

PhD days

CHARGED-PARTICLE PSEUDORAPIDITY DENSITY IN PROTON-PROTON COLLISIONS IN RUN 3

PhD 20 days 23

25/04/2023

s.herrmann@ip2i.in2p3.fr

WHY ALICE ? TO STUDY QUARK GLUON PLASMA (QGP)

HIGH ENERGY PHYSICS EXPERIMENTS AT THE LHC

- ALICE (A Large Ion Collider Experiment) is designed to study high energy QCD
- Broad field of research that encompasses several analyses: from proton-proton to Pb-Pb collisions
- Common strategy :
 - Take data
 - Study the detector response through Monte Carlo (MC) simulations
 - Generate (Physics models)
 - Propagate (Modeled interaction with detector)
 - Reconstruct (Same reconstruction algorithms as in data)
 - Correct data with simulation to derive physics results

Monte Carlo Simulation builds a model of possible results by using a probability distribution

VARIABLE AND SYSTEM COORDINATE DEFINITION

Fig1. Definition of the ALICE coordinate system axis, angles and detector sides.

Transverse momentum p_T Projection of the momentum on the transverse (*Oxy*) plane

PHYSICS MOTIVATIONS: CHARGED-PARTICLE PSEUDORAPIDITY DENSITY

- Helps in understanding particle production mechanisms in high-energy hadronic collisions, from proton-proton to heavy-ion systems
 - QCD in the non-perturbative regime
 - Provides constraints on phenomenological models and event generators

Straightforward analysis : allows to test the analysis framework

Charged-particle pseudorapidity density: number of primary charged particles per collision and unit of pseudorapidity

Primary particle: Particle with a mean proper lifetime $\tau > 1$ cm/c excluding particles coming from weak decays of strange particles

THE ALICE DETECTOR IN RUN 3

- ALICE in Run 3 : New sub-detectors and better performances
 - The Muon Forward Tracker (MFT) : a new sub-detector of ALICE
 - The Inner Tracking System (ITS2) : upgraded central barrel detector

THE INNER TRACKING SYSTEM UPGRADED (ITS 2)

► ITS 2 goals :

- Reconstruct the primary and secondary vertices \rightarrow resolution : less than 25 μm
- Frack and identify charged particles at midrapidity with a low p_T cutoff (< 50 MeV)

- Seven cylindrical detector layers (from R = 22 mm to R = 400 mm) with ALPIDE chips
 - CMOS* silicon pixel sensor
 - Spatial resolution: $5 \mu m$
- η coverage [-1.2 ; 1.2]

* CMOS : Complementary Metal-Oxide-Semiconductor

THE MUON FORWARD TRACKER (MFT)

- Installed in the ALICE cavern in 2020, new detector, a vertex tracker for the Muon
 Spectrometer
- 5 detection disks, 2 detection
 planes each

 z
- Covered with ALPIDE chips
 (936)
 - **Spatial resolution:** 5 μm
- Time window: 5 μ s

- Nominal acceptance:
 -3.6 < η < -2.5, full azimuth
- Poor p_T resolution

HOW TO DERIVE THE CHARGED-PARTICLE PSEUDORAPIDITY DENSITY

charged particles per collision and unit of pseudorapidity

- Two observables to get the result:
 - Measured number of tracks in a (z_{vtx} , η) bin
 - Measured number of events (collisions) in a (N_{trk} , z_{vtx}) bin

• Charged-particle pseudorapidity density: $\frac{1}{N_{ev}} \frac{dN_{ch}}{d\eta}$ number of primary

CORRECTIONS NEEDED

Charged-particle pseudorapidity density: number of primary charged **particles** per **collision** and unit of pseudorapidity

- 2 types of corrections computed with MC
 - Track-to-particle correction (difference) between the number of reconstructed tracks and the number of primary charged particles)
 - Selection bias correction (corrects the difference between selected sample and generated one)

1	0

MFT PERFORMANCE

- Before correcting the measured number of tracks with the track-to-particle correction: consistency checks
 - Good agreement between reconstructed MC and data?

• Measured number of tracks versus (z_{vtx} , η)

- \rightarrow MC simulation can be used for correction
- → Systematic error would need to be reduced

- Comparison of number of tracks versus η in simulation and data
- Data and simulation are consistent within $\pm 5\%$

TRACK-TO-PARTICLE CORRECTION

• Very high MFT Acc x Eff versus (z_{vtx} , η) in simulations

In the central z_{vtx} , η region, AxE > 90%

 $imes N^{gen}$

N*meas*

Nrec

RESULTS WITH MFT

- In red: result derived with the MFT
- Result compatible with the PYTHIA generated plot (pink)
- Analysis validated

0.96

UNCERTAINTY SOURCES

Main uncertainty sources:

- Model dependence (PYTHIA)
- Ambiguous tracks (a track compata ambiguous)

