

Gravitational waves: Opening a new window on the universe

Damir Buskulic

GraSPA summer school 2023

Contents

Episode I

- Gravitational waves : a bit of theory
- Effect on matter
- Sources
 - Coalescing binaries
 - Continuous waves
- Episode II
 - Analysis of GW signals
 - Discoveries
 - Network of detectors
 - Many things left to do
- Episode III
 - Principles of detectors

Gravitation: the classical theory

- ▶ Flat space, absolute time
- Instantaneous interaction between distant masses

$$\vec{F} = G \cdot m_1 m_2 \cdot \frac{1}{r^2} \cdot \vec{u}$$

Gravitation: the modern theory

- Theory of General Relativity (GR)
- Einstein 1915-1918 : geometric theory of gravitation
- A mass "bends" and "deforms " space-time

The trajectory of a mass is influenced by the curvature of space-time

J. A. Wheeler : "Space tells matter how to move and matter tells space how to curve"

Theoretical piece: curved space

- What is a curved space ? (= "manifold")
 - examples : sphere, saddle
- Can we measure curvature ?
 - we cannot see our space from "outside"
 - but we can measure angles
 - ► the sum of the angles of a triangle is not always equal to *π* !
- positive curvature

negative curvature

Theoretical piece: curved space-time

- In General Relativity
 - space is curved and time is defined locally
 - one cannot go "out" to see the curvature
 - "intrinsically" curved space
 => intrinsic curvature

- note that the time is also curved !
- as a first approximation, finds the results (trajectories) of newtonian mechanics

Theoretical piece: tensors

Tensor = mathematical object Does not depend on the coordinate system Extends the notion of vector In a specific coordinate system, multidimensional array Example: electrical conductivity of an anisotropic cristal

$$j^i = \sigma^i_j E^j$$

 Note : summation is implicit over repeated indices (Einstein convention)

$$\sigma^i_j E^j \equiv \sum_j \sigma^i_j E^j$$

Theoretical piece: the metric tensor

- In space-time, need to measure
 - the distance between two points
 - the angle between two vectors
- Measure of the distance between two infinitesimally close events in spacetime
- Need a "metric", start from the "line element" seen in special relativity :

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$
 — with c = 1 !

• Which can be written $ds^2 = \eta_{lphaeta} dx^lpha dx^eta$

$$\eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad dx^0 = dt, \quad dx^1 = dx, \\ dx^2 = dy, \quad dx^3 = dz$$

• $\eta_{\mu\nu}$ is the metric of a flat spacetime, the Minkowski spacetime, used in special relativity

Theoretical piece: the metric tensor

What if space is not flat ?

- The metric can be general : $g_{\mu
 u}$
- It contains all information about spacetime curvature
- It is a rank 2 tensor
- The curvature is also defined by another tensor, which depends on $g_{\mu\nu}$ and its derivatives: the Ricci tensor $R_{\mu\nu}$

But what relates

deformation of space-time and energy-momentum ?

The Einstein Field Equations

- Energy-momentum bends spacetime
- Spacetime tells mass (energy momentum) how to move
- These equations are non-linear

From Einstein Field Equations to Gravitational Waves

- Start from a flat space-time = Minkowski metric
 - Add a perturbation $h_{\mu
 u}$ to the metric : $g_{\mu
 u} = \eta_{\mu
 u} + h_{\mu
 u}$
 - Linearize Einstein Field Equations
 - Choose a suitable coordinate system

(« Transverse Traceless » or TT gauge)

Obtain a wave equation

$$(
abla^2 - rac{1}{c^2}rac{\partial^2}{\partial t^2})h_{\mu
u} = 0$$
 (in vacuum, no $T_{\mu
u}$)

Which solution is

$$h_{\mu\nu} = A_{\mu\nu} \cdot e^{-i(\vec{k}\cdot\vec{x} - \omega\cdot t)}$$

 $(h_{\mu\nu} \ll 1)$

Gravitational waves: effect on matter

$$h_{\mu\nu} = A_{\mu\nu} \cdot e^{-i(\vec{k}\cdot\vec{x} - \omega\cdot t)}$$

- Transverse plane wave
- Propagating at the speed of light
- Two states of polarization: + and x
- Effect on free falling masses (test masses) in circle:

Gravitational waves: generation

Gravitational waves: generation

- Approximations :
 - isolated source
 - compact source
 - observer far from the source

