Séminaire projets APC 2023

CMOS 65 nm R&D

Marco Bomben

APC & UPC

ECFA Detector R&D Roadmap

2020 European Particle Physics Strategy Update (EPPSU)

High-priority future initiatives: e+e- Higgs/Z/top factories

THE 2021 ECFA DETECTOR RESEARCH AND DEVELOPMENT ROADMAP

The European Committee for Future Accelerators Detector R&D Roadmap Process Group

https://cds.cern.ch/record/2784893/

Roadmap organised in "Detector R&D Themes" (DRDTs) and "Detector Community Themes" (DCTs)

Illustration of microelectronics circuitry integrated with a detecting medium as a single monolithic solid-state detector. (© ALICE collaboration)

Students and young scientists working on the construction of prototype detector modules. (© CERN)

Takeaway message: "detector readiness should not be the limiting factor in terms of when the facility in question can be realised"

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

			< 2030	2030-2035	2035- 2040	2040- 2045	> 2045
iaseous	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability	-	-	-	*	
	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out	-	•	•	-	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate capability		•	-	-	
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs		•			
Liquid	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors					manding uired for
	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds					d in the זה then act
	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors		•			llustrated ;) towards
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems		•			cifications.
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors	-	•	•	•	-
Solid state	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and				-	
	DRDT 3.3	calorimetry Extend capabilities of solid state sensors to operate at extreme fluences				•	
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics	-	•	-	•	-

https://indico.cern.ch/event/1214410/

DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments

DRD technology area

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Proposing participants

Institute	Contact	Foreseen main areas of contribution	
APC Paris	M. Bomben	Simulations, testing	
CERN	D. Dannheim	Testing, DAQ, ASIC design support	
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations	
IPHC Strasbourg	A. Besson	ASIC design, testing	
Oxford University	D. Hynds	Testing, simulations	
Zurich University	A. Macchiolo	Testing, DAQ, simulations	

R&D using **65 nm technology** to achieve high **single point resolution** (3 μm), high **temporal accuracy** (5ns), low **mass** (100 μm thick) & low **power** (< 50 mW/cm²)

Access to TPSCo65 CMOS imaging process with 65 nm feature size via **CERN**/ALICE

https://indico.cern.ch/event/1214410/

DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments

DRD technology area

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Proposing participants

Institute	Contact	Foreseen main areas of contribution	
APC Paris	M. Bomben	Simulations, testing	
CERN	D. Dannheim	Testing, DAQ, ASIC design support	
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations	
IPHC Strasbourg	A. Besson	ASIC design, testing	
Oxford University	D. Hynds	Testing, simulations	
Zurich University	A. Macchiolo	Testing, DAQ, simulations	

R&D using **65 nm technology** to achieve high **single point resolution** (3 μm), high **temporal accuracy** (5ns), low **mass** (100 μm thick) & low **power** (< 50 mW/cm²)

Lightweight, granular and fast detector → Tempting eh? ☺

https://indico.cern.ch/event/1214410/

DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments

DRD technology area

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Proposing participants

Institute	Contact	Foreseen main areas of contribution	
APC Paris	M. Bomben	Simulations, testing	
CERN	D. Dannheim	Testing, DAQ, ASIC design support	
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations	
IPHC Strasbourg	A. Besson	ASIC design, testing	
Oxford University	D. Hynds	Testing, simulations	
Zurich University	A. Macchiolo	Testing, DAQ, simulations	

R&D using **65 nm technology** to achieve high **single point resolution** (3 μm), high **temporal accuracy** (5ns), low **mass** (100 μm thick) & low **power** (< 50 mW/cm²)

