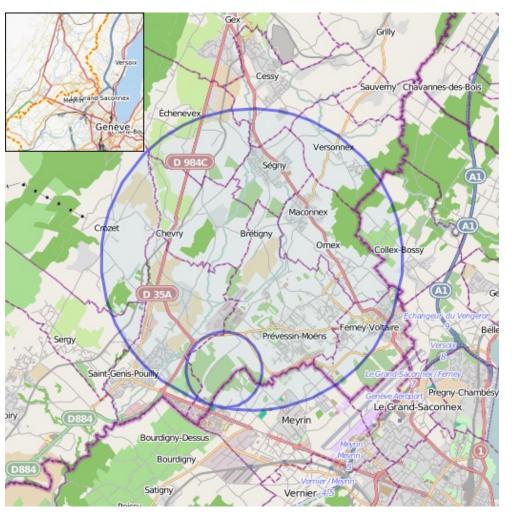


Search for Vector-like T'(→ tH) in hadronic final states using Neural Networks

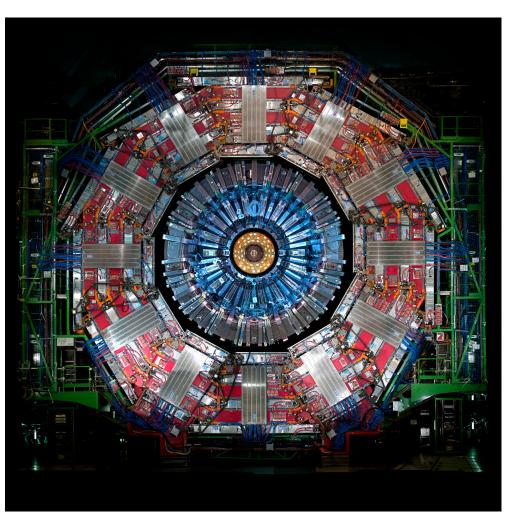
Jieun Choi HYU (Seoul) / IP2I (Lyon)

April 25, 2023


ji.eun.choi@cern.ch

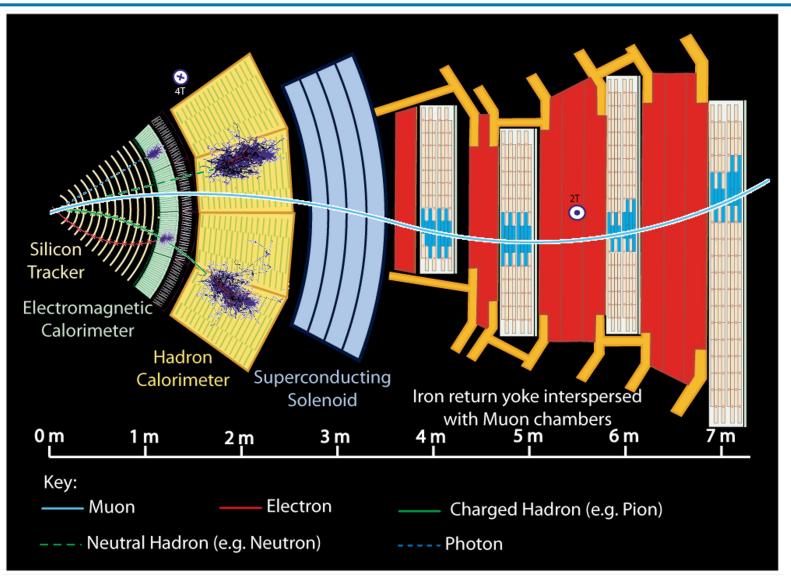
Introduction

Large Hadron Collider


- The LHC is a particle accelerator that pushes protons to near the speed of light
- It consists of a 27 km ring of superconducting magnets with accelerating structures that boost the energy of the particles along the way
- It produces lots of particle physics phenomena from proton-proton collisions at the center of mass energy = 13 TeV

Introduction

Compact Muon Solenoid



- The CMS detector is located at one of the four collision points in LHC
- With 15 meters high and 21 meters long, CMS is "compact" for all detectors it contains
- It has the most powerful solenoid magnet ever made
- The discovery of Higgs boson at CMS and ATLAS detector in 2012 completed standard model
- However, some phenomena still exist that are not described by standard models

Introduction

Physics objects are reconstructed by information from various detectors

PhD Days @ Lyon

g

q

لاوووووو

W/Z

Motivation

Search for Vector Like Quark in hadronic final states

b/t

Т

t

Η


q'

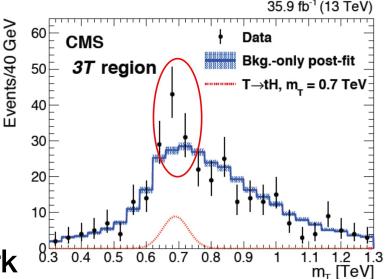
Why the Vector-Like Quarks?