($R = |\vec{x} - \vec{x}'|$ >> typical size of the source)

Amplitude of the wave written as a function of

$$\bar{h}_{ij}(t) = \frac{2G}{Rc^4} \frac{d^2 I_{ij}}{dt^2} \left(t - \frac{R}{c} \right)$$

$$I_{ij} = \text{reduced quadrupolar} \text{moment of the source} = \int_{source} d\vec{x} \, x_i x_j \, T_{00}(t, \vec{x})$$

$$\frac{G}{c^4} \approx 8.24 \times 10^{-45} \, \text{s}^2 \cdot \text{m}^{-1} \cdot \text{kg}^{-1}$$

Remark :

Need a quadrupolar moment to generate a GW, the dipolar case is impossible (because of momentum conservation).

Orders of magnitude

$$h \approx \frac{G}{c^4} \cdot \frac{\ddot{I}}{R}$$

- Example with two orbiting objects : a binary system
 - M = total system mass, r = distance between the components
 - R = observer system distance
 - ▶ $I \approx M.r^2$ hence $\ddot{I} \approx M \cdot v_{NS}^2 \approx E_c^{NS}$

where NS is the part of the source motion without spherical symmetry

$$h \approx \frac{G}{c^4} \cdot \frac{E_c^{NS}}{R}$$

Orders of magnitude

- Luminosity: $L_{GW} \approx \frac{G}{c^5} \cdot \ddot{I}^2$
- Reminder: $\ddot{I} \approx E_c^{NS}$ hence $\ddot{I} \approx E_c^{NS}/T$
 - T = characteristic time of energy-momentum (or mass) motion from one side of the system to the other
- In case of a transient, violent event

$$L_{GW} \approx \frac{G}{c^5} \cdot \ddot{I}^2 \approx \frac{G}{c^5} \cdot \left(\frac{E_c^{NS}}{T}\right)^2$$

For a quasi-stationary dynamics

$$L_{GW} \approx \frac{G}{c^5} \cdot \ddot{I}^2 \approx \frac{c^5}{G} \cdot \left(\frac{GM}{c^2R}\right)^2 \cdot \left(\frac{v_{NS}}{c}\right)^6$$

where one introduces the Schwarzschild radius $R_S = \frac{2GM}{c^2}$

Indirect evidence: PSR 1913+16

- Binary system of neutron stars
- One neutron star is a radio pulsar
- Discovered in 1975 by Hulse and Taylor
- Studied by Taylor, Weisberg and co.
- Decay of the orbital period compatible with GW emission
- Frequency of GW emitted by PSR 1913+16: ~ 0.07 mHz
 - Undetectable by ground-based detectors (bandwidth 10 Hz- 10 kHz)

17

Orders of magnitude

 Mass distribution : needs a quadrupolar moment

Examples for a binary system

$$h\approx 32\pi^2\cdot \frac{G}{c^4}\cdot \frac{1}{R}\cdot M\cdot r^2\cdot f_{orb}^2$$

•
$$M = 1000 \text{ kg}, r = 1 \text{ m}, f = 1 \text{ kHz},$$

 $R = 300 \text{ m}$
 $h \sim 10^{-35}$

$$M = 1.4 \ M_{\odot} , r = 20 \ \text{km}, f = 400 \ \text{Hz},$$

$$R = 10^{23} \ \text{m} (15 \ \text{Mpc} = 48,9 \ \text{Mlyr})$$

$$h \sim 10^{-21}$$

Doing it in a lab ? No way ! 18

Astrophysical sources

Need high masses and velocities : astrophysical sources

Binary system

- Need to be compact to be observed by ground based detectors → Neutron stars, black holes
- Signal well modeled but rates not well known... yet

Spinning neutron stars

- Nearly monotonic signals
- Long duration
- Strength not well known

Asymmetric explosion

- Ex: core collapse supernovae
- « burst » transient
- Not well modeled

Gravitational wave background

- First type : superposition of many faint sources
- Second type : Residue of the Big Bang or Inflation
- Stochastic in nature

Casey Reed, Penn State

Credit: AEI, CCT, LSU

Binary systems of compact stars at the end of their evolution

- Neutron stars (NS) and/or black holes (BH)
- Very rare : a few events per million year per galaxy
- Typical amplitude at the detectors: • $h \approx 10^{-22}$ at 20 Mpc

