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The Virgo detector — Principles -

Reminder: effect of a GW on free masses

A gravitational wave (GW) modifies the distance between free-fall masses

Se(t) = —oy(t) = Lh(t) Lo

h(t): amplitude of the GW

o ‘e
% ¢
. .

Typical amplitude of a GW crossing the Earth:
. h~ 1072

h has no dimension/unit
1% ( )
Case of a GW with €
polarisation + propagating
o) Reconstructed strain of GW150914
102t
h(t) -
102
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overview QC

Interferometer sketch

ﬁ The interference pattern depends on AL:
i AL(t) = lyct) — Ly(t)
1, Ly
Détection a8 &
I i

Length of the arms: Ly = 3 km
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The Virgo detector — Principles -

Virgo: a more complicated interferometer

Suspended mirrors  — Mirrors can be considered as free
for frequencies larger than ~10 Hz

otodiode
ot image the
- s cnce pattern!

Infrared laser
P~100 W



Typical amplitude of
I__ differential arm length variations

ol (t) = — % h(t) L, when a GW crosses the Earth:
OAL = 0l (t) — dl,(t
— 5lo(t) = L h(t) Ly (t) = oly(?)
Input beam I <I—> — h(t) Lo
[
T itted 9
chragrr]r?mltte 5 SAL ~ 3 %1029
size of a proton
100000
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How and for what did you use interferometers?

Classroom interferometer

Wavelength of monochromatic source

Sodium doublet wavelength separation
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‘1he Virgo detector — Uptical coniiguration -

Part 2: Virgo optical configuration
Reminder about electromagnetic waves and planes waves

How do we “observe” AL with a Michelson interferometer?

Measurement of a power variations
From power variations to AL (or to gravitational wave amplitude h)

Improving the interferometer

How do we increase the power on the beam-splitter mirror?
How do we amplify the phase offset between the arms?



The Virgo detector — Optical configuration -

Electromagnetic waves

Propagation of a perturbation of electric and magnetic fields

Direction of propagation: along k

=1
X
=

E and B are in phase, and with perpendicular directions

el
|

E and B are perpendicular to the direction of propagation of the wave
(transverse wave)

Amplitude: amplitude of the E (or B) field,

Two polarisations: defined by the direction of E (or B)
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The Virgo detector — Optical configuration -

Description of plane waves

Plane wave propagating along z, with speedc _ — cos(€)
A(z,t) = Ag cos(kz — wt + €) (since k7 =k 2) © -
Ao amplitude \ AO
A wavelength (m) B
k = QTW wave number (rad/m) - \
w = ke angular frequency (rad/s) -
Average power: o, A2 -\ A N/,

Complex form

U(Z, t) _ Aoej(kz—wt—I—e)

= Ag@®*t9  with Ay = Age !

--> simpler algebraic calculations, for example P~ ‘UP — UU*
--> real plane wave is the real part: §R(U(z t)) — A(z t)
Y Y]

Plane waves do not exist but they are a good approximation of many waves in

localised region of space
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The Virgo detector — Optical configuration -

How do we “observe” AL
with a Michelson interferometer?

Input wave [J;(z,t) = A;e!*®

= A; on BS
BS located at (0,0)
Sensor located at (0,-y )

Amplitude reflection and transmission
coefficients: . and y

- We are interested in the beam transmitted by the

interferometer: it is the sum of the two beams
(fields) that have propagated along each arm

Around the mirrors:
Radius of curvature of the beam ~ 1400 m
Size of the beam ~ few cm

Ly

ly Beam-splitter

BS r
Input beam (BS) -
-
Uz' t BS 190
Transmitted
UtY beam yT
Y 0 .y
Sensor X

— The beam can
be approximated by

plane waves
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with a Michelson interferometer?

Input wave  U;(z,t) = A;e’™®

= A; on BS
Beam propagating along x-arm:

Ui, = étBS fﬁJklm ......

Input beam

1

Ly

ly Beam-splitter
(BS)

U, ; lg

tBs

Transmitted
UtY beam

N
Sensor

Sign convention for -T
amplitude reflection and D

transmission coefficients —]

Without losses:

t24+r2=1
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with a Michelson interferometer?

