removed by free fall or conversely created by an acceleration


Light is falling !

• Equivalence principle applies for all physical laws including photon trajectory


• $\Delta v = g \Delta t = g d/c \ll c \Rightarrow tiny effect on earth$ $\theta \sim \Delta v/c \sim gd / c^2 \qquad d=10m \Rightarrow \theta \sim 9.81 \times 10 / (3 \ 10^8)^2 = 10^{-15} !$ $\theta \sim 2GM / Rc^2 \sim 4 \mu rad around sun!$

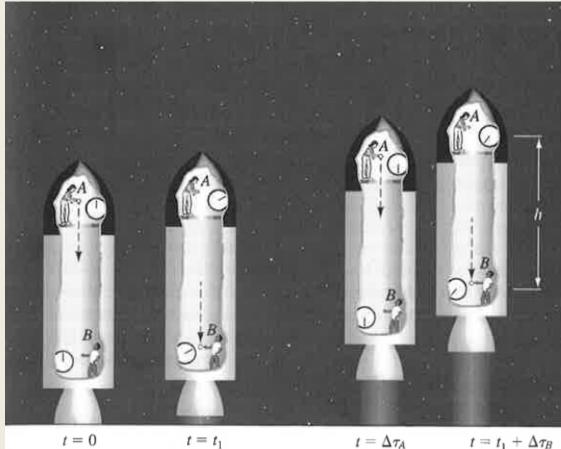

Curved spacetime - Light rays are bent


- 1919 : Arthur Eddington observes light deviation by the sun during a solar eclipse:
 - 1.75 arc second = 8.5 μrad as predicted by Einstein
 - Twice the deflection predicted by first computation (based on Eq. principle alone)

• 1915 : Einstein, General Relativity mass curves spacetime and bends light

Curved spacetime - Gravitational lensing

- On July 11 2022 James Webb Space Telescope released this deep field
- Galaxies behind galaxy cluster
 SMACS 0723 (z=0.39, R_{vir}=2.4Mpc) are curved and warped


• Strong gravitational lensing: modern proof of RG

2.25 arcmin, 0.7Mpc at z=0.39

Clocks and gravitation

- a rocket in deep space with acceleration +g
- A emits at t=0 and $\Delta \tau_A$
- B receives at t=t₁ and t₁ + $\Delta \tau_B$
- Propagation time : $(t_1 0)$ acceleration \Rightarrow faster $(t_1 + \Delta \tau_B) - \Delta \tau_A < t_1 - 0$ $\Rightarrow \Delta \tau_B < \Delta \tau_A$

• Calculation gives (totally classic):

$$\Delta t_B = \left(1 - \frac{gh}{c^2}\right) \Delta t_A$$

Clocks and gravitation

Equivalence Principle (a) equivalent to (b)

$$\Delta t_{B} = \left(1 - \frac{gh}{c^{2}}\right) \Delta t_{A}$$

Times run slower in a gravitational field !

$$h = z_A - z_B \Rightarrow gh \sim \Phi_A - \Phi_B$$

Bob is younger than Alice....

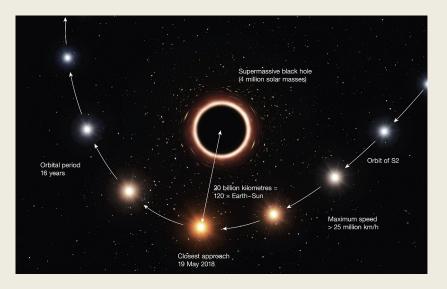
$$\Delta t_{B} = \left(1 - \frac{\Phi_{A} - \Phi_{B}}{c^{2}}\right) \Delta t_{A}$$

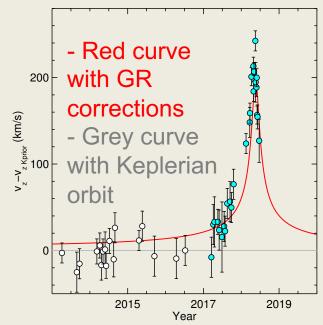
Gravitational "redshift"

$$\Delta t_B = \left(1 - \frac{\Phi_A - \Phi_B}{c^2}\right) \Delta t_A$$


• at the surface of a star: $\phi_A = -GM/R$ far away: $\phi_B = 0$

$$\Delta t_{\infty} = \left(1 + \frac{GM}{Rc^2}\right) \Delta t_* \qquad \nu_{\infty} = \left(1 - \frac{GM}{Rc^2}\right) \nu_* < \nu_*$$


⇒ gravitational redshift the photon looses energy going out of the potential well Positive shift in wavelength $\Delta\lambda/\lambda>0$


• very important for GPS : $\Delta v/v \sim 4.10^{-10}$ after 1h : $10^{-10} \times 3600$ s error $\Rightarrow \sim 400$ m error

S2 star close to MW black Hole

- Close to source Sagittarius A*, BH in the Milky way (~4.10⁶ solar mass)
- S2 star very close to the BH on May 19 2018
- Verification of Einstein shift (plot below)
- Redshift (c. $\Delta\lambda/\lambda \rightarrow$ speed km/s), note sign!

Science in movies

Planet of the Apes

- Twin paradox in Special Relativity (SR)
- Lorentz boost
 - $ct=\gamma(ct'+\beta x)$
 - $\gamma = 1/(1 \beta^2)^{1/2} > 1$
- Time dilatation T=γT[′]

Interstellar

- Strong gravitational field (GR)
- Proximity to a black hole (BH)
- $T = (1 + GM/(Rc^2)).T'$