Very distinctive waveform

- System may be binary neutron stars (BNS), binary black holes (BBH) or NS-BH
- Phases of the coalescence
- Inspiral
 - Masses m1 and m2 orbit each other
 - GW emission -> system looses energy
 - ▶ => Frequency ↗, amplitude ↗
 - Waveform characterised by a « chirp mass »

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5}$$

- Merger: computed numerically (numerical GR)
- Ringdown: quasi-normal modes decomposition

First detection : GW150914

For the sake of simplicity, let's take a simple system :

- Masses m_1 and m_2 , total mass $M = m_1 + m_2$, reduced mass $\mu = \frac{m_1 m_2}{M}$
- Distance between stars: *a*, take circular orbits
- Compute h_+ and h_{\times} , the amplitude of the two modes of the emitted wave seen by an observer situated at a distance $R \gg a$

Understanding the two polarization amplitudes

$$h_{+}(t) = \frac{4G\mu a^{2}\omega^{2}}{Rc^{4}} \frac{1+\cos^{2}\theta}{2} \cos 2\omega t$$
$$h_{\times}(t) = \frac{4G\mu a^{2}\omega^{2}}{Rc^{4}} \cos \theta \sin 2\omega t$$

Observer A : $\cos \theta = 1$ sees the two polarizations

Observer B : $\cos \theta = 0$ sees a linear polarization

 $\mathcal{P}(\theta) = \frac{1}{4}(1 + 6\cos^2\theta + \cos^4\theta)$

• Radiated power per unit solid angle $\frac{dP}{d\Omega} = \frac{2G\mu^2 a^4 \omega^6}{\pi c^5} \mathcal{P}(\theta)$

Radiated power non zero whatever the direction of emission

- Some examples
- Sun-Jupiter system

$$m_J = 1.9 \times 10^{27} \text{kg}, \quad a = 7.8 \times 10^{11} \text{m}, \quad \omega = 1.68 \times 10^{-7} \text{s}^{-1}$$

 $\Rightarrow P = 5 \times 10^3 \text{ J/s}$

- \blacktriangleright Very small, compared to the light power emitted by the sun: $L_\odot \approx 3.8 \times 10^{26} \, {\rm J/s}$
- Binary pulsar PSR1913+16 (Hulse and Taylor)

$$P = 7.35 \times 10^{24} \text{ J/s}$$

Continuous waves

- Rotating neutron stars $\nu \sim 1 10^3$ Hz $h \sim 10^{-25}$ at 3 kpc
- Not perfectly spherical

« mountains » or assymetry

precession

 I_{ZZ} Moment of inertia along the rotation axis $h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} \varepsilon f_{gw}^2}{d}$ $\mathbf{\mathcal{E}} = \frac{I_{xx} - I_{yy}}{I_{zz}}$ Ellipticity in the equatorial plane

- Motion and orientation of the detector around the sun
 - Doppler modulation of the signal

modes

The End of episode I

Gravitational waves

Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

688

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. EINSTEIN.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die $g_{_{\rm B^{\prime\prime}}}$ in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable $x_4 = it$ aus denselben Gründen wie in der speziellen Relativitätstheorie. Unter «erster Näherung« ist dabe verstanden, daß die durch die Gleichung

$$a_{\mu\nu} = -\delta_{\mu\nu} + \gamma_{\mu\nu}$$

definierten Größen γ_{**} , welche linearen orthogonalen Transformationen gegenüber Tensorcharakter besitzen, gegen 1 als kleine Größen behandelt werden können, deren Quadrate und Produkte gegen die ersten Potenzen vernachlässigt werden dürfen. Dabei ist $\delta_{\mu\nu} = 1$ bzw. $\delta_{\mu\nu} = 0$

je nachdem $\mu = \nu$ oder $\mu \neq \nu$. Wir werden zeigen, daß diese γ_w in analoger Weise berechte werden können wie die retardierten Potentiale der Elektrodynami Daraus folgt dann zunächst, daß sich die Gravitationsfelder mit Lie geschwindigkeit ausbreiten. Wir werden im Anschluß an diese gemeine Lösung die Gravitationswellen und deren Entstehungswe untersuchen. Es hat sich gezeigt, daß die von mir vorgeschlag Wahl des Rezugssystems gemäß der Redingung $a = \lfloor a \rfloor = -1$

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z = 0.09^{+003}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62_{-4}^{+4}M_{\odot}$, with $3.0_{-0.5}^{+0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