- Evaluate many underlying models:
 - Stabilize the Higgs boson mass
 - Offers a potential solution to the hierarchy problem

T' decay in full hadronic final state

T' decaying into top and Higgs

- Main background:
 - ttbar in hadronic decay (tt \rightarrow bbqqqq)
 - multi-jet event (QCD)



JHEP 01 (2020) 036

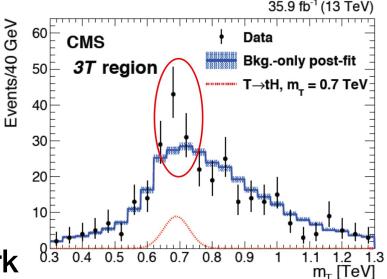
Analysis using 2016 data in CMS

- Excess in T' mass @ 680 GeV was observed
 - Using cut-Based method
- \rightarrow Improve the significance with Neural Network !

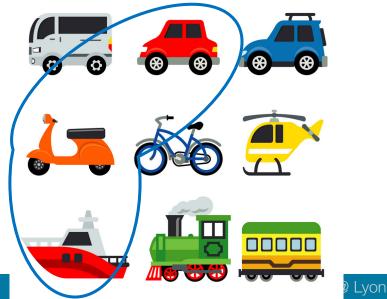
cut-based method \rightarrow Neural Network

- Cut-based method: Categorizing events with a certain "selection" criterion on a data

Vehicle dataset Signal = Red bike



JHEP 01 (2020) 036


Analysis using 2016 data in CMS

- Excess in T' mass @ 680 GeV was observed
 - Using cut-Based method
- \rightarrow Improve the significance with Neural Network !

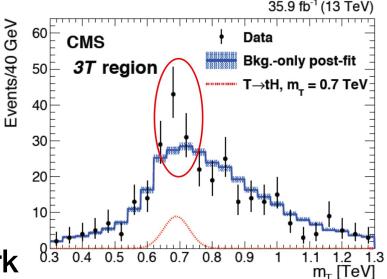
cut-based method \rightarrow Neural Network

- Cut-based method: Categorizing events with a certain "selection" criterion on a data

Vehicle dataset Signal = Red bike

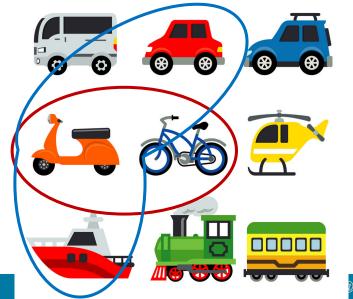
Cut-Based method:

Color = Red



JHEP 01 (2020) 036

Analysis using 2016 data in CMS


- Excess in T' mass @ 680 GeV was observed
 - Using cut-Based method
- \rightarrow Improve the significance with Neural Network !

cut-based method \rightarrow Neural Network

- Cut-based method: Categorizing events with a certain "selection" criterion on a data

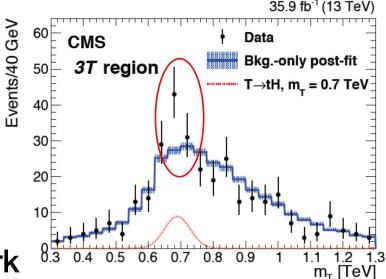
Lyon

Vehicle dataset Signal = Red bike

Cut-Based method:

Color = Red

Number of wheels = 2



JHEP 01 (2020) 036

Analysis using 2016 data in CMS

- Excess in T' mass @ 680 GeV was observed
 - Using cut-Based method
- \rightarrow Improve the significance with Neural Network !

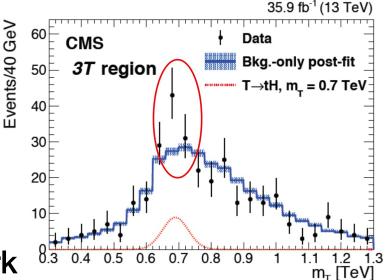
cut-based method \rightarrow Neural Network

- Cut-based method: Categorizing events with a certain "selection" criterion on a data

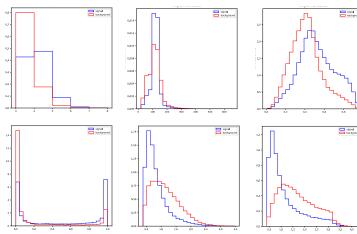
Vehicle dataset Signal = Red bike

NN method:

Input: Color, Number of wheels Signal / background label



JHEP 01 (2020) 036

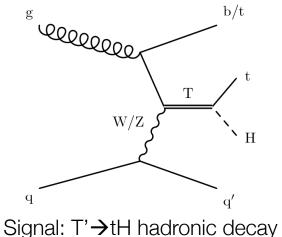

Analysis using 2016 data in CMS

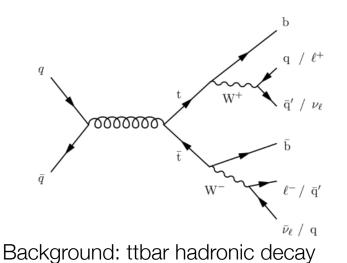
- Excess in T' mass @ 680 GeV was observed
 - Using cut-Based method
- \rightarrow Improve the significance with Neural Network !

cut-based method \rightarrow Neural Network

- Cut-based method: Categorizing events with a certain "selection" criterion on a data
- Selections optimized based on 47 kinematic observables for maximizing significance

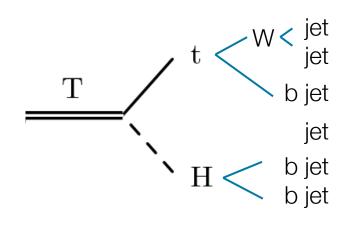
.. Feed these information to neural network !

