Numerical simulations for interpreting large-scale structure data

Raul E. Angulo

Donostia International Physics Center

Alexander von Humboldt Stiftung/Foundation

- 3 staff
- 6 PhD
- 6 Postdocs
- Galaxy formation
- Black Holes & AGN/Quasars
- Star and clusters formation
- Large-scale structure

Our current understanding of structure formation in the Universe:

Despite the progress, there are questions about each of the fundamental ingredients of LCDM

Gravity Law

GR, Galileon, f(R)?

Accelerated Expansion

DE, coupled, w(z)?

Dark Matter

Temperature, Neutrinos, Quantum?

Initial Conditions Inflation Single/multi-field? No deviations have from the simplest LCDM model been detected so far

Ω_K	•	•	•	•	•	•	•	•	•		-0.0096 ± 0.0	061
Σm_{ν}	[e	V]	•				•		< 0.241	
Neff										•	$2.89^{+0.36}_{-0.38}$	
r _{0.002}	2	•			•	•		•			< 0.101	

Tensions between the low-z universe and CMB expectations

Verde et al 2019, Vagnozzi et al 2021

Structure Parameter

The era of precision cosmology for Large-scale structure data

Exploiting current and future LSS data is a very hard problem.

Cosmology from weak gravitational lensing

Current analyses are restricted by nonlinearities and gas physics

- Non linear matter power spectrum

- Galaxy Bias
- Baryonic effects
- Intrinsic Alignments

Chen+ 2022

How do we unlock the full power of late-universe measurements?

Simulations as LSS theory

Employing precise and physical structure formation models

GRAVITY AND DARK MATTER FIELD

The Vlassov-Poisson (aka collsionless Boltzmann)

Simplest case:DM is initially smooth, cold, classical, and collisionless

The Vlassov-Poisson Equation

$$0 = \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\mathbf{v}}{a^2} \cdot \frac{\partial f}{\partial \mathbf{v}} - \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \Phi}{\partial \mathbf{x}}$$
$$\nabla^2 \Phi = \frac{4\pi G}{a} \int f \mathrm{d}^3 v_{\mathrm{d}}$$

CDM Sheet Properties

- → phase-space is conserved along characteristics
- → It can never tear

Solving Vlassov-Poisson via MC sampling

Currently, the most accurate solution is discretizing the distribution function

How to sample the cosmo-parameter space?

Rescaling modifies the outputs of simulation to mimic other cosmologies

Accuracy in predicting the nonlinear distribution of matter and collapsed objects

Region of ~10-sigma around Planck's best fit values, including massive neutrinos and dynamical dark energy

Bacco simulations: The challenge of predicting the nonlinear mass field at the 1%

http://goo.gl/RCSDwp - New SubFind - Merger Trees (100 outpus) - 1% agreement with other codes up to k ~ 10 h/Mpc - Phase-space tessellations - Orphan tracking

6 simulations: 2000 Mpc with 4320³ particles; Paired-Fixed 2LPT ICs; 100 outputs; halos ~ 10¹⁰ Msun/h

Constraining Cosmology and Astrophysics

Feed-forward neural networks trained on 10,000 combinations of cosmology and astrophysics

- (Non) linear matter power spectrum
- Baryonic effects
- Galaxy correlation functions
- Halo Mass function
- Perturbative bias in real & redshift space
- Linear theory

Gas and hydro forces

Hydrodynamical forces and galaxy formation is important to predict the large-scale structure of a given cosmology

Modelling the baryonic effects on the matter clustering

Arico, REA+ (2020,2021); Schneider+(2017, 2019)

Giovanni Arico

Modelling the baryonic effects on the matter clustering

The impact of baryons can be reproduced to ~1% accuracy on 7 different state-of-the-art hydrodynamical simulations

Arico, Angulo, et al (2019, 2020, 2021);

GALAXIES

How to efficiently model galaxies in DM sims?

- Halo Occupation Distribution Models
- (Extended) Subhalo Abundance Matching
- Empirical Modelling
- Semi-Analytic Galaxy Formation

Contreras, REA, Zennaro (2020) Contreras, REA, et al (2021) Contreras, REA, MTNG (2022)

SHAMe: Subhalo Abundance Matching Extended

Goal: Flexible and efficient model to fit all available sims

Subhalo Abundance Matching

- 1. Describes the Mhalo-Mstar and clustering of galaxies in observational and simulated data
- 2. Fails in redshift space
- 3. Incorrect environmental dependence
- 4. Incorrect stripping and disruption

extended Subhalo Abundance Matching (alla Emerge/UniverseMachine)

- 1. Model for the stripping of stars
- 2. Predictions for Star Formation Rates
- 3. Model for dynamical friction (orphan tracking)
- 4. Flexible degree of assembly bias

The impact of astrophysics in the spatial distribution of galaxies

Validated for:

- redshift space multipoles
- 3-point correlation functions
- Amount of assembly bias
- k-Nearest neighbours
- Stellar Mass and SFR galaxy selections

Contreras, Angulo, et al (2021)

SHAMe meets Millennium-TNG hydro simulation

SHAMe is able to describe the redshift-space clustering of MTNG galaxies

L = 740 Mpc (similar volume to SDSS main) Same resolution as TNG300 4 additional SAM catalogues 4 number densities

Contreras, REA+ (2022)

"Lensing is low" tension

HOD modelling lead to artificial tensions in clustering and gg-lensing

Chavez-Montero, REA, et al (2023)

BACCO's Hybrid bias expansion

A rigorous model that is agnostic to selection effects and gas-physics

The galaxy overdensity field, can be written as a function of matter (and velocity) statistics

$$\delta_g(oldsymbol{x}, au) = \mathcal{F}[\Phi,\Phi_v]$$
 .