Input wave  U;(z,t) = A;e’™®

=z % e — ry
= A; on BS |
Beam propagating along x-arm: TRt
propag 9 9 ' Input beam (BS) iE
kl, kl, , ;
Utz = Aitpse (—rg)ed™=...... U; tgs Ly |
Transmitted
UtY beam yT
Yy o IS
Sensor X
Sign convention for _
amplitude reflection and ID
transmission coefficients R R g 7
’ I
>
te |
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with a Michelson interferometer?

Input wave  U;(z,t) = A;e’™®

=z %  ——— ry
= A; on BS |
Beam propagating along x-arm: TRt
propag 9 9 ' Input beam (BS) iE
Ut:c — étBS eJklx (—Tx)e‘]klx BS eJkyS Uz 1:13 |
Transmitted
Ut beam yT
Y T IS
Sensor X
Sign convention for _
amplitude reflection and ID
transmission coefficients R R g 7
’ I
>
te |
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T HOW do we “observe” AL

with a Michelson interferometer?

Input wave  U;(z,t) = A;e’™®

v — Ty
= A; on BS |
Beam propagating along x-arm Y fsgepliter
- - BS
p p g g g Input beam (BS) iE
] |
kl, kl. kys :
Utm — &tBS e’ (_Ta:)eJ r'BS ey U'L tps 133
21kl 1kvys Transmitted
— ﬁtBS rBS (_Ta:) e " eIty UtY beam yT
. N >
_ é < ( —r, €2J]€lm) ejkys with tps = rpg = \/Lﬁ Sensor X
2 | |
B e ) Sign convention for r
Complex reflection of the x-arm amplitude reflection and
transmission coefficients > 1
T
te |
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The Virgo detector — Optical configuration -

How do we “observe” AL
with a Michelson interferometer?

Input wave  U;(z,t) = A;e’™®

— A, on BS
o ly g itt
Beam propagating along x-arm: @) 1,
Input beam
|
kl, kl, kv

Uiz = Aitps € (=7 )€’ rgg e’y U, tgs s
Akl 1kys Transmitted

= Aitpsrps (—rz) e UtY peam VT

A; . N . YT »
— ?Z % ( —r, €2Jklm) 6Jk'ys with tgg = rpg = G Sensor

Complex reflection of the x-arm

Beam propagating along y-arm:

ONR |
Transmitted field:

U, — _é (_ . ez]kly) oIk Ys U = Uiz + Upy
ty 9 Y A
7
‘ __ eJk’ys (’ry €2Jk:ly —r, €2Jklx)
Complex reflection of the y-arm 2
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The Virgo detector — Optical configuration -

Power transmitted by a simple Michelson

Transmitted field: U, = %

eJkyS (Ty €2Jk:ly —r, 62Jk)lx>

Calculation of the transmitted power:

Pma:c
P, < |Us]? = : (1 — C cos(¢)) where ¢ = 2k(l, — ;)
O — o Ty
r2 + 12
Pi 9 2
Praz = 7(7}: + )
E 1 .......... ‘Wlt/’L(/Zl .................. ................. ....................... ....................... ........................ .............. .

L. Rolland - GraSPA2023 - Annecy-le-Vieux 17



The Virgo detector — Optical configuration -

What power does Virgo measure”?

In general, the beam is not a plane wave but a spherical wave

— interference pattern
(and the complementary pattern in reflection)

Virgo interference pattern much larger than the beam size:
~1 m between two consecutive fringes

— we do not study the fringes in nice images !

Equivalent size of Virgo beam

f o\ /\ 7\ /[ _ _ , TSN »
S \ /o / | Setting a working point = ¢ \ /
e N NN . o AN /
oo N\ / \ ./ \ o/ 02k N )
. T N/ N/ ok N /*
‘I/l/ltﬂ (=16 -4 -2 0 2 4 6 (Da(rad) -3 -2 -1 0 2 (I>(ra§i)
0
Arm length regularly increasing Controlled mirror positions
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The Virgo detector — Optical configuration -

From the power to the gravitational wave

P; 2T

P,= — (1 — C cos here o = 2— (1, — [,
Around the working point:
P P, 4 LT .
% =3 C sin(¢g) where ¢g = ;ALO oa \\\ //
QS ¢O OE :-3 -2 -;\ 0 /‘ 2 3
Power variations as function of small differential length variations: bo