Multi-year expertise in simulations (TCAD/MC) and testing (cleanroom/testbeams)

https://indico.cern.ch/event/1214410/

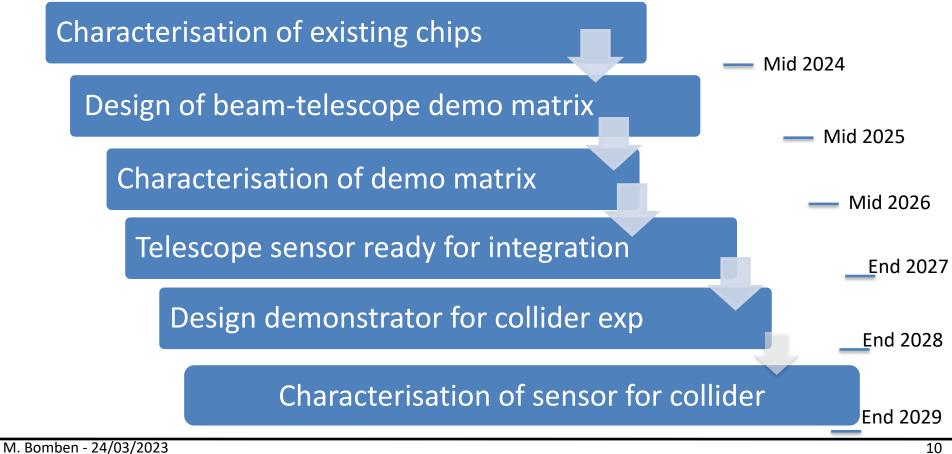
DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments

DRD technology area

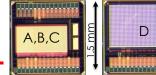
DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

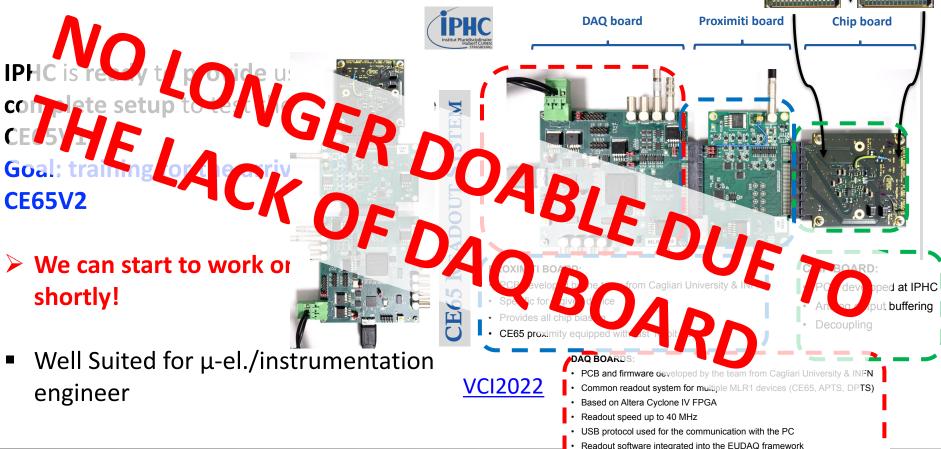
Proposing participants

Institute	Contact	Foreseen main areas of contribution	
APC Paris	M. Bomben	Simulations, testing	
CERN	D. Dannheim	Testing, DAQ, ASIC design support	
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations	
IPHC Strasbourg	A. Besson	ASIC design, testing	
Oxford University	D. Hynds	Testing, simulations	
Zurich University	A. Macchiolo	Testing, DAQ, simulations	


R&D using **65 nm technology** to achieve high **single point resolution** (3 μm), high **temporal accuracy** (5ns), low **mass** (100 μm thick) & low **power** (< 50 mW/cm²)

Access to TPSCo65 CMOS imaging process with 65 nm feature size via **CERN**/ALICE


Staged project – see next slide



Timeline

Opportunity for contribution – now 😳

(compatibility with the beam test infrastructure)

QUESTIONS?