Ambiguous tracks (a track compatible with more than 1 collision is called

THE AMBIGUOUS TRACK ISSUE

- In Run 3 : continuous readout (no trigger), everything is read
- MFT time resolution : 5 μs
 - At an interaction rate of 500 kHz it means 1 collision every 2 μs
 - average
- More ambiguous tracks with higher IR
- Can quickly become an issue

• Each MFT track would then be compatible in time with 2.5 collisions in

PLANS TO REDUCE THE TRACK AMBIGUITY

- MFT time resolution: 5 μs
 - Nominal MFT acceptance: -3.6 < η < -2.5,
 full azimuth
- Matching with FT0-C
 - Precision of FT0-C: ~50ps < 1 BC</p>

Matching should be quite easy since the detectors are very close to one another

1 BC = 25 ns

* IP = Interaction Point

https://alice-collaboration.web.cern.ch/menu_proj_items/FIT

FT0-C Cherenkov detector

 $-3.4 \le \eta \le -2.3$ -0.8 m away from IP *

MATCHING PROCEDURE

BC = Bunch Crossing = 25 ns

DETECTOR TIME ALIGNMENT

- The MFT time precision is bad: means that it is not aligned in time with the FTO-C
- Need to align the 2 detectors in time

Perfect alignment

BC = Bunch Crossing = 25 ns

- Idea: shift the MFT time window by a few BC (25ns) in the analysis
- When the number of matched MFT tracks is the highest => Time aligned
- In practice find the BC shift for which the fraction of **un**matched MFT tracks is the lowest

DETECTOR TIME ALIGNMENT

- Results of the fraction of unmatched tracks versus the time shift
- Minimum for a shift of 47 BC = $1.175 \ \mu s$

Next step : See how much the matching with FTO-C reduces the number of ambiguous MFT tracks

SUMMARY AND OUTLOOK

- MFT is fully functional, producing promising performance plots: ready for physics results
- Still waiting for MC simulations tailored to other datasets (pp 13.6 TeV and PbPb)

- Future developments:
 - Evaluate uncertainty contributions
 - Check that the time shift between MFT and FTO-C is consistent on different datasets
 - Reduce the track ambiguity for higher IR productions
 - See how much the matching MFT FTO-C reduces the fraction of ambiguous track

Thank you for your attention

ABBREVIATIONS

- OCD: Quantum Chromo Dynamics
- ALICE: A Large Ion Collider Experiment
- MFT: Muon Forward Tracker
- ITS: Inner Tracking System
- MC: Monte Carlo
- CMOS: Complementary Metal-Oxide-Semiconductor
- Acc x Eff, AxE: Acceptance x Efficiency
- IR: Interaction Rate

- TPC: Time Projection Chamber
- FIT: Fast Interaction Trigger
- DCA: Distance of Closest Approach

MFT PERFORMANCE

October 2021, at an interaction rate of 2 kHz

(x,y) position of MFT clusters in the farthest disk from the interaction point Very few and small dead zones

• Pilot beam : short proton-proton run at center-of-mass energy of \sqrt{s} = 900 GeV,

• η and ϕ distribution of tracks as expected : full azimuth and $-3.6 < \eta < -2.5$

FTO-C specifications

- > 28 modules, each divided in 4 channels
- Size of 1 channel : 26.5 x 26.5 mm
- Curvature: z position of the center of channels vary in [-83.4, -81.5] cm

	166	164	162	160	159	157	155	153		
	167	165	163	161	158	156	154	152		
169 168	114	112	110	108	107	105	103	102	151	150
171 170	115	113	111	109	106	104	101	100	149	148
173 172	117	116			_		99	98	147	146
175 174	119	118	(FTC,			97	96	145	144	
176 177	120	121				142	143	206	207	
178 179	122	123					140	141	204	205
180 181	124	125	128	130	133	135	137	139	202	203
182 183	126	127	129	131	132	134	136	138	200	201
	184	186	188	190	193	195	197	199		
	185	187	189	191	192	194	196	198		

RESULTS AT MIDRAPIDITY

- $-\frac{dN_{ch}}{dN_{ch}}$ results at midrapidity for N_{ev} $d\eta$ the INEL event class (all Inelastic collisions)
- Results compatible with previously published one on run2 data
 - Small shift due to the lack of diffraction correction in Run3 MC simulations
- The full measurement including the MFT points is expected in the coming months

Expected MFT results

ADDITIONAL CORRECTION : DIFFRACTION TUNING

- Diffraction tuning:
 - MC simulations (PYTHIA) fail to reproduce the number of diffractive events, need a tuned MC for correction
- Single Diffractive and Double Diffractive events are very rarely reconstructed because there produce no tracks in the midrapidity regions

26

PERFORMANCE PLOTS FOR THE CENTRAL TRACKS

- Measured number of tracks versus (z_{vtx}, η)

Very high Acc x Eff in the central region: good detector performance

ITS+TPC Acc x Eff: profile used for track-to-particle correction