I. INTRODUCTION

In 1916, the year after the final formulation of the field equations of general relativity, Albert Einstein predicted the existence of gravitational waves. He found that

The discovery of the binary pulsar system PSR B1913+16 by Hulse and Taylor [20] and subsequent observations of its energy loss by Taylor and Weisberg [21] demonstrated the existence of gravitational waves. This discovery,

Gravitational wave observatories

LVC = LIGO-Virgo Collaboration

Michelson interferometer : a "sensor" of gravitational waves

LIGO-Virgo past runs

Horizon distance

- Weight with the second seco
 - Distance at which a particular reference event emitted a signal which can be detected with Signal over Noise Ratio (SNR) = 8
- Reference event = binary neutron star coalescence with 1.4 M_{\odot} for each component

Horizon distance

- Weight with the second seco
 - Distance at which a particular reference event emitted a signal which can be detected with Signal over Noise Ratio (SNR) = 8
- Reference event = binary neutron star coalescence with 1.4 M_{\odot} for each component

Can define a horizon distance for BBH or any event type

Events and alerts

O3a run

- April 1, 2019 October 1, 2019 (O3 = April 1, 2019 March 27, 2020)
 - 3 detectors simultaneously observing : 44.5 % (81.4 days)
 - H1 = LIGO Hanford, L1 = LIGO Livingston

Strain sensitivities for H1 and L1 : similar

~ 5.10⁻²⁴/√Hz @ 100 Hz

but what is this unit " $1/\sqrt{Hz}$ "?

Characterizing noise level

• Hypothesis : constant signal S_0 in gaussian noise $N e^{-\frac{1}{2} \frac{(x-\langle x \rangle)^2}{\sigma_x^2}}$

10000

1.001

1000

0.3128

100

0.005743

0.09738

0.005743

If T is the averaging time, the noise variance goes as

Characterizing noise level

Variance can be expressed as

 $\sigma_{noise} = \frac{D}{\sqrt{T}}$

- Where D characterizes the level of noise
- D is written in terms of

 $\frac{\text{data units}}{\sqrt{\text{Hz}}}$

- Its value is the value of the noise variance when averaging over 1 s of signal
- Doing a Fourier transform, D(f) is also expressed in terms of

 $\frac{\text{data units}}{\sqrt{\text{Hz}}}$

Nominal sensitivity of Advanced Virgo

Fundamental noise only Possible technical noises not shown

Sum of all the noises

Target: Signals from the coalescence of a binary system of compact objects

- Template based search
 - Production of a bank of templates (theoretical waveforms)
 - Optimal filtering = weighted inter-correlation btw signal and template

- Intrinsic parameters
 - masses, spins (aligned) drive
 - the system dynamics
 - the waveform evolution

m1, m2, ^{S1, S2}

- Extrinsic parameters
 - Orientation of the binary, initial phase,...

impact :

- Arrival time of the signal
- Global amplitude and phase

 Maximized over (no need of templates)

 Going further needs parameter estimation

- Each point represents a template (test waveform)
- 4-D parameter space scanned with ~250,000 templates

Naked eye view of GW150914 and GW170817

- Waveform reconstructed
 - Coherent signal in both detectors
 - Agreement with best-fit theoretical waveforms
 (waveforms from perturbative theory + NR = Numerical Relativity)

Parameter Estimation

Estimation of the parameters of the source

• Reconstruct the Probability Density Function = "PDF" = $p(\vec{\theta}|\vec{d})$ that a waveform of parameters $\vec{\theta}$ is present in the data \vec{d}

Parameter Estimation

 \Leftrightarrow use the Bayes Theorem

Parameter Estimation

Bayesian framework

- Various methods to sample the parameter space :
 - MCMC = Markov Chain Monte-Carlo
 - Nested sampling

Example for some intrinsic parameters

Extrinsic Parameters : examples

Most important events

- First detection : GW150914
- First binary neutron star coalescence : GW170817
- Coalescences of a neutron star and a black hole : GW200105 and GW 200115
- Most massive final black hole : GW190521

GW170817 : the merger of two neutron stars

- Detected on August 17, 2017 at 12:41:04.4 UTC
- Combined SNR = 32.4
- False alarm rate f < 1 over 80000 years

Abbott et al., PRL, 119, 161101 (2017)

