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AGATA: Advanced GAmma Tracking 
Array

 Consists of 50 HPGe detectors(40 has been 
used in site and 180 are planned to complete 
4𝜋𝜋 sphere).
 High efficiency  due to the continuous HPGe

crystals.

 State of the art energy resolution 2keV at 
1.33MeV.  

 Capable of tracking Gamma-rays.
 Accurate Doppler correction.

 Better photopeak to background ratio.
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AGATA: highly segmented HPGe

 Electronic segmentation.
 No physical segmentation of the 

crystal(no dead layers between the 
segments).

 Increases the detection efficiency.

 Allows for accurate measurement of the 
interaction point of the gamma ray.

 We have 36 signals from the segments
and 1 signal from the central 
contact(core signal)
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In-beam Gamma-ray spectroscopy: 
Doppler correction
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PSA: Pulse Shape Analysis algorithm

 Simulated databases of signals are built 
for each crystal.
 Each database has a 2mm Cartesian grid 

of points.

 700-2000 Points per segment.

 An adaptive grid search is used to find 
the point with the closest simulated signal 
to the measured one.
 A wide grid is first evaluated.

 Then a full grid search is done to the voxel 
with the closest signal.
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Doppler correction with PSA 8

► Although the PSA is working well we still need to improve it to get the best possible accuracy.



Improving the PSA

 To improve the PSA we need to improve the databases.
 By improving the simulations.

 By replacing the simulations with experimental data.

 In both cases we need experimental databases.

 Experimental databases were produced at Strasbourg.
 To produce the databases the crystal had to be scanned.

 Scanning the crystal means that we measure signals at every point of 
the crystal.

 A prototype crystal was scanned

 The source used is 137Cs.
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The scanning process

 1 vertical (X,Y) and 1 horizontal(X,Z) 
scan.

 To get a 3D databases, a χ2 analysis 
of  both datasets is done.

 This method has been validated and 
published but it’s very time 
consuming (5 days for the PSCS 
analysis)

B. De Canditiis et al., Eur. Phys. J. A 57 (2021), B. De Canditiis and G. Duchêne, Eur. Phys. J. A 56 (2020) Picture from Michael Ginsz’s PhD thesis
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Neural networks to produce the 3D databases 

Training
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Neural networks: LSTM

 2 Long short-term memory (LSTM) layers 
were used.
 LSTMs can process sequences of data like 

the signals.

 Are very robust and are not affected by 
time misalignments.

 The loss function was calculated only for 
the two known axis, this allows the 
network to learn patterns of each dataset 
without affecting the other.
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Neural network results: Vertical scan 
distribution
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Neural network results: Horizontal 
scan distribution
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Analysis of neural network results

 The two known axis are compared with the predictions of the network.
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Analysis of neural network results:
Mean standard deviation comparison

 Mean standard deviation of signals at the same position is used as a 
metric to evaluate each method.
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Neural network PSCS method



Neural network vs PSCS: 
Signals at (22, 0, 34) in segment 2
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Imaging using Compton scattering

Experimental position error Two times the experimental position error Experimental position error with bad tracking

Imaging of a simulated source located at (0,0,50)mm in the sphere of AGATA
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FWHM 2mm1.3mm 2.4mm



Conclusions and prospects.

 The neural network 12 hours for training and 2 hour to process the two scans compared 
to 5 day.

 Since we can’t know what is the exact position of a signal, it’s complicated to determine 
which method is more accurate.

 We developed a fast imaging method using Compton scattering to characterize the 
PSA.

 The imaging method will be used to characterize the results of the neural network.

 This work can open the door for neural network PSA.
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Niobium analysis: Overview

 Nuclear structure models.
 Collective models.
 Single particle excitation model.

 Experimental setup.

 Nuclear structure phenomena in the N=60 and A~100 region.
 Shape coexistence.
 Abrupt deformation.

 99Nb analysis.

 Prospects.
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Collective nuclear structure model: 
Liquid drop model

 Proposed by George Gamow and Carl Friedrich von Weizsäcker in the 1930s.

 Treats the atomic nucleus as a liquid drop.

 Assumes that the nucleons are in a potential well with an average binding energy 
per nucleon.