European Particle Physics Strategy Update (2020)

 Projects listed in the Deliberation Document of the European Particle Physics Strategy Update (EPPSU) [Ch0-2] as either "High-priority future initiatives" or "Other essential scientific activities for particle physics"; e.g.:

➢ HL-LHC

- Long baseline neutrino detectors
- e+e- Higgs/Z/top factories
- hh machine @ 100 TeV

The highest priority laid down by the updated ESPP is for a future Higgs factory to thoroughly explore the properties of this completely new type of particle, which is seen as a key to a much deeper understanding of how the Universe works. < 2030 2030- 2035- 2040-2035 2040 2045 > 2045

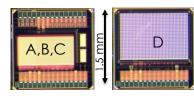
PID and Photon Develop Photosensors for extreme environments DB07 42 Develop Photosensors for extreme environments DB07 43 Develop Photosensors for extreme environments DB07 44 Develop Photosensors for extreme environments DB07 45 Promote the development of advanced quantum sensing technologies DB07 51 Promote the development of advanced quantum sensing technologies DB07 52 trivestigate and adgat state-ot-the-art developments in quantum technologies to particle physics DB07 53 Develop photosensors for extreme environments to allow exploration of emerging technologies and infrastructure DB07 51 Develop paid provide advanced enabling capabilities and infrastructure energy and timing resolution DB07 51 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods DB07 52 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods DB07 51 Develop notalistion - hard calorimeters with multi-dimensional readout for optimised use of particle flow methods DB07 53 Develop notalistion of extreme radiation, rate and pile-up environments DB07 74 Develop novel technologies for increased intelligence on the detector DB07 75 Evaluate and adapt to emereging electronics and data processing technologies	DID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors	
PRDT 4.3 Develop CPICH and imaging detectors with low mass and high resolution timing DRDT 4.4 Develop compact high performance time-of-flight detectors DRDT 5.1 Promote the development of advanced quantum sensing technologies DRDT 5.2 Investigate and adapt state-of-the-art developments in quantum technologies to particle physics DRDT 5.3 Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies DRDT 5.4 Develop and provide advanced enabling capabilities and infrastructure energy and timing resolution DRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution DRDT 6.2 Develop calorimeters with multi-dimensional readout for optimised use of particle flow methods DRDT 6.3 Develop technologies to deal with greatly increased data density DRDT 7.1 Advance technologies to cope with extreme environments and required longevity DRDT 7.3 Develop technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 7.4.1 Develop improved technologies and systems for cooling DRDT 7.5 Develop improved technologies and systems for cooling DRDT 8.1 Develop improved technologies and systems for cooling DRD		DRDT 4.2	Develop photosensors for extreme environments	
Cuantum DR0T 5.1 Promote the development of advanced quantum sensing technologies DR0T 5.2 Investigate and adapt state-of-the-art developments in quantum technologies to particle physics DR0T 5.3 Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies DR0T 5.4 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution DR0T 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic environments DR0T 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods DR0T 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments DR0T 7.1 Advance technologies to deal with greatly increased data density DR0T 7.2 Develop technologies for increased intelligence on the detector DR0T 7.3 Develop technologies to cope with extreme environments and required longevity DR0T 7.3 Develop technologies to cope with extreme environments and required longevity DR0T 7.5 Develop novel metry extrems DR0T 8.1 Develop improved technologies and systems for cooling DR0T 8.2 Develop improved technologies and systems for cooling DR0T 8.3 Adapt novel magnet systems DR0T 8.3 Adapt novel materials to achieve ult	Photon		resolution timing	
Quantum DRDT 5.2 Investigate and adapt state-of-the-art developments in quantum technologies to particle physics DRDT 5.3 Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies DRDT 5.4 Develop and provide advanced enabling capabilities and infrastructure DRDT 5.1 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution DRDT 6.2 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution for optimised use of particle flow methods DRDT 6.3 Develop radiation-formeters with multi-dimensional readout for optimised use of particle flow methods DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments DRDT 7.1 Advance technologies to deal with greatly increased data density DRDT 7.2 Develop technologies for increased intelligence on the detector DRDT 7.3 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop inproved technologies and systems for cooling DRDT 7.4 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector interfaces.	a	DRDT 4.4	Develop compact high performance time-of-flight detectors	