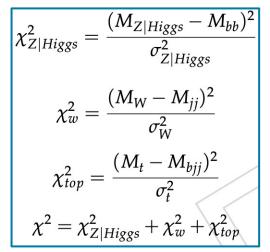




Target Process

Benchmark

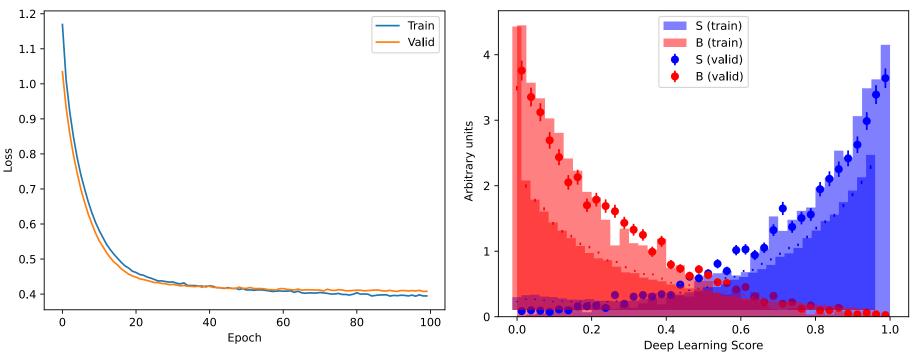

- Comparison between the cut-based method and Simple neural networks
- Sample analyzed: simulated CMS detector in 2018
 - Signal: Single T' \rightarrow tH full hadronic M = 700 GeV
- Input features:
 - Low level feature: (b-tagged) jet information (energy, angular distribution...)
 - High level feature: selections used for the cut-Based method (angular differences between jets...)



Selections

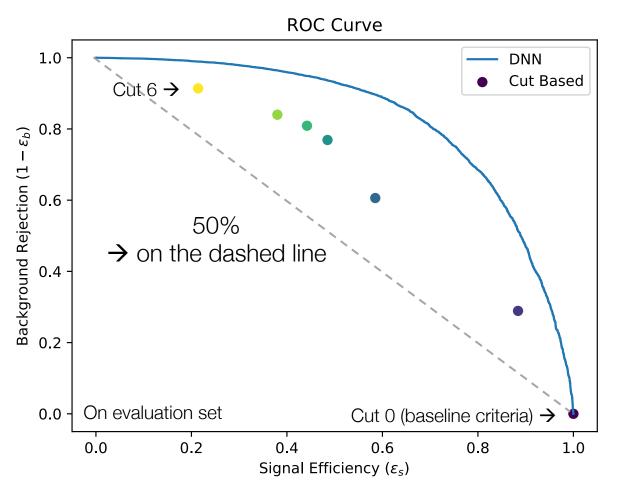
- The cut-based method uses 7 selections (Cut 0 6) to maximize the significance
 - Most of selections are using variables from χ^2 reconstruction
 - To select jets reconstructing top/W/Higgs mass

Used for Training


- Take the baseline criteria (Cut 0) from cut-based analysis
 - nJets \geq 6, nbjets (mistag rate ~ 1%) \geq 3
 - $Jet_1 > 170, Jet_2 > 130, Jet_3 > 80 \text{ GeV}$
 - $H_T > 500 \text{ GeV}$
 - Minimum χ^2 from mass reconstructions < 15
 - Invariant mass of second Top > 250 GeV
 - Invariant mass of Higgs from χ^2 reconstruction > 100 GeV

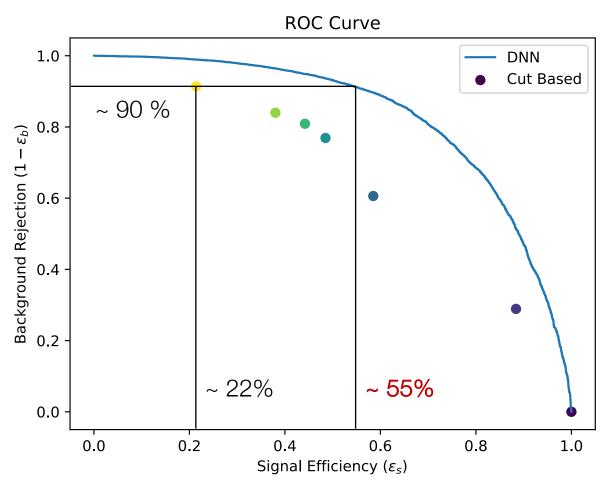
Used for Evaluation

Output score


- Deep Neural Network (DNN) structure
 - Simple Dense Layer Network (3 Layer with 100 Nodes)
 - Input set: 80% for training, 20% for validation
- Overtraining check
 - Make sure if model is working not only on training set, but also on the other data
 - Check Loss curve + output distribution from Training and Validation set

Performance

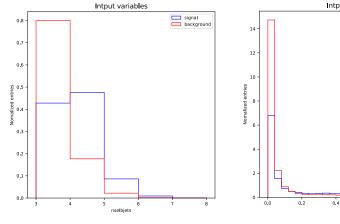
Receiver Operating Characteristic curve

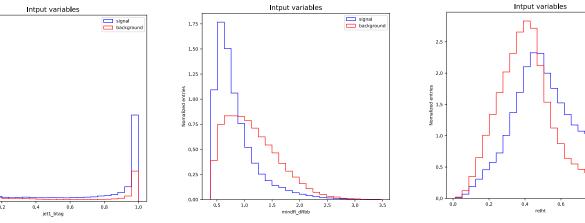

NN works better than cut-based method even without any optimization!

