

Plateforme CryoMat

Laurent Grandsire, Michel Piat, Jean-Pierre Thermeau APC

Constat

- 1. Propriétés des matériaux de 300K à 4K : collecte, mesure et synthèse par le NBS (USA) durant la période de conquête spatiale
 - Propriétés thermiques et mécaniques essentielles de la plupart des métaux, isolants et quelques composites
 - Données mises à la disposition de la communauté scientifique et des industriels au début des années 60,
 - Aujourd'hui disponibles sur internet et à partir de logiciels (Cryodata, ...)

2. Absence ou disparité de données sur les propriétés thermiques et mécaniques des matériaux aux températures sub-Kelvin (T < 1K)

Contexte

1. Activités de recherche du laboratoire millimétrique (TES, KIDS, QUBIC, ...) demandent la connaissance de propriétés thermiques des matériaux aux températures sub-Kelvin.

2. Projets spatiaux utilisant des détecteurs cryogéniques (LiteBird, ...) doivent réaliser des campagnes de mesures de caractérisation de matériaux composites et d'autres matériaux.

3. NGCryo:

- activité de R&D en instrumentation et réfrigération dans le domaine sub-Kelvin,
- les outils développés (Cryostat, réfrigérateurs, ASIC, ...) pourraient être les premières briques d'une plateforme de caractérisation.

Objectifs

- Mettre à la disposition de la communauté scientifique et industriels des équipements permettant de réaliser des mesures de caractérisation des propriétés des matériaux dans le sub-Kelvin
 - Cryostats sub-Kelvin avec de leurs systèmes de contrôle et de mesure,
 - Procédures, assurance qualité,
 - Base de données contenant les caractéristiques de matériaux dans le sub-Kelvin,
 - Données accessibles à partir du site Web de l'APC.

Propriétés visées :

- Résistance électrique ⇒ achat cryostat avec mesures sous pointes
- Conductivité thermique $\lambda(T) \Rightarrow APC$ collaboration LCM
- Capacité thermique c(T) ⇒ APC collaboration LCM
- Résistance thermique de contact (RTC) ⇒ NGCryo collaboration IJCLab
- Dilatation thermique et module d'élasticité (E) ⇒ APC collaboration LCM

PC

Partenaires et Financements

Laboratoire associé :

+ IJCLab dans la continuité NGCryo?

- Soutiens/utilisateurs :
 - Laboratoires IdF :

• Sociétés franciliennes:

- Financements
 - Région DIM Origines: 400 k€ (5 ans)
 - Université Paris Cité : 100 k€ (2 ans)
 - IN2P3:50 k€ (2023)

Principales étapes

- Un cryostat dédié à chaque type de mesure :
 - électriques (mesures sous pointes DC ou RF) avec ou sans champ magnétique,
 - thermiques (conductivité, capacité, dilatation, résistance de contact) avec ou sans champ magnétique,
 - mécaniques (module d'élasticité et coefficient de Poisson).

Les études seront menées en collaboration avec le LCM (LNE-CNAM).

- Etape initiale (2020 2023): Cryostat NGCryo polyvalent pour des mesures de 40K à 1K (0.3K), adapté à la mise au point des outils de mesure.
- Etape 1 (2023 ...): Propriétés électriques \Rightarrow cryostat pour mesures sous pointes, sous champ magnétique et jusqu'à 3K, puis T< 1K. \Rightarrow Appel d'offre Université avant été 2023.
- Etape 2 (2024 ...) : Conductivité thermique ⇒ deuxième cryostat de la plateforme, variante de NGCryo + réfrigération pour couvrir la plage 40K 0.1K
- Etape 3 (2025 ...): Propriétés mécaniques ⇒ trouver en collaboration avec LCM une solution alternative à la machine de traction.

 Sournée projets APC 24/03/2023

Planning prévisionnel

	2023				2024				2025				2026				2027			
	T1	T2	Т3	T4																
NGCryo																				
Aménagement Hall																				
Cryostat propriétés électriques																				
Cryostat propriétés thermiques																				
Cryostat propriétés mécaniques																				

Appel d'offre/commande

BE: Conception

Fab: Fabrication

AIT : Assemblage, Intégration, Test

Exploitation