P, .
0P = E) C' sin(¢g)d¢

o 4
5P, = P, C' " sin (5-ALo) 6AL

O0P; o« AL = hLy around the working point !
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From the power to the gravitational wave

Around the working point:

2T . 47 EE 22 N e
0F; = B, C == sin (TALO) SAL N A
| 7 03 2 -1\0/ 2 3
Y * ® (rad
0 P; = (Interferometer response) x AL b

'/ (W/m) \

Measurable Physical effect to be detected

physical quantity
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|mprovmg !He m!er!erome!er senm!m!y

4
0P, :gDi\C’ sin (—WALO) @5AL)
\_/ A

X 0@
Increase the input power Increase the phase difference
on BS between the arms for a given

differential arm length variation

Recycling cavity Fabry-Perot cavities in the arms

L. Rolland - GraSPA2023 - Annecy-le-Vieux 21



cavities

oy T py g Ay peaks
beam " * 2005
Reflected Transmitted 150F
beam ' PEELT 100}
E 50¢ 1
P.— P ty ! O =53 5a 06 08 ‘L
(1—=rir2)? 1 4 (%)2 sin”(kL) \ A
allar f
Finesse F = 752 250°
A 200; /
Virgo cavity atresonance: [ = p = (n € N) 150, |
2 0! |
. 50¢
Vlrg(.) T_ 50 _{%kb_
Aan‘go F =443 Dor 0005 0 0005 .E
A
Average number of light round-trips in the cavity: N — 2/
s
26
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rog=——
3 km Fabry-Perot
3 cavities
L,
T I, Iror FPY —— 'rpx
Inputbeam I Lx I Input beam
> Bs | | <) > /'BS \
Trar‘iféﬁrﬁift’é’c’i’ 7777777777777777777777777777777 Transmitted
beam beam
Sensor Sensor

reps = —1 X e@QML‘”

T ~number of round-trips in the arm
~300 for AdVirgo

— 1 x 2k(La+6Ls)  in the arm of a simple Michelson)

(instead of Tarme =

L. Rolland - GraSPA2023 - Annecy-le-Vieux 27



How do we increase the power on BS?

Detector working point close to a dark fringe —_—
— most of power go back towards the laser

Input bearﬁ

Power recycling - e

cavity TLbeam

Resonant power recycling cavity

e ] =] Ger=38 (rpp=095)
o
25 i_ .............................. — e s e —— —
20; : : : : :
igé : — input power on BS

5E- increased by a factor 38!

05—
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The Virgo detector — Optical configuration -

The improved interferometer response

Response of simple Michelson: sp, — p ¢ 27” sin (%TALO) SAL

0 P, = (Michelson response) x AL
(W/m)

Response of recycled Michelson

with Fabry-Perot cavities:
3-km Fabry-
Ly Perot cavities
2 4 2F
5P, = Gpr P;C =" sin (— ALg) ——0AL
A A ™
Input beam Lm _33 300
> BS
Power Transmitted For the same 5AL,
reggvcilirylg Tyjbeam 0P, has been increased
Sensor by a factor ~ 12000.

L. Rolland - GraSPA2023 - Annecy-le-Vieux
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The Virgo detector — Optical configuration -

A hint of AdvancedVirgo sensitivity

Response of recycled Michelson with
Fabry-Perot cavities:

208

or A4
6P, = Gpr P, C - sin (-ALo) ==0AL

A

3-km Fabry-
Ly Perot cavities
Input beam Lx
> BS
Power Transmitted
recycling beam
cavity Jj
Sensor

Laser wavelength
Input power
Interferometer contrast
Cavity finesse

Power recycling gain

Working point

A = 1064 nm

P; ~ 100 W
C~1

F ~ 450

Gpr ~ 38
ALy~ 10" m

Shot noise due to output power of ~ 50 mW

— 5Pt,min ~ 0.1nW

,h
l.—
|

In reality, the detector response
depends on frequency...

