Numerical simulations for interpreting large-scale structure data

Raul E. Angulo

Donostia International Physics Center

Alexander von Humboldt Stiftung/Foundation

- **- 3 staff**
- **- 6 PhD**
- **- 6 Postdocs**
- **- Galaxy formation**
- **- Black Holes & AGN/Quasars**
- **- Star and clusters formation**
- **- Large-scale structure**

Our current understanding of structure formation in the Universe:

Despite the progress, there are questions about each of the fundamental ingredients of LCDM

Gravity Law

GR, Galileon, f(R)?

Accelerated Expansion

DE, coupled, w(z)?

Dark Matter

Temperature, **Neutrinos, Quantum?**

Initial Conditions Inflation Single/multi-field?

No deviations have from the simplest **LCDM** model been detected so far

Tensions between the low-z universe and CMB expectations

Verde et al 2019, Vagnozzi et al 2021

Structure Parameter

The era of precision cosmology for Large-scale structure data

Exploiting current and future LSS data is a very hard problem.

Cosmology from weak gravitational lensing

Current analyses are restricted by nonlinearities and gas physics

- Non linear matter power spectrum

- Galaxy Bias
- Baryonic effects
- Intrinsic Alignments

Chen+ 2022

How do we unlock the full power of late-universe measurements?

Simulations as LSS theory

Employing precise and physical structure formation models

GRAVITY AND DARK MATTER FIELD

The Vlassov-Poisson (aka collsionless Boltzmann)

Simplest case:DM is initially smooth, cold, classical, and collisionless

The Vlassov-Poisson Equation

$$
0 = \frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\mathbf{v}}{a^2} \cdot \frac{\partial f}{\partial \mathbf{v}} - \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \Phi}{\partial \mathbf{x}}
$$

$$
\nabla^2 \Phi = \frac{4\pi G}{a} \int f d^3 v
$$

CDM Sheet Properties

- \rightarrow phase-space is conserved along characteristics
- \rightarrow It can never tear

$$
\rightarrow
$$
 It can never intersect

Solving Vlassov-Poisson via MC sampling

Currently, the most accurate solution is discretizing the distribution function

How to sample the cosmo-parameter space?

Rescaling modifies the outputs of simulation to mimic other cosmologies

Accuracy in predicting the nonlinear distribution of matter and collapsed objects

Region of ~10-sigma around Planck's best fit values, including massive neutrinos and dynamical dark energy

Bacco simulations: The challenge of predicting the nonlinear mass field at the 1%

http://goo.gl/RCSDwp - New SubFind - Merger Trees (100 outpus) - 1% agreement with other codes up to $k \sim 10$ h/Mpc - Phase-space tessellations - Orphan tracking

6 simulations: 2000 Mpc with $4320³$ particles; Paired-Fixed 2LPT ICs; 100 outputs; halos $\sim 10^{10}$ Msun/h

Constraining Cosmology and Astrophysics

Feed-forward neural networks trained on 10,000 combinations of cosmology and astrophysics

- (Non) linear matter power spectrum
- Baryonic effects
- Galaxy correlation functions
- Halo Mass function
- Perturbative bias in real & redshift space
- Linear theory

Gas and hydro forces

Hydrodynamical forces and galaxy formation is important to predict the large-scale structure of a given cosmology

Modelling the baryonic effects on the matter clustering

Arico, REA+ (2020,2021); Schneider+(2017, 2019)

Modelling the baryonic effects on the matter clustering

The impact of baryons can be reproduced to ~1% accuracy on 7 different state-of-the-art hydrodynamical simulations

Arico, Angulo, et al (2019, 2020, 2021);

GALAXIES

How to efficiently model galaxies in DM sims?

- Halo Occupation Distribution Models
- **(Extended) Subhalo Abundance Matching**
- Empirical Modelling
- Semi-Analytic Galaxy Formation

Contreras, REA, Zennaro (2020) Contreras, REA, et al (2021) Contreras, REA, MTNG (2022)

SHAMe: Subhalo Abundance Matching Extended

Goal: Flexible and efficient model to fit all available sims

Subhalo Abundance Matching

- 1. Describes the Mhalo-Mstar and clustering of galaxies in observational and simulated data
- 2. Fails in redshift space
- 3. Incorrect environmental dependence
- 4. Incorrect stripping and disruption

extended Subhalo Abundance Matching (alla Emerge/UniverseMachine)

- 1. Model for the stripping of stars
- 2. Predictions for Star Formation Rates
- 3. Model for dynamical friction (orphan tracking)
- 4. Flexible degree of assembly bias

The impact of astrophysics in the spatial distribution of galaxies

Validated for:

- redshift space multipoles
- 3-point correlation functions
- Amount of assembly bias
- k-Nearest neighbours
- Stellar Mass and SFR galaxy selections

Contreras, Angulo, et al (2021)

SHAMe meets Millennium-TNG hydro simulation

SHAMe is able to describe the redshift-space clustering of MTNG galaxies

 $L = 740$ Mpc (similar volume to SDSS main) Same resolution as TNG300 4 additional SAM catalogues 4 number densities

Contreras, REA+ (2022)

"Lensing is low" tension

HOD modelling lead to artificial tensions in clustering and gg-lensing

Chavez-Montero, REA, et al (2023)

