





# **Neutrino Physics: theory**

### **GraSPA Summer School 2023**



Asmaa Abada

LPT - IJCLAB



- Basics: brief history and basic concepts
- Oscillation phenomena and searches from many fronts
- Properties and Nature
- Theoretical frameworks and (Minimal) New Physics Models

# Some references

- C. Giunti, C.W. Kim, "Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press.
- R. N. Mohapatra and P. Pal, "Massive Neutrinos in Physics and Astrophysics, World Scientific
- M. Fukugita, T. Yanagida, "Physics of Neutrinos: and Application to Astrophysics (Theoretical and Mathematical Physics) ", Springer



- Neutrino Problem: brief chronology
- Oscillation phenomena
- Searches from many fronts: present situation
- Why neutrino physics is challenging

Neutrinos are the most elusive particles of the Standard Model  $Q_{em} = 0, \quad Q_{color} = 0.$ 

Provide informations on the essential features of the SM:"left" nature of the weak interaction and family structure

more importantly, they call for physics beyond the Standard Model

## The Standard Model of particle physics

► Standard Model: renormalisable QFT formulation based on  $SU(3)_c \times SU(2)_L \times U(1)_Y$ ⇒ successful description of (most) elementary particles and their interactions



► Gauge bosons

strong, weak, electromagnetic interactions

Quarks (strong, weak, electric);
 charged leptons (weak, electric);
 neutral leptons (weak)
 Higgs boson: EW symmetry breaking;

elementary particle masses

Despite its *remarkable success*, is the SM the ultimate description of Nature?
 Theoretical caveats (hierarchy problem, choice of gauge group, family/flavour puzzle, ...)
 Observational problems: dark matter candidate, baryon asymmetry of the Universe, massive neutrinos!

### Brief history of the neutrinos $\nu$

▶  $\nu$  birth: "Rescue" conservation of energy in nucleus beta decay  $n \rightarrow p + e^- + \bar{\nu}_e$ 



#### "Dear Radioactive Ladies and Gentlemen,

... because of the wrong statistics of the N and Li<sup>6</sup> nuclei...and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. ... electrically neutral particles, that that I wish to call neutrons, which have spin 1/2 and obey the exclusion principle ... ...The continuous beta spectrum would then become understandable..."

*Pauli, 1930* 

- Enter the "neutrino": following the discovery of the "neutron" in 1933 by Chadwick, Pauli postulates the existence of a "massless neutrino"
- **Electron neutrino:** detected in **1956** by **Cowan** and **Reines**
- Muon neutrino: discovery in 1962 by Lederman, Schwartz and Steinberger
- ▶ 3 neutrino families: Z boson decay width, CERN 1989
- **Tau neutrino:** direct evidence in **2000** by **DONUT** team
- ▶ Neutrinos in the SM: 3 massless states!  $\nu_e$ ,  $\nu_\mu$  and  $\nu_\tau$

### Studying neutrinos: sources & detectors

Neutrino sources have been experimentally and observationally explored, huge impact for particle & astroparticle physics and astronomy!

► At every second, **70**  $\times$ **10<sup>9</sup> neutrinos** cross a cm<sup>2</sup> !

A world-wide effort to detect and study  $\nu$ 's

from different sources, using distinct methods...

Laboratory: reactors, accelerators

**Cosmic rays:** atmospheric neutrinos ( $\nu_{@}$ ), ultra-high energy neutrinos

Astrophysical: solar neutrinos ( $\nu_{\odot}$ ), supernovae









### Studying neutrinos: unexpected news

▶ A puzzling and surprising discovery: the solar  $\nu_e$  and atmospheric  $\nu_\mu$  fluxes...



Solar neutrino problem: detection of only 1/3 of expected flux of solar  $\nu_e$ 's Atmospheric neutrino problem: detection of  $\nu_e \sim \nu_\mu$  (expected  $\nu_e \sim 2\nu_\mu$ )

#### ► Hypotheses:

"Unexpected" production of  $\nu_{\alpha}$ : do charged currents violate lepton flavours?

"Disappearance" of propagating  $\nu_{\alpha}$ : do neutrinos oscillate?