> SALyin ~5x 1072 m

~ 10—23

L. Rolland - GraSPA2023 - Annecy-le-Vieux
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1

14w g=
Ained j0184-Aige4

Input mode-cleaner cavity
L=144m, F=1200

-
oSy

Fabry-Perot cavity
L =3 km, F=450

Beam
splitter

recycling

mirror

Signal recycling mirror added
in Virgo in 2020/2021

Signal recycling mirro!
Output mode-cleaner cavity
L=12cm, F=450

L. Rolland - GraSPA2023 - Annecy-le-Vieux
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Part 3: How do we measure the GW strain, h(t),
from this detector?

Notes about data processing
Controlling the interferometer working point
A glimpse on the calibration and h(t) reconstruction

Data collection



Notes about data processing: digitisation

Analog signal
1

=
Ln

Signal s(t)

=

1 ___ .................... R — .............. ,, .................... .................... ,, ......... ....................

P P PP PP

=
n
|

Signal s(n)
ITTH

o
|

I

S
]
|

—
- -

[

B

-

S

N

.

-

L]

Sample

Analog signal s(t)

Continuous
A voltage in general

ADC

 /
Digital signal s(n)

Discrete (sampling frequency)
Can be stored numerically
Can be processed numerically

Warnings:
Nyquist frequency
Aliasing

L. Rolland - GraSPA2023 - Annecy-le-Vieux
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The Virgo detector — How do we measure the GW strain, h(t), from this detector ?

Notes about data processing: spectral
analysis

A signal can be decomposed in different frequency components.
(Discrete) Fourier transform

s(n) L > A(k) and O(k) 2(05)

N
Z S(n)e—ﬂwk%
=1

Inverse Fourier transform " .
= A(k)e®®)
. Sine sjgnal - _ ..___Random signal (“white noise”)
@ 035 %10;1 2{ % 80; g 10l 15 . =
T o 10.4 (o) = eoH] o] Lok 3 1T (A iy i
S NN NN - E £ o bt Ll ; 102 g
o o T | | 5 o = 2
NATATHIRTETRTRYRIEVAY: a8 IR < | £
_0,‘\} v U U U U U U U U 1';0;: i -‘mE ‘\“|\|‘| \” | |
ot ore rac. peak HMWM w LD “t  ~flat distribution
04y Az ad a8 A (Sj ] 10 1@ L T T R v R T '_4.8' s 10 ; 1o e -
Frequency (Fiz) Time (s) | Frequency (Hz)
Apply a low-pass filter
on the signal
g 1:25 b 10" g
c_ﬁ 60§ 5 T M"W é
. ; % a0- 102 . E
Filtering the data ZIS TN NOP SV | "m\ s
= modifying the frequency components o e <
'1°°4:' 4z a4 a6 a8 5 10° ] 10 e

. Hz
L. Rolland - GraSPA2023 - Annecy-le-Vieux Time (s) Frequency (HZ))4



The Virgo detector — How do we measure the GW strain, h(t), from this detector ?

How do we control the working point?

We want ALy =n3 + 107''m to be (almost) fixed!

Control loop done for noises with f between ~10 Hz and ~100 Hz
Precision of the control ~ 10"° m

Suspended mirror

Noises
- actuators = (Control signals (V)
L, (10 Hz < f < 100 Hz)
A
Input |
beam ‘ Lx
-
| Filters
Transmitted +
beam
Photodiode 0P, ——» )AL

Real-time digital calculations
L. Rolland - GraSPA2023 - Annecy-le-Vieux 35



The Virgo detector — How do we measure the GW strain, h(t), from this detector ?

From the detector data to the GW strain h(t)

« High frequency (>100 Hz): mirrors behave as free falling masses .- ---

%h<t) _ 5ALZ~Oue(t)

« Lower frequency: the controls attenuate the noise... but also the GW signal!
— the control signals contain information on h(t)

Transmitted 1

power 1
variations 5Pt > Detector response ’5ALtrue 5ALext : hrec (t)

(W) (m/W) & as if no control
— hnoise (t)
+ haw (t)
Control
signals Vtri—» Actuator response —» OAL .4,
(V) (m/V)
Input signals Responses to be measured Reconstructed
(calibrated) in dedicated GW signal
dataset
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The Virgo detector — Noises

What is noise in Virgo?