Performance

Receiver Operating Characteristic curve

NN works better than cut-based method even without any optimization!


signal


0.8

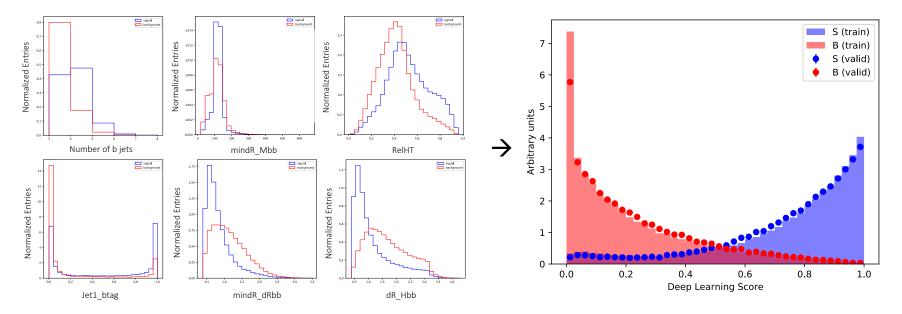
backgroun

Study on input features

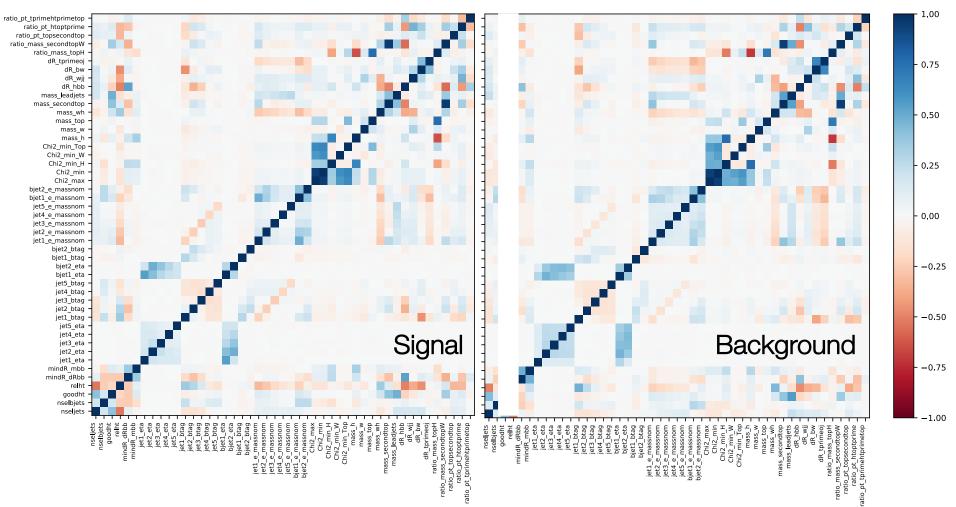
- Initial question:
 - How should we determine which physics observables are "more important"?
 - Which input feature has the largest impact on the NN output node?

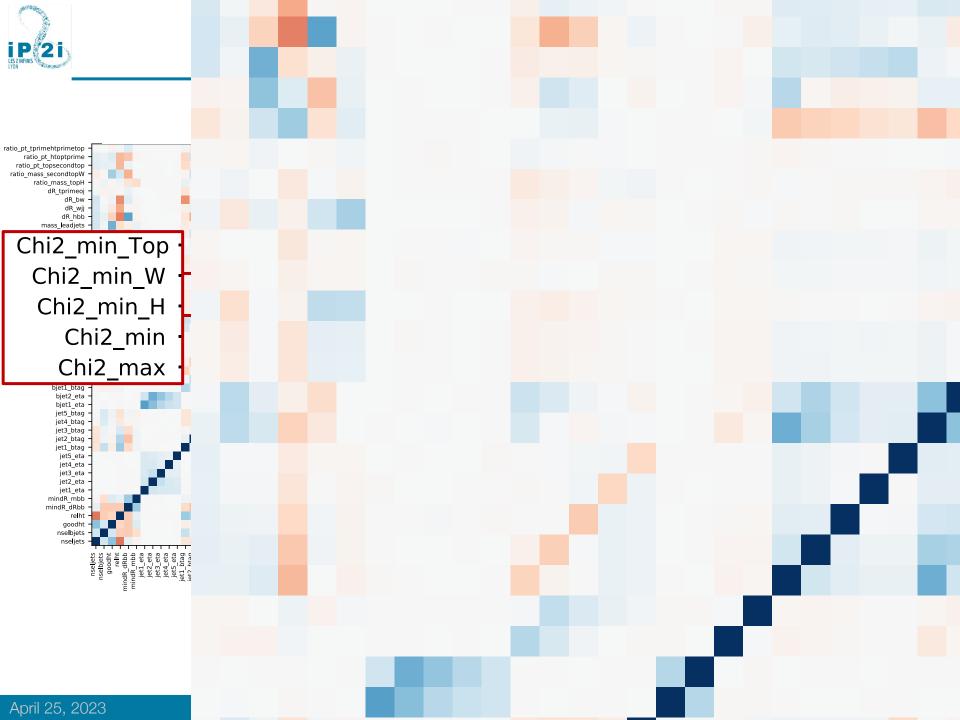
Which are "good" and "bad" observables?