Column DRDT 5.3 Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies DRDT 5.4 Develop and provide advanced enabling capabilities and infrastructure energy and timing resolution are enabling capabilities and infrastructure DRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments DRDT 7.1 Advance technologies to deal with greatly increased data density DRDT 7.2 Develop technologies to cape with extreme environments and required longevity DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Develop improved technologies and systems for cooling DRDT 8.3 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector interfaces.			Investigate and adapt state-of-the-art developments in quantum	
DRDT 5.4 Develop and provide advanced enabling capabilities and infrastructure DRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments DRDT 7.1 Advance technologies to deal with greatly increased data density DRDT 7.2 Develop technologies in support of 4D- and 5D-techniques DRDT 7.3 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 7.4 Develop novel technologies and systems for cooling DRDT 7.5 Develop novel technologies and systems for cooling DRDT 7.4 Develop novel technologies and systems for cooling DRT 7.5 Develop improved technologies and systems for cooling DRT 7.4 Develop improved technologies and systems for cooling DRT 7.5 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector interfaces.	Quantum	DRDT 5.3	Establish the necessary frameworks and mechanisms to allow	
Calorimetry DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments DRDT 7.1 Advance technologies to deal with greatly increased data density DRDT 7.2 Develop technologies for increased intelligence on the detector DRDT 7.3 Develop technologies to cope with extreme environments and required longevity DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 7.5 Develop novel magnet systems DRDT 8.1 Develop improved technologies and systems for cooling DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector interfaces.		DRDT 5.4		
Integration DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments DRDT 7.1 Advance technologies to deal with greatly increased data density DRDT 7.2 DRDT 7.3 Develop technologies for increased intelligence on the detector DRDT 7.4 Develop technologies in support of 4D- and 5D-techniques DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.		DRDT 6.1		
Integration DRDT 8.1 Develop novel magnet systems DRDT 7.1 Advance technologies to deal with greatly increased data density DRDT 7.2 Develop technologies for increased intelligence on the detector DRDT 7.3 Develop technologies in support of 4D- and 5D-techniques DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.	Calorimetry	DRDT 6.2		
Electronics DRDT 7.2 Develop technologies for increased intelligence on the detector DRDT 7.3 Develop technologies in support of 4D- and 5D-techniques DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.		DRDT 6.3		
Electronics DRDT 7.3 Develop technologies in support of 4D- and 5D-techniques DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.		DRDT 7.1	Advance technologies to deal with greatly increased data density	
DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.		DRDT 7.2	Develop technologies for increased intelligence on the detector	
DRDT 7.4 Develop novel technologies to cope with extreme environments and required longevity DRDT 7.5 Evaluate and adapt to emerging electronics and data processing technologies DRDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.	Electronics	DRDT 7.3	Develop technologies in support of 4D- and 5D-techniques	
Integration RDT 8.1 Develop novel magnet systems DRDT 8.2 Develop improved technologies and systems for cooling DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.	Liectronics	DRDT 7.4		
Integration DRDT 8.2 Develop improved technologies and systems for cooling precision mechanical structures. Develop Machine Detector Interfaces.		DRDT 7.5		
Integration DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.	Integration	DRDT 8.1	Develop novel magnet systems	
precision mechanical structures. Develop Machine Detector Interfaces.		DRDT 8.2	Develop improved technologies and systems for cooling	
		DRDT 8.3	precision mechanical structures. Develop Machine Detector	
including environmental, radiation and beam aspects		DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects	
DCT1 Establish and maintain a European coordinated programme for training in instrumentation	Training	DCT1		
DCT 2 Develop a master's degree programme in instrumentation		DCT 2	Develop a master's degree programme in instrumentation	