Stochastic (random) signal that contributes to the signal h (1) but does

not contain information on the gravitational wave strain h_ (t)

hrec(t) — hnoise(t) + hGW<t)

Does this data contain the signal?

hnoise (t)

Honmalised

Detector Strain

0 0.5 1 1.5 2 2.5
time fs

This plot shows the signal.

haw (t)

Hormalised
Detector Strain
& =

This shows the peak of the sig

re

Does this data contain the signal?

Rrec(t)

1 1

Does this data contain the signal ?

Arec(?)

1.5

.= 0.5 =
= g -
-1}
2 o & E
W o= 0 ™
=
E s E 2
22 s z 3
=] =]
-1 -1
1.5 -1.5
0 0% 1 1.5 2 2% 0 0.5 1 1.5 F 2.5
time /s time /s
The signal's position in the noise. The signal's position in the noise.
1.5 1.5
Huise Huise
1 Signal 1f| — siunal
= £
3 E 3k
@ @
awm an
T = ™
E £ Ef
=]
23 28
=*] -]
= =]
1 1
1.5 1.5
L] [ %3 1 1% 2 2.5 o 0.5 1 1.5 F 2.5
time /s time fs

Extracted from Black Hole Hunter: http://www.blackholehunter. org/
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The Virgo detector — Noises

How do we characterise noise?

Data points (noise) Distribution of the data Gaussian distribution:
Teerageover 01 e D aussian distrioution:
m e 1 (z—<z>)?
= 0f 350 E 2 2
B e Ne 72
=~ 250 .
X0 20 — Noise measurement
S o0 E characterised by its
10 s0E | . standard deviation o
0 = ”-Iﬂ SHSI m”xl(units)
@ i | Average over 15 >
c 100 & Entries 1000
2 C Mean  -0.01323
§ e 1.004
o D
op Oz = Vaverage duration
0
I T3 (units) o ,
D isin (Data units X 1/s)
= I _ . Average over 10 s o Data units
£ osf WwE Entries 100 iz
2 06E 2B Mean  -0.01323
= 04 - E : . .
S o2k 0E [Bus___o3ost — Noise characterised by D
vE ISE :
0.6 F- e :
-8 b= E -Ilﬂll L é [ L

. : b — its absolute value is equal to
Time (s) x(units)  the standard deviation of the noise
when it is averaged over 1 s
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The Virgo detector — Noises

How dp we characterise a noise
.. In frequency-domain?

Discrete Fourier Transform (DFT)

s(n) > S(k) = A(k)el®®)
Sampled Fourier
signal spectrum

— Noise characterised by the fluctuations L
of its Fourier spectrum —D(k) in units/VHz

Assumption: noise is random and ergodic

— noise characterised by its amplitude spectral density (ASD)  ASD = /PSD = IDFTTI2

. . Data vs time Noise distribution Noise ASD
Random gaussian noise

1 count/NVHz

Entries 90200

Sampled at 10 kHz

440, 440,2 4404 440,6 4408 450,

. g 107 1 10 _10* 10°
Time (s) Frequency (Hz) 40




From h (t) to Virgo sensitivity curve

rec

1/ Reconstruction of h( t m

hrec( ) — hnozse

2/ Amplitude spectral density of h(t)

. o> ¥ 10  VSReAupusaony | | O3AN Vigobaselne
(noise standard deviation over 1 s) Z - —— 02 August 2017 e —
.; 1 0_19 l —— 03 March 2020 |
2 =
;5 10-20 =l | | |
ANy it |
/2] 10-21 | | \H . | ‘ ‘ \ ‘\ I 1 AN ‘ H
~107"° m/Hz (Virgo, 2011) | 4
-20 : =
~10%° mAHz (Advanced Virgo, 2020) " o e e
10-24 B | |
102 10°
Frequency [Hz]
- Image: Danna Berry/SkyWorks/NASA y maﬁa%/‘ij/aﬁg/%
Compact Binary Coalescences Rotating neutron stars
Signal lasts for a few seconds Signal averaged over days (~10° s)
— can detecth ~ 10 — can detecth ~ 10

L. Rolland - GraSPA2023 - Annecy-le-Vieux 41



The Virgo detector — Noises

What is the noise level in Virgo?