- Weak signal in Virgo
 - Lower sensitivity + unfavorable orientation
 - Does not participate to the detection
 - Significant effect on parameter estimation
 - Particularly sky localization

Antenna pattern projected on Earth (darker = less sensitive)

LIGO (Livingston)

Virgo

GW170817 : source localization

- Sky location:

 rapid loc. with HL: 190 deg²
 rapid loc. with HLV: 31 deg²
 final loc. with HLV: 28 deg²
- Luminosity distance: 40 Mpc (~120 millions of light-years)
- \rightarrow 3D position: 380 Mpc³
- Source closest and best localized even today
- Triggered electromagnetic and neutrino followup observations
- Identified NGC4993 as the host galaxy

Neutron star: internal structure

Neutron star: internal structure

- Spherical symmetry body in GR
 - Isotropical material
 - Gravitational equilibrium, stationary
- => Tolman-Oppenheimer-Volkoff (TOV) equation:

$$rac{dP}{dr} = -rac{Gm}{r^2}
ho\left(1+rac{P}{
ho c^2}
ight)\left(1+rac{4\pi r^3P}{mc^2}
ight)\left(1-rac{2Gm}{rc^2}
ight)^{-1}$$

- r radial coordinate, ρ(r) energy density, P(r) pressure
 m(r) total mass in a sphere of radius r
- ▶ If includes the equation of state (EOS) F(P, ρ) = 0
 ▶ => completely determines the internal structure
 ▶ But F is poorly known !

Neutron star: internal structure

http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html

arXiv:1603.02698 [astro-ph.HE] 55

GW170817 : intrinsic parameters

Abbott et al., PRL, 119, 161101 (2017)

	low-spin ($ \chi < 0.05$)	high-spin ($ \chi < 0.89$)	
$M_{chirp}(M_{\odot})$	$1.188\substack{+0.004\\-0.002}$		
$m_1 \ (M_{\odot})$	1.36 - 1.60	1.36 - 2.26	
$m_2 \ (M_{\odot})$	1.17 - 1.36	0.86 - 1.36	
$m_{tot} \ (M_{\odot})$	$2.74^{+0.04}_{-0.01}$	$2.82^{+0.47}_{-0.09}$	

Object masses

Degeneracy btw mass ratio and spin aligned components.

 \rightarrow Masses < 2.3 M_{\odot}

Masses consistent with neutron stars

Equation of state of neutron stars

Merger happens earlier than w/o tidal effect, final spin modified

Result favors equations of state of neutron stars that predict more compact stars: radius < 15 km

Expected electro-magnetic counterparts?

Metzger & Berger, ApJ, 746, 48 (2012)

Short gamma-ray burst (sGRB): Jet

 \rightarrow prompt y-ray emission

- few seconds after merger
- last for <2 s
- beamed

Interaction of jet with interstellar medium

- \rightarrow afterglow emission
 - few days after merger
 - evolves from X-ray to radio

Kilonova (or macronova)

Conversion of hot ejected matter into r-processed elements, disintegration and thermal emission

 \rightarrow black body continuum + broad structures

- few hours-days after merger
- visible in UV, optical, IR
- rapid spectral evolution

Optical transient evolution

- Consistent with kilonova (=macronova) models
- First spectroscopic identification of a kilonova
- Probably the main source of heavy elements in the universe

GW170817 : association btw **GW/GRB**, speed of gravitational waves

from merger

Difference btw speed of light and speed of GW

 $[-3 \times 10^{-15}; +7 \times 10^{-16}] \times c$

Hubble constant measurement

 H_0 = today's expansion rate of the universe

Planck SHOES 0.04 *p*(*H*₀ | GW170817) (km⁻¹ s Mpc) 0.03 0.02 -0.01 0.00 60 70 80 90 100 110 120 50 130 140 H_0 (km s⁻¹ Mpc⁻¹)

GW170817 may be used as a standard siren

→
$$H_0 = 70^{+12}_{-8} \, \mathrm{km/s} \, \mathrm{Mpc}^-$$

Independent measurement of $\rm H_{0}$ \rightarrow may help to understand the current tension

GW200105 and GW200115 Neutron star and black hole

- Distance : $(280^{+110}_{-110} \text{ and } 300^{+150}_{-100})$ Mpc
- Masses: $(8.9^{+1.2}_{-1.5} \text{ and } 1.9^{+0.3}_{-0.2}) M_{\odot}$ and $(5.7^{+1.8}_{-2.1} \text{ and } 1.5^{+0.7}_{-0.3}) M_{\odot}$
- Modeling the formation of such binaries is difficult
- No EM or neutrino counterparts

R. Abbott *et al* 2021 *ApJL* **915** L5

GW190521 : Big is big !