**Standard Solar Model** predictions: *to be challenged?* 



| $\mathbf{w}$ Facts: $\nu$ change flavours after propagating a finite distance |                                                               |                                         |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Solar                                                                         | $\Delta m_{\rm sol}^2 \simeq 7.4 \times 10^{-5} \ {\rm eV}^2$ | SNO, BOREXino, Super-Kamiokande,        |  |  |  |  |
| $ u_e \to \nu_{\mu,\tau} \qquad \qquad \sin^2 \theta_{\rm sol} \simeq 0.30 $  |                                                               | GALLEX/GNO, SAGE, Homestake, Kamiokande |  |  |  |  |
| Atmospheric                                                                   |                                                               | IMB, MACRO, Soudan-2,                   |  |  |  |  |
| $ u_\mu  ightarrow  u_	au$                                                    |                                                               | Kamiokande, Super-Kamiokande            |  |  |  |  |
| LBL Accelerator                                                               | $\Delta m_{atm}^2 \simeq 2.5 \times 10^{-3} \ \mathrm{eV}^2$  |                                         |  |  |  |  |
| $ u_{\mu}$ disappearance                                                      | $\sin^2 	heta_{atm} \simeq 0.58$                              | K2K, T2K, MINOS                         |  |  |  |  |
| LBL Accelerator                                                               |                                                               |                                         |  |  |  |  |
| $ u_\mu 	o  u_	au$                                                            |                                                               | Opera                                   |  |  |  |  |
| LBL Accelerator                                                               |                                                               |                                         |  |  |  |  |
| $ u_{\mu}  ightarrow  u_{e}$                                                  | $\Delta m^2_{	t atm}$                                         | T2K, MINOS                              |  |  |  |  |
| LBL Reactor                                                                   | $\sin^2	heta_{Chooz}\simeq 0.022$                             | Daya Bay, RENO                          |  |  |  |  |
| $ar{ u}_e$ disappearance                                                      |                                                               | Double Chooz                            |  |  |  |  |
| SBL Accelerator                                                               |                                                               |                                         |  |  |  |  |
| $ u_\mu(ar u_\mu) 	o  u_e(ar u_e)$                                            | $\Delta m^2 \simeq 1 { m eV}^2$ (?)                           | LSND, MiniBooNE                         |  |  |  |  |
| SBL Reactor                                                                   | $\sin^2 \theta \simeq 0.1$ (?)                                | ++ Solar: GALLEX, SAGE++                |  |  |  |  |
| $ar{ u}_e$ disappearance                                                      |                                                               | Bugey, ILL, Rovno,                      |  |  |  |  |

 $\blacksquare$  Indisputable:  $\nu s$  are massive and mix

→ The minimal SM is incomplete!

### Neutrino oscillations: massive states, leptonic mixing!

► A simple solution to both problems! Illustrative 2-family example

Two massive states  $(\Delta m_{\nu} \neq 0)$  related to flavour eigenstates as  $\nu_{\alpha} = U_{\alpha i} \nu_{i}$ 

$$\begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{2} \\ \nu_{3} \end{pmatrix}$$

▶ What happens to a relativistic neutrino, e.g. a  $\nu_{\mu}$  produced in the atmosphere?

**Production** of weak eigenstate at t = 0:

 $|\nu_{t=0}\rangle = |\nu_{\mu}\rangle = \cos\theta |\nu_{2}\rangle + \sin\theta |\nu_{3}\rangle$ 

**Travel** distance L to the **detector**, during which it **oscillates** 

$$|\nu(t)
angle = \cos\theta e^{-iE_2t}|
u_2
angle + \sin\theta e^{-iE_3t}|
u_3
angle$$

At the detector, it produces  $\mu$  in charged current scattering, with probability

$$\mathcal{P}_{\mu\to\mu}^{2\nu}(L,t) = |\langle \nu_{\mu}|\nu(t)\rangle|^2 = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{\nu}^2 L}{4E}\right) \neq 1$$

Oscillations are possible if and only if neutrinos are massive and mix!
It is not accounted for by the SM!

# Parametrisation with 3 flavours

The charged current interaction is not diagonal in flavour space:

$$\mathcal{L}_{int} = -\frac{g}{\sqrt{2}} \bar{\ell}_L^i \gamma^\mu \nu_L^j U_{ij} W^+_\mu + h.c. ,$$

n=3 → Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} \text{Diag} \left\{ e^{i\alpha_1}, e^{i\alpha_2}, 1 \right\}$$

[Chau-Keung parametrisation]

 $\delta$  Dirac phase,  $\alpha_{1,2}$  Majorana phases,  $\theta_{12}, \theta_{23}, \theta_{13}$  ( $\nu = \bar{\nu}$ )  $m_1, m_2, m_3$  mass eingenvalues, if  $m_3 > 0$ ,  $m_{1,2} = |m_{1,2}|e^{i\alpha_{1,2}}$ 

# **Transition Probabilities**

$$P(\nu_{\alpha} \to \nu_{\beta}; L) = \delta_{\alpha\beta} - 4 \sum_{j < k} \operatorname{Re} \left( U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k} \right) \sin^{2} \left( \frac{\Delta m_{jk}^{2} L}{4E} \right) + 2 \sum_{j < k} \operatorname{Im} \left( U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k} \right) \sin \left( \frac{\Delta m_{jk}^{2} L}{2E} \right) , \quad \Delta m_{jk}^{2} = m_{j}^{2} - m_{k}^{2}$$

Solutions are possible if  $\nu$  are massive  $(\Delta m_{jk}^2 \neq 0)$  and mix  $(U_{\alpha j}U_{\beta j} \neq 0)$ 

Solution experiments do not give the nature : Dirac or Majorana :  $\bar{\nu} \equiv \nu$  !