Strain [1/v Hz]

Fondamental noises

AdV Noise Curve: Fin =1250W

Cluantum noise

Gravity Gradients
Suspension themmal noise
Coating Brownian noise N
Coating Thetma-optic noise [
Subsiate Brownhian noise
Encess Gas

Tokal noige

Hlaser

Frequency [Hz]

L. Rolland - GraSPA2023 - Annecy-le-Vieux
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log10(Seismic Spectrum [m/v Hz])

eISMIC NOISE and suspenaea mirrors

——Seismomedter in CB
——Seismometer in TB1

Ground vibrations up to ~1 um/vHz at low frequency
decreasing down to ~10 pm/vHz at 100 Hz

> 1071 m/v/Hz needed to detect GW !!

20 40 60 80 100 120

Fredquency [Hz]
x T
‘—J I

L Vi | LM < _9
Assuming £ NE Ty T H
. . S 1 - =
dx g small and sinusoidal = 1o STl - 102
and 6 small: 107 ESRERH
I ‘\ 2
H 10 fO ~J 0.16 HZ 10 Frequency [Hzl]0
Ty = A XX [Phase ]
E 0s-
g -1
£ -15=
_22
Transfer function 255
3B
10" 1 10 10°

Frequency [Hz]
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‘TheVirgodetector —Noises
Seismic noise and the Virgo suspension

Passive attenuation: 7 pendulum in cascade

At 10 Hz: Zmizer ~,(1072)" = 10~ 14

ground

Tground ~ 107 m/v/Hz

This noise directly modifies the
positions of the mirror surfaces,

and thus 6AL and hy.e.(t) !

. |

Active controls at low frequency

Accelerometers or interferometer data
Electromagnetic actuators
Control loops

L. Rolland - GraSPA2023 - Annecy-le-Vieux i



AheWimeddiesorERores TEEEEEEEEEE
What is thermal noise

Microscopic thermal fluctuations

--> dissipation of energy through excitation of the macroscopic modes of the mirror

3

107

10

Modulus

—
-]
[+

I| IIIIIIII| IIIII|T|] IIIIIIII| T TTIT IIIIIIII| T TTII

Pendulum mode “Mirror” mode “Violin” modes
f <40 Hz f> few kHz f>40 Hz 107

Frequency [Hz]

This noise directly modifies the positions of the mirror surfaces,

and thus AL and Ayec(t) !

We want high quality factors Q to concentrate all the noise in a small frequency band

L. Rolland - GraSPA2023 - Annecy-le-Vieux 45



Thermal noise mitigation

Monolithic suspensions
» Monolithic suspension developed in labs in Perugia and Rome

Mirror coatings

currently main source of thermal noise

very high quality mirror coatings developed at Lyon (LMA)

active R&D activities to improve performances, new materials, ...
cryogenic mirrors to be used at Kagra + future detectors

Reduction of noise coupling with the beam j}: ' <I[:
« use of larger laser beams (thermal noise ~1/laser beam) ol

40 kg mirrors
35 cm diameter
40 cm width
Suprasil fused silica

diameter of 400 um
length of 0.7 m

Ioad Stres%. %Qpanb/l %%SPA2023 - Annecy-le-Vieux




The Virgo detector — Noises

What is the shot noise?

.

Fluctuations of arrival times of photons (quantum noise) EARLICLEZ00
Power received by the photodiode: P;
— N = f—; photons/s on average. AL EHDCHR 0D A

Arrival time of single photons

Standard deviation on this number: oy = VN

—  op, = 0N X hv = w%huz v Prhy

Virgo laser: A = 1.064um — v = $ ~ 2.8 X 10 Hz
Working point: P; ~80mW — op, =0.101W/vHz

— a variation of power is interpreted as a variation of distance 0 AL

1 op,
0P; = (Virgo response) x Lg X h Requivalent = T

(in W/m)

o (Virgo response)

1

he ' X
quivalent —
P



SEMREEEEEEET
Increasing the power to reduce shot noise?