- Detected0 on May 21 2019 at 03:02:29 UTC
- Combined SNR = 14.7
- False alam rate f < 1 over 4900 years

- Distance : $5.3^{+2.4}_{-2.6}$ Gpc (redshift of 0.82)
- Masses : $85^{+21}_{-14}~M_{\odot}$ and $66^{+17}_{-18}~M_{\odot}$
- Final black hole mass: $142^{+28}_{-16} M_{\odot}$
- First intermediate mass black hole

Non exhaustive list of current and future studies

- Astrophysical implications
 - Formation mechanism of NS or BH binaries

- ▶ GRB origin, jet focusing / structure
- Kilonovae modeling
- Equation of state of neutron stars
- Neutron star result of a merger: long or short-lived ?
- Inference of binary neutron star population distribution and coalescence rate

$$R = 1540^{+3200}_{-1220} \text{ Gpc}^{-3}.\text{yr}^{-1}$$

(R < 12600 Gpc⁻³.yr⁻¹ from 01)

- GW stochastic background coming from BNS coalescences (astrophysical stochastic background)
 - To be detected in the coming years
- Tests of GR
 - Difference in speed between GW and light
 - Search for deviations from GR in GW waveforms
 - Study of the GW polarization
 - New limits on Lorentz invariance violation
 - New test of the equivalence principle
- Cosmologie
 - Independent measurement of the Hubble constant

An eye on the future

Updated 2023-05-16	— 01	— O2	— O3	— O4	- O5
LIGO	80 Мрс	100 Мрс	100-140 Мрс	160-190 Мрс	240-325 Mpc
Virgo		30 Мрс	40-50 Мрс	70-100 Mpc	150-260 Mpc
KAGRA			0.7 Mpc	1-3 ≃10 ≳10 Mpc Mpc Mpc	25-128 Mpc
G2002127-v19	 2015 2016	 2017 2018 2	l 2019 2020 2021	I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	26 2027 2028 2029

https://observing.docs.ligo.org/plan/

Einstein Telescope

- Third generation interferometer
- Located underground, ~10 km arms
- Technical design to be written in ~2024 -2025, detector operational after 2035?

ET and LISA performances

The End of episode II

A GRB seen by Fermi

30

-15

Testing GR with GW150914 (I)

Most relativistic binary pulsar known today

- ▶ J0737-3039, orbital velocity $v/c \sim 2 \times 10^{-3}$
- ▶ GW150914
 - Strong field, non linear, high velocity regime $v/c \sim 0.5$
- "Loud" SNR -> coarse tests
 - Waveform internal consistency check
 - Evidence for deviation from General Relativity in waveform ?
 - Bound on Compton wavelength (graviton mass)

Testing GR with GW150914 (II)

 $\lambda_g > 10^{13} \text{ km}$ $m_q \leq 1.2 \times 10^{-22} \text{ eV/c}^2$

$$\left(\frac{v}{c}\right)^2 = 1 - \left(\frac{hc}{\lambda_g E}\right)^2$$

- More constraining than bounds from
 - Solar System observations
 - binary pulsar observations
- Less constraining than model dependent bounds from
 - large scale dynamics of galactic clusters
 - weak gravitational lensing observations

Rate of BBH mergers

- Previously :
 - Estimations of the coalescence rate
 - Based on electromagnetic observations and population modeling
 - ▶ R ~ 0.1 300 Gpc⁻³ yr⁻¹
 - Previous LIGO-Virgo rate upper limits
 - ▶ $R < 140 \text{ Gpc}^{-3} \text{ yr}^{-1}$ for GW150914 parameters
- Astrophysical rate inference
 - Counting signals in experiment
 - Estimating sensitivity to population of sources
 - Depends on mass distribution (hardly known)
- Low statistics and variety of assumptions
 -> broad rate range
 - ▶ R ~ 9 240 Gpc⁻³ yr⁻¹
- Project expected number of highly significant events as a function of surveyed time x volume