Methodology

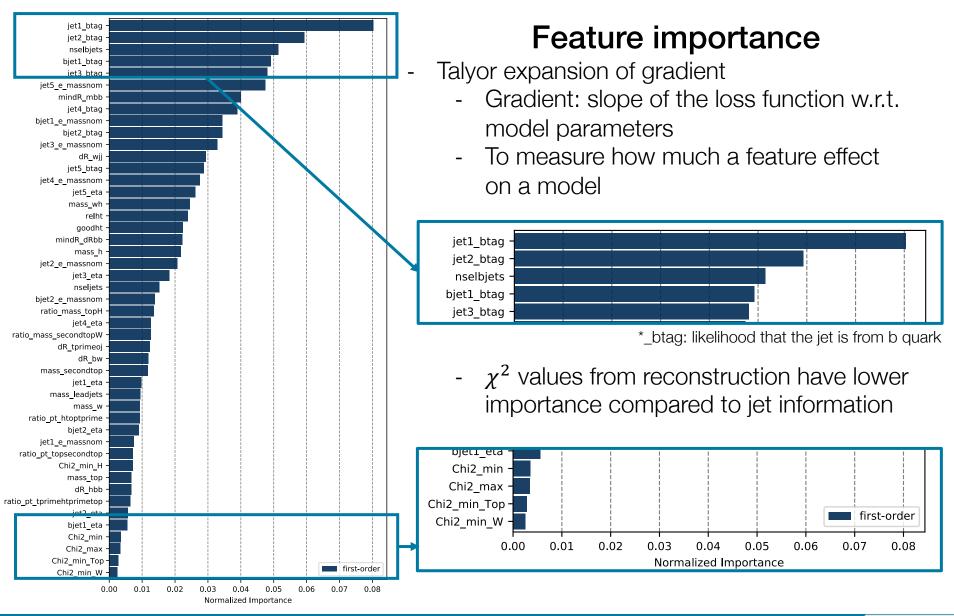

- Pearson Correlation Coefficient
 - Measure linear correlations
- Talyor expansion of the output function at the minima (model)*
 - Calculate gradients of output(node) w.r.t. inputs(event)
 - Extract average gradient for each input features

Input Features


- Add all 47 kinematic observables studied from the cut-based method
 - ((6)+15) Information of (2) 5 leading (b) jets (η , energy, b disc. value)
 - (2) Number of (b-tagged) jets
 - (2) ΔR , invariant mass of two b jets having minimum ΔR
 - (5) Min, Max χ^2 value from H, Top, W reconstruction
 - (6) Invariant mass of 5 leading jets, χ^2 candidates (H, (second) Top, W, W+H)
 - (2) H_T , Relative H_T between Top and Higgs
 - (4) ΔR between (b) jets from χ^2 candidates (T', H, W)
 - (5) Ratio of invariant mass, p_T between χ^2 candidates (T' (second) Top, H, W)

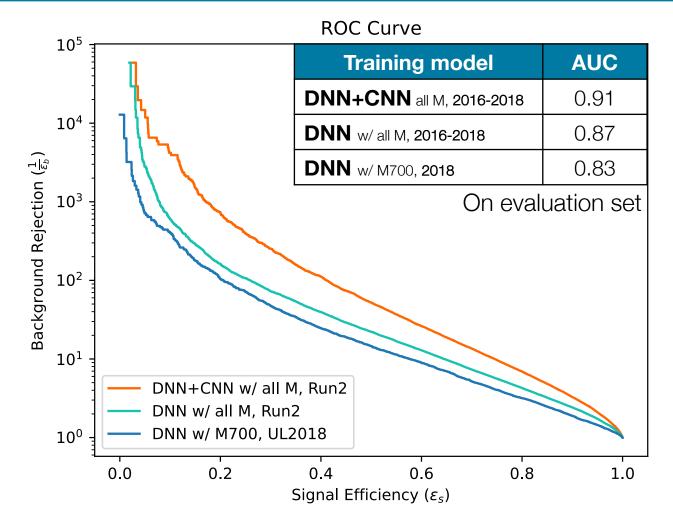


Correlation Matrices



Input feature study

Improving Neural Networks

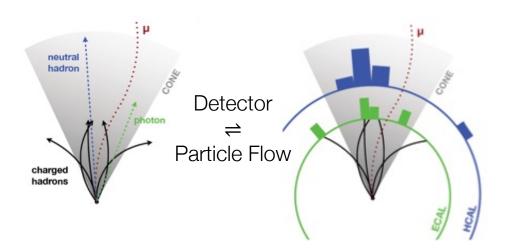

- More statistics, deeper structures!
 - Trained on: With all mass variation (M = 600-1200 GeV) + full MC statistics
- Deeper DNN
 - All information without ordering
- DNN + Convolutional NN (CNN)
 - DNN: Event level information
 - CNN: Jet information (4 vector, b disc. value of 5 leading jets)