Which can then be written perturbatively up to a given order. Specifically, in Lagrangian coordinates:

$$egin{aligned} 1+\delta_g(oldsymbol{q}) &= 1+b_1^L\delta(oldsymbol{q})+b_2^L\delta^2(oldsymbol{q})+b_{s^2}^Ls^2(oldsymbol{q})+b_{
abla^2\delta}^L
abla^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L\delta^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L
abla^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L\delta^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L\delta^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L\delta^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L\delta^2(oldsymbol{q})+b_{s^2}^L\delta^2(oldsymbol{q})+b_{
abla^2\delta}^L\delta^2(oldsymbol{q})+b_{abla^2\delta}^L\delta^2(oldsym$$

Additionally, the displacement field can be computed perturbatively

$$\boldsymbol{\Psi}(\boldsymbol{q},\tau) = \sum_{j=1}^{n} D_{+}(\tau)^{j} \boldsymbol{\Psi}^{(j)}(\boldsymbol{q}).$$

However, perturbative approaches break at ~0.1 h/Mpc – potentially neglecting 100x modes

Alternative approach: Hybrid bias expansion

Combining numerical and perturbative worlds (M. Pellejero & M. Zennaro)

BACCO's Hybrid bias expansion in z-space

Fits to the 300 official BOSS mock catalogues

Pellejero-Ibañez, RA+ (2021,2022)

Describing galaxies at the "field level"

Galaxy field is built by combining all 8 terms that appear at 3rd order

We use a third order bias model

 $\begin{cases} 1 \text{st Order} & \delta \\ 2 \text{nd Order} & \delta^2, s^2 \\ 3 \text{rd Order} & \delta^3, s^3, s^2 \delta \\ \text{Non-Local} & \nabla^2 \delta \end{cases}$

to build a model for biased tracers at the field level.

$$\delta_{h,det} = \sum_{i} b_i \mathcal{O}_i$$

Describing galaxies at the "field level"

In the most extreme test – fixed phases and cosmology – every single pixel is compatible with stochastic noise up to k=0.25 h/Mpc

Bias parameters measured from galaxy mock created using SHAMe method (Contreras et. al (2021))

> 2nd order bias 3rd order bias

$$P_{\epsilon}(k) = |\delta_h - \delta_{h,det}|^2$$

1. Extension to redshift space

- 2. Quantification in constraining power
- 3. Combination with ML techniques

Constraints on cosmology and baryons from small scales

DES Y3 Cosmic shear correlation functions ξ_{\pm} , all angular scales $\theta \in [2.5,250]$ arcmins.

Arico, REA+ (2023)

Constraints on cosmology and baryons from small scales

- Independent pipeline written from scratch (0.4s in a laptop)
- -More accurate PnI BACCOemu
- Explicit baryon model
 via baryonification
- All scales in shear
- No shear ratios
- NLA intrinsic alignment

Constraints on cosmology and baryons from small scales

- Independent pipeline written from scratch (0.4s in a laptop)
- -More accurate PnI BACCOemu
- Explicit baryon model
 via baryonification
- All scales in shear
- No shear ratios
- NLA intrinsic alignment

Constraints on cosmology and baryons from small scales

- Independent pipeline
 written from scratch (0.4s
 in a laptop)
- -More accurate PnI BACCOemu
- Explicit baryon model
 via baryonification
- All scales in shear
- No shear ratios
- NLA intrinsic alignment

Results on baryons. Halo mass for which half og the gas is lost due to feedback

 $\log M_{\rm c} = 14.38^{+0.60}_{-0.56} \log(h^{-1} {\rm M_{\odot}})$

Arico, REA + (2023)

0.9 sigma tension with Planck for our fiducial case

 0.9σ tension with Planck in our fiducial case

Differences with respect to the DES collaboration results

Disagreement in S_8

Our fiducial - DES fiducial 1.4σ

TATT-NLA $0.4 - 0.7\sigma$ Shear ratios $0.1 - 0.3\sigma$ Pipeline/priors $\approx 0.2\sigma$ Non-linearities $0.4 - 0.5\sigma$ Baryons $\approx 0.2\sigma$

Simultaneous modelling of LSS data

Improvements feedback into a more accurate modelling and better cosmological inferences

Numerical simulations for interpreting large scale structure data

Upcoming large galaxy surveys pose multiple challenges in data analyses and theory

Simulation-based approaches and new summary statistics are providing new options

All these together could offer a robust and accurate path to discovering new physics

http://bacco.dipc.org/

COSMOLOGY WITH BACCO: MAXIMISING DISCOVERY WITH GALAXY SURVEYS

The BACCO project is a simulation framework specially designed to provide highly-accurate predictions for the distribution of mass, galaxies, and gas as a function of cosmological parameters

baccoemu 0.3

pip install baccoemu 📑