Detector R&D Themes (DRDTs) and Detector Community Themes (DCTs). Here, except in the DCT case, the final dot position represents the target date for completion of the R&D required by the latest known future acility/experiment for which an R&D programme would still be needed n that area. The time from that dot to the end of the arrow represents he further time to be anticipated for experiment-specific prototyping, procurement, construction, installation and commissioning. Earlier dots represent the time-frame of intermediate "stepping stone"

projects where dates for the corresponding facilities/experiments are nown. (Note that R&D for Liquid Detectors will be needed far into the uture, however the DRDT lines for these end in the period 2030-35 because developments in that field are rapid and it is not possible oday to reasonably estimate the dates for projects requiring onger-term R&D. Similarly, dotted lines for the DCT case indicate that beyond the initial programmes, the activities will need to be sustained joing forward in support of the instrumentation R&D activities).

Exploring a new technology: TPSCo 65 nm

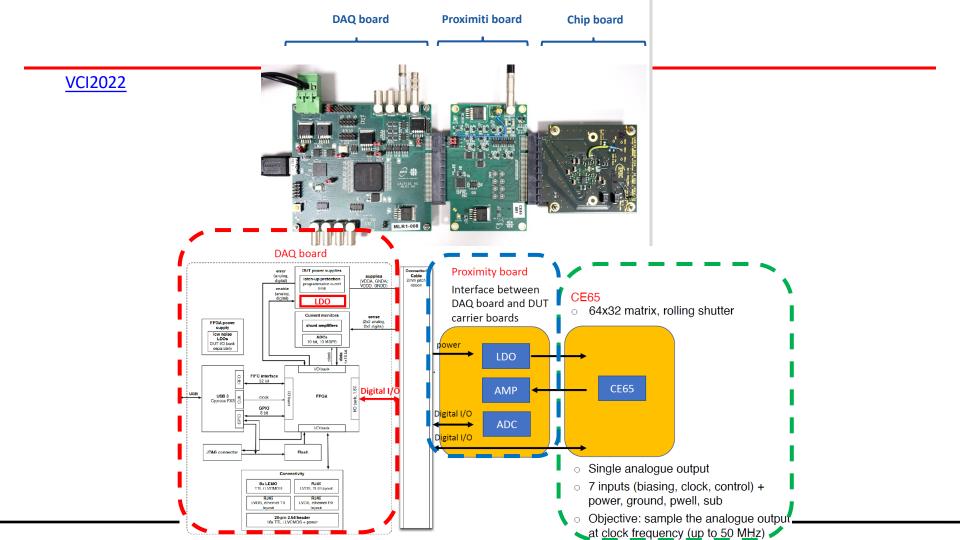
IPHC motivation to join CERN-lead effort


- Smaller feature size = smaller pixel
- Lower voltage hence power
- Stitching over 12" wafer
- Smaller feature size = more embedded functionalities

=> SEE NEXT TALK BY WALTER SNOEYS <=

- Key requirements (future e+e- coll. / heavy-ion exp)
 - Position resolution $\sigma_{sp} \lesssim 3 \ \mu m$
 - Low material budget 0.05 to 0.15 % X_0 (power <<100 mW/cm²)
 - Large detection surface (> 100 cm²)
- Generic interest for MAPS performance
 - Large hit rate (>> 100 MHz/cm² e.g. for Belle II)
 - Time resolution from ns to ~10 ps (4D tracking, PID)

IPHC contribution for charge collection studies


- CE-65 square pixel matrices
- Analogue output w rolling-shutter readout 10-40 MHz

https://indi.to/zL5xc S.Bugiel VCI 2022

Variant	pitch	Matrix size	Front-ends	Collection diode structure	Split
А				Basic	ing
В	15 µm	64x32	DC-SF DC-Amp AC-Amp	N-implant w gaps	various doping profiles
С				N-implant	
D	25 µm	48x32		basic	var

12

65 vs 180 nm in a nutshell

65nm

pro: digital density of course

pro: 300mm wafers vs 200mm in 180

con: much less choice in substrate (essential only thin EPI 10-15um)

con: much more limited access to foundry than in 150/180 and typically no MPW for

prototyping

con: cost in engineering run ~ factor 2.7 over 150/180nm difficult in development cycle

180nm

pro: much wider range of substrate possible

pro: easier access to foundries and multiple foundries established in HEP and cheaper/ possibility of MPW for prototyping

con: logic density much smaller

con: costs at very large detectors (e.g. 50m2 +) higher in 180 because 150/180 runs on 200mm wafers versus 65 on 300mm wafers