Astrophysics implications

• Relatively massive black holes (> 25 M_{\odot}) exist in nature

- Massive progenitor stars
 - => low mass loss during its life
 - => weak stellar wind
- Metallicity = proportion of elements heavier than He
 - High metallicity => strong stellar wind
- => formation of progenitors in a low metallicity environment

Astrophysics implications

- Binary black holes form in nature
 - Formation :
 - Isolated binaries
 - Dynamical capture (dense stellar regions)
 - GW150914 and GW151226 do not allow to identify formation channel
 - Future : information on the spins can help

Binary Black Holes merge within age of Universe at detectable rate
 Inferred rate consistent with higher end of rate predictions
 (> 1 Gpc⁻³ yr⁻¹)

False alarm rate

- False alarm rate
 - Measured from background estimated on data
 - Time shifts by N x 0.1 s between H1 and L1

5

- Case of GW150914, first analysis for February annoucement
 - $ightarrow N_{max} = 10^7 \text{ shifts, } T_{bkgd} = 608,000 \text{ yrs}$
 - Account for trial factors
 - ▶ GW150914 louder than all background → lower limit on significance

Event	Time (UTC)	FAR (yr^{-1})	Ŧ	$\mathscr{M}\left(\mathrm{M}_{\odot} ight)$	$m_1~({ m M}_\odot)$	$m_2~({ m M}_\odot)$	Xeff	D_L (Mpc)
GW150914	14 September 2015 09:50:45	$< 5 \times 10^{-6}$	$<\!$	28^{+2}_{-2}	36^{+5}_{-4}	29^{+4}_{-4}	$-0.06\substack{+0.17\\-0.18}$	410^{+160}_{-180}
LVT151012	12 October 2015 09:54:43	0.44	$0.02 \\ (2.1 \sigma)$	15^{+1}_{-1}	23^{+18}_{-5}	13^{+4}_{-5}	$0.0\substack{+0.3\\-0.2}$	1100^{+500}_{-500}

CBC BBH search result : GW150914

Statistic

$$\hat{\rho} = \rho / \{ [1 + (\chi_r^2)^3] / 2 \}^{1/6}$$
$$\hat{\rho}_c = \sqrt{\hat{\rho}_{H1}^2 + \hat{\rho}_{L1}^2}$$

- Significance
 - GW150914 is the loudest event in the search, = $2\hat{\boldsymbol{\rho}}_{c}$ 7
 - Individual triggers in L1 and H1 (forming GW150914): highest ip̂ each detector

Significance

 $> 5.3\sigma$

Background excluding contribution from GW150914 (gauge significance of other triggers)

Future Localization Prospects

HLV = Hanford-Livingston-Virgo

HILV = Hanford-LIGO India-Livingston-Virgo

Generic Transient Search

Operates without a specific search model

- Identifies coincident
 excess power in time 256
 frequency
 representations of h(t)
 - Frequency < 1 kHz</p>
 - Duration < a few seconds</p>

- Reconstructs signal waveforms consistent with common GW signal in both detectors using multi-detector maximum likelihood method
- Detection statistic

$$\eta_c = \sqrt{\frac{2E_c}{(1 + E_n/E_c)}}$$

E_c: dimensionless coherent signal energy obtained by cross-correlating the two reconstructed waveforms E_n: dimensionless residual noise energy after reconstructed signal is subtracted from data

 Signals divided into 3 search classes based on their time-frequency morphology

> C3 : Events with frequency increasing with time – CBC like

Data quality

- On analyzed period
 - Clean data set
 - Homogeneous background
- Data quality vetoes

Hanford

Total

deadtime (s)

73446

5522

DQ veto

category

1

2

- Identify periods with intrumental or environmental problems
- Veto those periods
- GW150914 >> every background event even without DQ vetoes

% of total

coincident time

4.62%

0.35%

DQ veto

category

1

 $\mathbf{2}$

87

0.01%

Expected BBH Stochastic Background

- GW150914 suggests population of BBH with relatively high mass
- Stochastic GW background from BBH could be higher than expected
 - Incoherent superposition of all merging binaries in Universe
 - Dominated by inspiral phase
- Estimated energy density

$$\Omega_{\rm GW}(f = 25 \,{\rm Hz}) = 1.1^{+2.7}_{-0.9} \times 10^{-9}$$

- Statistical uncertainty due to poorly constrained merger rate currently dominates model uncertainties
- Background potentially detectable by Advanced LIGO / Advanced Virgo at projected final sensitivity