1074

Quantum Noise

Strain [1/\/Hz]

Increasing input laser power:
» decreasing of shot noise at high frequency

1
10

: F H
But a lot of side effects requency [Hz]

e ...Increasing the radiation pressure noise at low frequency
* recycling cavities more difficult to control
* thermal absorption in the mirrors: optical lensing
- heed of complex thermal compensation system
- high quality mirrors to reduce absorption
» parametric instabilities: coupling of laser high order modes with mirror mechanical modes
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The Virgo detector — Noises

Reduction of guantum noise: with squeezing

- How to reduce quantum noise without increasing laser power?

Optical field models Classical picture Coherent State Vacuum State
ime AUﬂvﬂvﬂv"ﬁme Time
XZ
{.»Xl
‘

X, X,.phase
s

41_,91(1: amplitude

Interferometer operating close to a dark fringe with Heisenberg relation

* The laser is reflected back to the injection

* Avacuum fied enters the interferometer from the output port
— shot noise arises from the vacuum state phase variations
— radiation pressure noise arises from the vacuum state amplitude variations

interferences

Injecting squeezed vacuum states in the interferometer

A= A=

g : g g - Installed in Virgo in 2020-2021

X _— X New filter cavity of 300 m
Re_duce ShOt ’ Reduce rad'_at'on 2 Strong constraints on optical losses,
noise at high X, pressure noise at 413_. X, beam matching, alignment,...
frequency lOW frequ%.nlgoﬁand - GraSPA2023 - Annecy-le-Vieux 49
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Some other gaussian noises

Acoustic vibrations and refraction index fluctuations

Main elements installed in vacuum

Laser: amplitude, frequency, jitter noise

Lots of control loops to reduce these noises

Electronics noise @

Challenge for the electronics engineers to measure down to 0.1 nW/sqrt(Hz)

Non-linear noise from diffuse light

Need dedicated optical elements with specific mechanical modes

L. Rolland - GraSPA2023 - Annecy-le-Vieux 50



Another source of noise: diffused light

" Diffuded light!

Optical element
(mirror, lens, ...)
vibrating due to

Evolutions done since ~2015:
suspend the optical benches

seismic or acoustic [ LS ik and place them under vacuum
noises P, "
Incident lase
beam

f eﬂ Q’&le
“Speam

%ﬁ"“'

some photons of the diffused light
get recombined with the
interferometer beam

phase noise radiation pressure noise
L in the Fabr)i—Perot cavities
extra power fluctuations extra fluctuations of

mirror positions
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‘The Virgo detector —Noises
Example of a Virgo noise budget

Goal: modelize and/or measure all known noises
check if their sum matches the sensitivity curve...
.... or if there is still unexplained sources of noise

19 STRAIN NoiseBudget; gps = 1239500979 (2019-04-17 01:49:21 UTC)
10- F T \ T T T T T T T LIS | T T T T T T LB | T T T B
i ‘ Measured; BNS 48Mpc, BBH 5.7e+02Mpc 1
03 goal, BNS 85 Mpc, LIGO-P1200087
s Sum; BNS 69Mpc, BBH 8.2e+02Mpc
ASC

10720 By Calibration -
s]ﬂ DAC
[ Dark
r Demodulafjon
ENV
LSC
10% B Quantugn,\acuum E
~ ; SSFS
I Seisnfid rmal
5
10722 |

10-23 L

10724

10t 10? 10°
Frequency [Hz]

Noise budget from O3 run (April 2019)
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for gravitationnal wave astronomy
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A worldwide network of interferometers:
LIGO-Virgo-KAGRA

_— — ' : - =
b -’;.&-:‘I-.='='—"-;‘-?"¥'i——j__:;.ﬁﬁﬁm’?—v-fr-:ff..:'--'.-v -

» (Confirm a detection)
» Determine the position of a GW source
» Decompose the GW polarisation
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> Increase the significance of the events
> Better understand the physics of the sources
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Range of Advanced detectors

Distance at which a neutron star binary
coalescence (1.4 M 6" 1.4 M O) can be

seen with signal-to-noise ratio of 8

Improving the sensitivity (or range)
by a factor 10

Increase the volume (or event rate)
by 10° = 1000

—
100 million light years

LIGO-Virgo sensitivity curves and ranges during the O3 run (2019-2020)

[1239062418°1239148818, state: Locked]

= GEO-LIGO-Virgo gravitational-wave strain Binary neutron star inspiral range
= I“ L - GEOG00 160 7 -