Performance

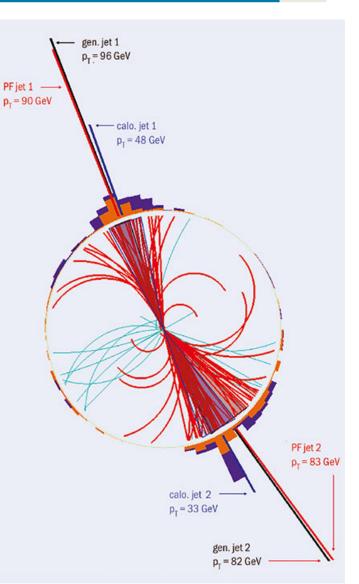
Using DNN+CNN with the full Run2 (2016-2018) datasets and all mass variations has the highest performance in all criteria

Conclusion

- Analysis on search for T' in hadronic final state is ongoing, while excess on 2016 CMS data was observed.
- Compared two methods: cut-Based vs NN to gain significance.
- The NN method showed better performance than the cut-Based method.
- Adding more input datasets and deeper model could improve the performance of the NN method.
- This model could help increase the significance in the search for the vector like T' in hadronic final states with Run 3 (2022-) data
- To do list:
 - Look into the Run2 data
 - Optimize hyperparameter: input variables, number of layers, nodes, optimizers, techniques..
 - Try different architecture: Graph Neural Network, parameterized Neural Network...
 - Continue working on Run 3 data



Particle Flow

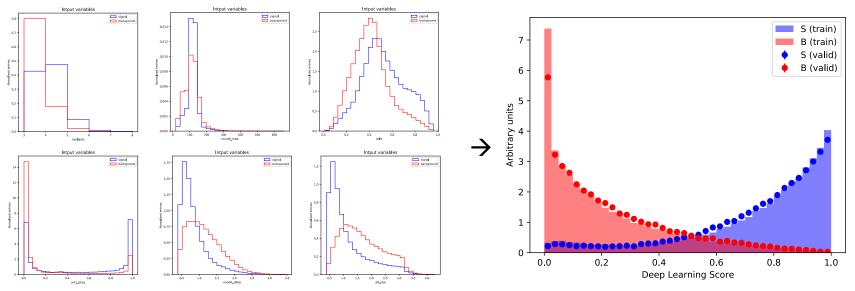


How we reconstruct jet in CMS

- Calorimeter based approach
- Jet-Plus-Track approach: Calorimeter jet + tracks
- Particle Flow approach
 - Reconstruct each particle individually in the event based on information from all sub-detectors
 - Jet composition:
 - ~ 65% charged hadrons
 - ~ 25% photons
 - ~ 10% neutral hadrons