 The model explains:
 The overall binding energy of the nucleus.
 The fission process of heavy nuclei.
 The collective motion of nucleons.

 Limitations:
 Does not explain the magic numbers or nuclear shell structure.
 Cannot predict the stability of individual isotopes.
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Single particle nuclear structure model: 
Shell model

 Proposed by Maria Goeppert-Mayer and J. Hans D. Jensen in the 
early 1950s.

 Treats nucleons as independent particles moving in a central 
potential.

 Assumes that nucleons fill energy levels or "shells" within the 
nucleus.

 The model explains:
 The magic numbers and nuclear shell structure.
 The stability and energy levels of individual isotopes.

 Limitations:
 Does not account for collective motion or correlations between nucleons.
 Cannot fully explain the properties of heavy nuclei.
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Experimental setup: Fusion and
fission experiment
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 Reaction : Fission induced by fusion:
 238U@6.2 MeV/u + 9Be (1.85 mg/cm2), I~6 109 pps.

 Detectors: 
 AGATA: Identification of Gamma-ray transitions.

 Vamos++: Identification(A,Z) of the fission fragments.



Nuclear structure phenomena: 
Shape coexistence

 Observed in the region with N around 60 and A around 
100.

 Shape coexistence refers to the presence of multiple 
stable or quasi-stable nuclear shapes in the same 
nucleus.

 Shape coexistence can arise due to competing nuclear 
forces and the interplay between the single-particle and 
collective degrees of freedom.

 Experimentally observed through various spectroscopic 
techniques, such as Coulomb excitation, transfer 
reactions, and gamma-ray spectroscopy.
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Nuclear structure phenomena: 
Abrupt deformation at N=60 and  A~100

 An abrupt transition from single-particle 
excitation to collective behavior.

 It appears at Neutron number equal 60 and 
around atomic number of 100.

 It appears in the gamma-ray spectra as a 
change in the order of transitions with 
respect to the energy and intensity.
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99Nb: Spectrum
27



99Nb: Level Scheme
28

► Level scheme was built for 99Nb using the coincidence 
between the transitions.

► The level scheme indicates that there is shape coexistence.

► Theoretical calculation and interpretation is needed to confirm 
the shape coexistence.

► We are currently collaborating with a team from Vanderbilt 
University in the US to do these calculations.



Prospects
29

► Obtain the theoretical calculations for the Nb isotopic chain.

► Finalize the analysis of 102,104,105,106,107 Nb.

► Advance the collaboration with the team of Vanderbilt University.



Thank you for your attention 



The tracking of the gamma ray

 Gamma-ray are tracked back to the source 
using Compton diffusion formula.
 Allows for the determination of the first 

interaction point.
 Accurate Doppler correction.

 Improve the photopeak to background ratio.
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AGATA capabilities

 The tracking method reduces the low energy background significantly.
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Imaging using Compton scattering
23



Imaging using an optimizer

• The scattering angle can be calculated 
from the energy and from the position.

• Minimizing the difference between the 
two will give the source position
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Imaging using Compton scattering
27



Imaging using 3D histograms 28



Results of the minimizer with experimental 
data 29

• This source run was conducted during GANIL campaign in the autumn of 
2021.

• The source used is Eu located at (0,0,-55)mm. 

[ -3.63   0.55 -48.23] [ -3.8   0.5 -54.58] [ -3.71   0.52 -55.46]

FWHM:           4.5mm                                  3.83mm                                       3.78mm



Analysis of neural network results

 The two known axis are compared with the predictions of the network.

 Only the predictions with error on the known axis of less than 1mm are 
kept.
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Analysis of neural network results

 Only 2% of the predicted segments were wrong.

30



Neural network results
30



The Strasbourg scanning tables

 A motorized collimator with a 10μm precision.

 A system allowing the placement of the detector 
in vertical and horizontal positions.

 A laser alignment system.

 Detector scanned in this work: the symmetric 
S001 crystal, with a 137Cs source. 
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Neural network results: Vertical Signals
19



Neural network results: Horizontal signals
20



PSCS method signals
21



Neural network Vs PSCS
22
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