BACCO's Hybrid bias expansion

A rigorous model that is agnostic to selection effects and gas-physics

The galaxy overdensity field, can be written as a function of matter (and velocity) statistics

$$
\delta_g(\boldsymbol{x},\tau)=\mathcal{F}[\Phi,\Phi_v]
$$

Which can then be written perturbatively up to a given order. Specifically, in Lagrangian coordinates:

$$
1 + \delta_g(\mathbf{q}) = 1 + b_1^L \delta(\mathbf{q}) + b_2^L \delta^2(\mathbf{q}) + b_{s^2}^L s^2(\mathbf{q}) + b_{\nabla^2 \delta}^L \nabla^2_{\mathbf{q}} \delta(\mathbf{q}) + \cdots,
$$

$$
1 + \delta_g(\mathbf{x}) = \int d^3 \mathbf{q} \delta^D(\mathbf{x} - \mathbf{q} - \psi(\mathbf{q}))(1 + \delta_g(\mathbf{q}))
$$

Additionally, the displacement field can be computed perturbatively

$$
\boldsymbol{\varPsi}(\boldsymbol{q},\tau) = \sum_{j=1}^n D_+(\tau)^j \; \boldsymbol{\varPsi}^{(j)}(\boldsymbol{q}).
$$

However, perturbative approaches break at ~0.1 h/Mpc – potentially neglecting 100x modes

Alternative approach: Hybrid bias expansion

Combining numerical and perturbative worlds (M. Pellejero & M. Zennaro)

BACCO's Hybrid bias expansion in z-space

Fits to the 300 official BOSS mock catalogues

Zennaro, REA,+ (2021,2022) Pellejero-Ibañez, RA+ (2021,2022)

Describing galaxies at the "field level"

Galaxy field is built by combining all 8 terms that appear at 3rd order

We use a third order bias model

^{1st} Order δ 2nd Order δ^2, s^2 3rd Order $-\delta^3, s^3, s^2\delta$ Non-Local $\nabla^2 \delta$

to build a model for biased tracers at the field level.

$$
\delta_{h, det} = \sum_i b_i \mathcal{O}_i
$$

$$
-2{\rm ln} \mathcal{P}\big(\delta_{g} |\delta_{g, \text{det}}\big) = \int_{|\boldsymbol{k}|<\Lambda} \frac{\mathrm{d}^3\boldsymbol{k}}{(2\pi)^3} \Bigg[\frac{\big|\delta_{g}(\boldsymbol{k})-\delta_{g, \text{det}}(\boldsymbol{k})\big|^2}{P_{\epsilon}(k)}+\ln\bigl(2\pi P_{\epsilon}(k)\bigr)\Bigg].
$$

Describing galaxies at the "field level"

In the most extreme test – fixed phases and cosmology – every single pixel is compatible with stochastic noise up to k=0.25 h/Mpc

Bias parameters measured from galaxy mock created using SHAMe method (Contreras et. al $(2021))$

> **2nd order bias 3rd order bias**

$$
P_{\epsilon}(k) = |\delta_h - \delta_{h, det}|^2
$$

1. Extension to redshift space

- 2. Quantification in constraining power
- 3. Combination with ML techniques

Constraints on cosmology and baryons from small scales

DES Y3 Cosmic shear correlation functions ξ_{+} , all angular scales $\theta \in [2.5,250]$ arcmins.

Arico, REA+ (2023)

Constraints on cosmology and baryons from small scales

- Independent pipeline written from scratch (0.4s in a laptop)
- -More accurate Pnl BACCOemu
- Explicit baryon model via baryonification
- All scales in shear
- No shear ratios
- NLA intrinsic alignment

Constraints on cosmology and baryons from small scales

- Independent pipeline written from scratch (0.4s in a laptop)
- -More accurate Pnl BACCOemu
- Explicit baryon model via baryonification
- All scales in shear
- No shear ratios
- NLA intrinsic alignment

Constraints on cosmology and baryons from small scales

- Independent pipeline written from scratch (0.4s in a laptop)
- -More accurate Pnl BACCOemu
- Explicit baryon model via baryonification
- All scales in shear
- No shear ratios
- NLA intrinsic alignment

Results on baryons. Halo mass for which half og the gas is lost due to feedback

 $\log M_c = 14.38^{+0.60}_{-0.56} \log(h^{-1}M_{\odot})$

Arico, REA + (2023)

0.9 sigma tension with Planck for our fiducial case

 0.9σ tension with Planck in our fiducial case

Differences with respect to the DES collaboration results

Disagreement in S_8

Our fiducial - DES fiducial 1.4σ

TATT-NLA $0.4 - 0.7\sigma$ Shear ratios $0.1 - 0.3\sigma$ Pipeline/priors $\approx 0.2\sigma$ Non-linearities $0.4 - 0.5\sigma$ Baryons $\approx 0.2\sigma$

Simultaneous modelling of LSS data

Improvements feedback into a more accurate modelling and better cosmological inferences

Numerical simulations for interpreting large scale structure data

Upcoming large galaxy surveys pose multiple challenges in data analyses and theory

Simulation-based approaches and new summary statistics are providing new options

All these together could offer a robust and accurate path to discovering new physics

http://bacco.dipc.org/

COSMOLOGY WITH BACCO: MAXIMISING DISCOVERY WITH GALAXY SURVEYS

The BACCO project is a simulation framework specially designed to provide highly-accurate predictions for the distribution of mass, galaxies, and gas as a function of cosmological parameters

baccoemu 0.3

pip install baccoemu G