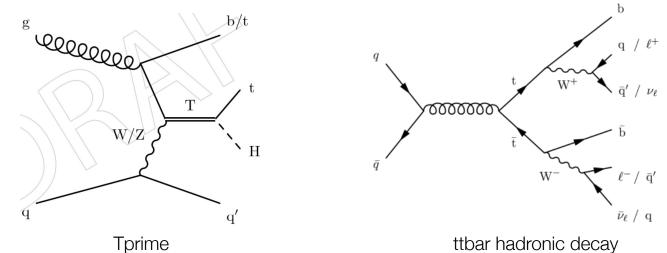
Physics observables in cut-based method

Basic Selection Criteria	Label	Cuts
Trigger and p_T, η and $n_b^{DeepCSVT} \ge 3$	Cut 0	Basic selection
Ingger and p_T, η and $n_b \ge 3$	Cut 1	Relative $H_T > 0.4$
$j_{p_T}^1 > 170 \text{ GeV}/c, j_{p_T}^2 > 130 \text{ GeV}/c, j_{p_T}^3 > 80 \text{ GeV}/c \text{ and } H_T > 500 \text{ GeV}/c$	V/c Cut 2	$Max(\chi^2) < 3$
	Cut 3	$\Delta R(b_{Higgs}, b_{Higgs}) < 1.1$
$\chi^2 < 15$	Cut 4	$egin{array}{l} \Delta R(b_{Higgs},b_{Higgs}) < 1.1 \ \chi^2_{Higgs} < 1.5 \end{array}$
2nd Top Mass> 250 GeV/ c^2		$\Lambda_{Higgs} = 1.0$
	Cut 5	$\Delta R(j_W, j_W) < 1.75$
Higgs Mass > 100 GeV/ c^2	Cut 6	$\Delta R(b_{Top}, W) < 1.2$
Criteria Quick description		
P_T of each jets Signal should have harder P_T than QCD		
p _T (T') Nb Good Jets QCD could have larger jet multiplicity		
χ^2_{\perp} Signal peaks at 0		
χ^2_{Higgs} Signal peaks at 0, background is larger		
χ^2_{Top} Signal peaks at 0, QCD is larger		
χ^2_W Signal peaks at 0, QCD is larger		
$Max(\chi^2) \qquad Maximum \left(\chi^2_{Higgs}, \chi^2_{Top}, \chi^2_W\right)$		
M(<i>Higgs_{cand}</i>) Invariante mass of Higgs candidate		
$M(top_{cand})$ Invariante mass of Top candidate $M(W_{cand})$ Invariante mass of W candidate		
$M(W_{cand})$ Invariante mass of w candidate $M(W_{cand} + Higgs_{cand})$ Invariante mass of sum of Higgs and W candidate [4 jet ma	ssl	
M(6 Jets) Invariante mass of the 6 selected jets	,	
2nd Top Mass Invariante mass of Higgs candidate and 6 th jet		
$ \frac{M_{top} - M_{Higgs}}{M_{top} + M_{Higgs}} $ Ratio of invariante masses $ \frac{M_{top}^{2nd} + M_{W}^{2nd}}{M_{top}^{2nd} + M_{W}^{2nd}} $ Ratio of invariante masses		
$\frac{M_{top}^{2} + M_{W}^{2ad}}{M_{top}^{2} + M_{W}^{2ad}}$ Ratio of invariante masses		
$\frac{1}{M(Top+H+6^{th}Jet)}$ Katto of invariance masses		
H_T Relative H_T $p_T(H_{cand}) + p_T(top_{cand})$		
-1		
New Relative H_T $p_T(H_{cand}) + p_T(top_{cand}) + p_T(6^{th} Jet)$		
$\Delta R(T', 6^{th}]et$ LO signal tends to give back to back results	ha	
$ \begin{array}{c} \Delta R(b_{Higgs}, b_{Higgs}) \\ \Delta R(j_W, j_W) \end{array} \\ \begin{array}{c} \text{Separation between the two jets making the Higgs candidate} \\ \text{Separation between the two jets making the W candidate} \end{array} $	te	
$\Delta R(Higgs, Top)$ Separation between the Higgs and Top candidates		
$\Delta \eta(W, H)$ Et a separation between the Higgs and W candidates		
$\Delta R(b_{Top}, W)$ Separation between b-jet making the top candidate and the		
$\Delta R \times \Delta R$ Product of all ΔR in the event. All ΔR are computed to be p		
Max (ΔR) Maximum of all ΔR in the event. All ΔR are computed to be Add Hings. Tan	e peaking at 0	
$\Delta \phi(Higgs, Top)$ Phi separation between the Higgs and Top candidates		
$\frac{P_T^{2ndlop} - P_T^{lop}}{P_T^{2ndlop}} \qquad $		
$\frac{p_{\mathrm{T}}(\dot{H}_{cand}) - p_{\mathrm{T}}(top_{cand})}{T}$ Ratio of P_{T} candidates		


PhD Days @ Lyon

Input Features

- All kinematic observables studied in the cut-based method
- 47 input variables
 - ((6)+15) Information of (2) 5 leading (b) jets (η , energy, b disc. value)
 - (2) Number of (b-tagged) jets
 - (2) ΔR , invariant mass of two b jets having minimum ΔR
 - (5) Min, Max χ^2 value from H, Top, W reconstruction
 - (6) Invariant mass of 5 leading jets, χ^2 candidates (H, (second) Top, W, W+H)
 - (2) H_T , Relative H_T between Top and Higgs
 - (4) ΔR between (b) jets from χ^2 candidates (T', H, W)
 - (5) Ratio of invariant mass, p_T between χ^2 candidates (T' (second) Top, H, W)



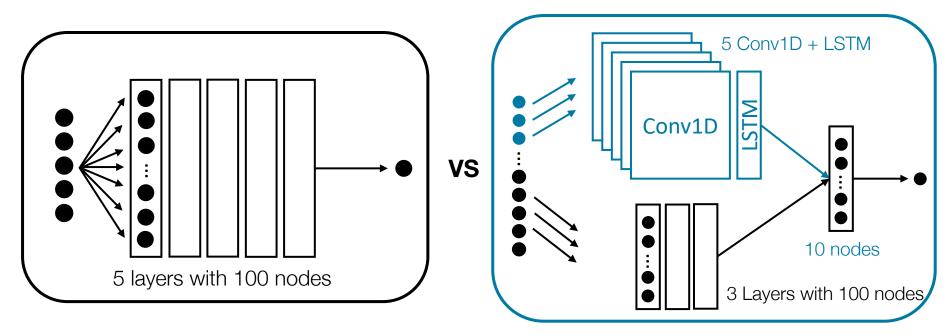
How to avoid bias in NN

Target Process

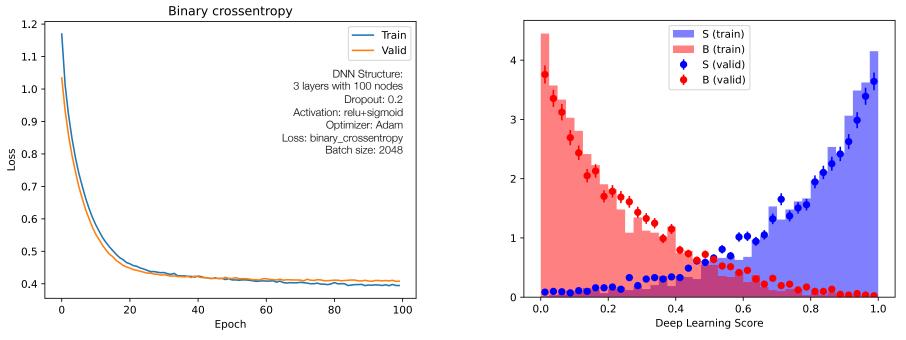
- Signal and Background Classification

Strategy

- Compare ROC curves with cutBased (signal efficiency vs background rejection)
 - Evaluate NN at the level of Cut 0 for the pair comparison