1 m Hanford L1
E Livingston = 140 1 -V
£ 1 = Virgo g
5, =3
= =
2 & .
g : N, AR TS
= ] 0 i 7 T " ; ; — , .
E 10-24 | | | 0 0.8 1.6 24 3.2 4 48 5.6 6.4 7.2 8
= 10 100 10° Time [weeks] from 2019-04-01 15:00:00 UTC (1238166018.0)

Frequency [Hz]
06
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LIGO-Virgo-KAGRA have started observations

Updated mm O1 02 == Q3 mm Q4 05
2023-05-16
80 100 100-140 160-190 240-325
Mpc  Mpc Mpc Mpc Mpc
LIGO i = =
30 40-50 70-100 150-260
. Mpc Mpc Mpc Mpc
Virgo ES g
0.7 1-3 =10 =10 25-128
Mpc Mpc Mpc Mpc Mpc
KAGRA | | 11

| 1 T T L T
G2002127-v19 2015 2016 2017 2018 2019 2020 2021 2022 2023T2024 2025 2026 2027 2028 2029

01, 02, O3 runs: almost 100 sources detected

mainly coalesces of binary black holes
a few coalescences of binary neutron stars, GW170817 with multimessenger observations!

a few coalescences of neutron star-black hole

discoveries of particular events (high mass black holes, objects of type unclear, ....)
starting population studies (statistical studies)

04 started on May 24™
regular detections + daily public alerts of sub-threshold events

Starting construction of hardware to be installed in 2025, for O5 run
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Third generation interferometer: gain another factor 10 in sensitivity and enlarge
bandwidth :

Einstein Telescope (Europe):
Located underground, with ~10 km arms
Cryogenics to reduce thermal noise
Xylophone configuration?

cold + hot interferometers in parallel

Cosmic Explorer (US):
With ~40 km arms

In operation after 2036+?

At design sensitivity, could probe 10°
CBC signals from a large fraction |
of the Universe

—a |GO ==ET|

m— e CE
10°  BNS 10" BBH 102 10° 53
L. Rolland - GraSPA Tota source frame mass [ M..]




From Virgo to Einstein Telescope

Some urgent technical and design issues to tackle in Virgo
+ work on optical simulations to understand complex effects

Thinking to Virgo_nEXT project
use the Virgo infrastructure to its best scientific potential
seen as a R&D exploration towards E.T., to bridge Virgo to E.T.
R&D of new technologies for E.T., to be tested on Virgo in the next decade

- a lot of interesting experimental and data analysis developments for the next years!

AdV sensitivity evolution from O3 to Virgo_nEXT

10-20 I : e o
\ —— 03 (BNS: 60 Mpc)
1 04 (BNS: 80-115 Mpc
N O5(BNS: 145-260 Mpc)
ey O B8 Post-O5 (amorphous, BNS: 440 Mpc)
N —— Post-O5low (crystalline, BNS: 500 Mpc) ;
Post-05 (BNS: 260-500 Mpc)
é 10 22 : == I i B LT o |
E i i e——
]
Cy TR U N O S "W T I A A1l o
10721 N i A ull -
= = i __.:_: I, i i————
= = B — i -
<& = o - =
B T il
e e— ="
1074 ;
10! 102 10°

Frequency [Hz]
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LISA: a spatial interferometer in construction

Bandwidth: 0.1 mHz to 1 Hz ?}

Triangle with 2.5 million km arm length — LISA
Laser Interferometer Space Antenna

Launch of LISA around 2035?
— opration for 5 to 10 years

massive black hole binaries
galactic binaries
extreme mass-ratio inspirals
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Pulsar Timing Arrays
Bandwidth: nHz to 100 nHz

Observation of ~20 pulsars in radio
weekly sampling over years
GW cause the time of arrival of the pulses
to vary by a few tens of nanoseconds
over their wavelength

International network
Parkes PTA
North American NanoHertz Gravitational Wave Observatory
European PTA

Super massive black hole binaries

— First hints of signals in the last years....
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Still a lot of gravitational fun in front of us!

... but right now | have to work with my students ¢ ¢

to complete the Virgo calibration for the O4 run
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