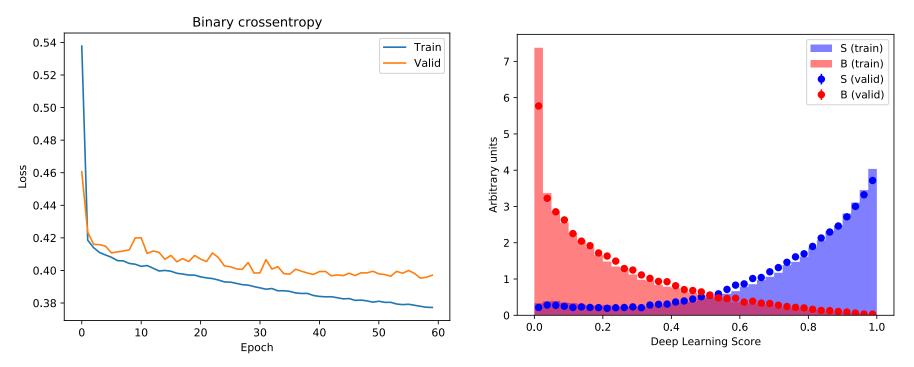


Improving Neural Networks


- Deeper DNN
 - 5 Layers with 100 nodes
- DNN + CNN
 - DNN: 3 Layers with 100 nodes
 - CNN: 5 Conv1D + LSTM (Long Short-Term Memory)
 - Conv1D: 150, 100, 100, 25, 25 filters
 - LSTM: 10 nodes

NN Structure Keras tensorflow backend Batch Normalization applied Batch size = 1024 Activation: ReLU Optimizer: Adam

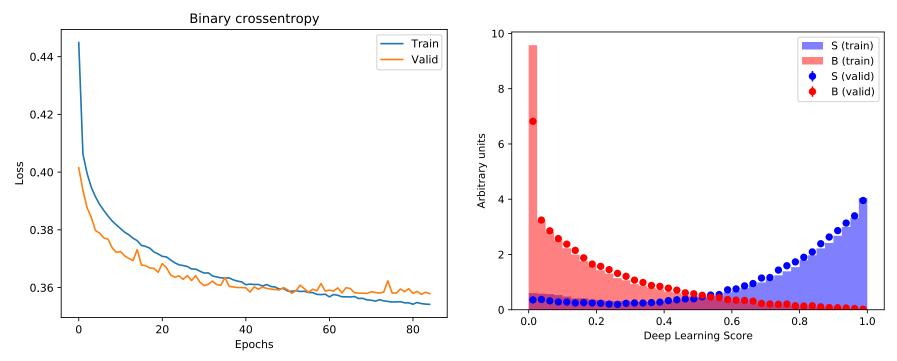
Overtraining check


Detail

- Trained in CC server (Training time: 10ms/epoch)
- Input set : Half of TprimeBToTH_M-700 after selection (odd numbered event, 23210 entries)
 - 80 % for training, 20 % for validation
 - Keep even numbered event for evaluation: to avoid bias (using the same event) for performance estimation
 - Epoch: 100 \rightarrow Validation Loss / Acc are stable, does not diverge yet

PhD Days @ Lyon

Training with more statistics: DNN



Strategy

- Trained in CC server (Training time: 1s 8ms/epoch)
- Do the same with full Run2 (2016-2018 datasets) and different mass range
- Train on signal samples M=600~1200 GeV (181724 entries (M700 entries * 7))
 + the same amount of statistics from TTToHadronic

Training with more statistics: DNN + CNN

Strategy

- Do the same with full Run2 (2016-2018 datasets) and different mass range
- Train on signal samples M=600~1200 GeV (181724 entries (M700 entries * 7))
 + the same amount of statistics from TTToHadronic

- Initial question: What are the input features with the largest impact on the NN output nodes?
- Extract average gradient for each input features
- Will be able to "see" how much each variable "effects" on training model
- arXiv:1803.08782

Methodology

- Talyor expansion of the output function at the minima (model)
- Tensorflow.GradientTape()
 - Allow us to record the history of operations applied to target input features
 - Calculate gradients of output(node) w.r.t. inputs(event)
- 1st order: Physical location of feature/marginal distributions weight w_i for x_i
- 2nd order: Curvature of NN output function correlations across two features: Gradient of each element of the source w.r.t target – weight w_ij for x_i * x_j

$$\langle t_{\alpha} \rangle = \frac{1}{N} \sum_{k=1}^{N} \left| t_{\alpha} \left(\left\{ x_{j}^{(k)} \right\} \right) \right|$$

N : Sample size

- t_{α} : Taylor coefficient labeled by α
- $\langle t_{\alpha} \rangle$ is the arithmetic mean of $|t_{\alpha}|$, evaluated on the whole input space that is sampled by the test data set.
- Introduce nomenclature of *generalized features* of the input feature space:

 $\alpha = x_1, x_2, \dots$ $\alpha = x_1 x_1, x_1 x_2, \dots$

order feature of input space (~ 1. order derivative)
 order feature of input space (~ 2. order derivative)

```
\alpha = x_1 x_1 x_1, x_1 x_2, \dots 3. order feature of input space (~ 3. order derivative)
```