$$\mathbb{R} n = 2:$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^{2} 2\theta \sin^{2} \left(\frac{L}{L_{vac}}\pi\right), \quad L_{vac} = \frac{4\pi E}{\Delta m^{2}} \simeq 2.48 \mathrm{km} \left(\frac{E(\mathrm{GeV})}{\Delta m^{2}(\mathrm{eV}^{2})}\right)$$

scillations arise when 
$$L \sim L_{vac} \Rightarrow \frac{\Delta m^2 L}{4\pi E} \sim 1 \iff \Delta m^2 (eV^2) \sim \frac{E(GeV)}{L(km)}$$



Depending on L and E neutrino sources:

i.e.  $\nu$  source and position of the detector

| L(km)    | E(GeV)    | $\Delta m^2 (\mathrm{eV}^2)$ | Source                               |  |
|----------|-----------|------------------------------|--------------------------------------|--|
| $10^{8}$ | $10^{-3}$ | $10^{-11}$                   | solar $ u$                           |  |
| $10^{4}$ | 1         | $10^{-4}$                    | atmospheric $ u$                     |  |
| $10^{3}$ | 10        | $10^{-2}$                    | u from accelerators (long distance)  |  |
| 0.1      | 1         | 10                           | u from accelerators (short distance) |  |
| 0.1      | $10^{-3}$ | $10^{-2}$                    | u from reactors                      |  |

### Lepton mixing & neutrino data: current status



|                          |                                                   | Normal Ore                             | dering (best fit)             | Inverted Ordering $(\Delta \chi^2 = 7.1)$ |                               |
|--------------------------|---------------------------------------------------|----------------------------------------|-------------------------------|-------------------------------------------|-------------------------------|
| with SK atmospheric data |                                                   | bfp $\pm 1\sigma$                      | $3\sigma$ range               | bfp $\pm 1\sigma$                         | $3\sigma$ range               |
|                          | $\sin^2 	heta_{12}$                               | $0.304\substack{+0.012\\-0.012}$       | $0.269 \rightarrow 0.343$     | $0.304\substack{+0.013\\-0.012}$          | $0.269 \rightarrow 0.343$     |
|                          | $	heta_{12}/^{\circ}$                             | $33.44_{-0.74}^{+0.77}$                | $31.27 \rightarrow 35.86$     | $33.45_{-0.75}^{+0.78}$                   | $31.27 \rightarrow 35.87$     |
|                          | $\sin^2 \theta_{23}$                              | $0.573\substack{+0.016\\-0.020}$       | $0.415 \rightarrow 0.616$     | $0.575\substack{+0.016\\-0.019}$          | $0.419 \rightarrow 0.617$     |
|                          | $	heta_{23}/^{\circ}$                             | $49.2^{+0.9}_{-1.2}$                   | $40.1 \rightarrow 51.7$       | $49.3_{-1.1}^{+0.9}$                      | $40.3 \rightarrow 51.8$       |
|                          | $\sin^2 \theta_{13}$                              | $0.02219\substack{+0.00062\\-0.00063}$ | $0.02032 \rightarrow 0.02410$ | $0.02238^{+0.00063}_{-0.00062}$           | $0.02052 \rightarrow 0.02428$ |
|                          | $	heta_{13}/^\circ$                               | $8.57_{-0.12}^{+0.12}$                 | $8.20 \rightarrow 8.93$       | $8.60^{+0.12}_{-0.12}$                    | $8.24 \rightarrow 8.96$       |
|                          | $\delta_{ m CP}/^{\circ}$                         | $197^{+27}_{-24}$                      | $120 \rightarrow 369$         | $282^{+26}_{-30}$                         | $193 \rightarrow 352$         |
|                          | $\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$ | $7.42_{-0.20}^{+0.21}$                 | $6.82 \rightarrow 8.04$       | $7.42^{+0.21}_{-0.20}$                    | $6.82 \rightarrow 8.04$       |
|                          | $\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$ | $+2.517^{+0.026}_{-0.028}$             | $+2.435 \rightarrow +2.598$   | $-2.498^{+0.028}_{-0.028}$                | $-2.581 \rightarrow -2.414$   |

- "Precision era" for neutrino physics
- Only three oscillation parameters unknown...  $\theta_{23}$  octant;  $\delta_{CP}$ ;  $\nu$ -mass ordering
- Exciting and rich experimental program ahead!

2 So far, only  $\Delta m_{ij}^2$ , but ....what about absolute neutrino masses?

### Lepton mixing & neutrino data: current status

 $m^2$ 

 $m_{2}^{2}$ 

 $m_2^2$ -

 $m_1^2$ 

0

Oscillation data: only two squared-mass differences

**Undetermined mass ordering:** 

normal  $[m_{\nu_1} < m_{\nu_2} \ll m_{\nu_3}]$ inverted  $[m_{\nu_3} \ll m_{\nu_1} \lesssim m_{\nu_2}]$ 

Unknown absolute mass scale

- $\blacktriangleright$  Resolving the absolute mass scale  $m_{\text{lightest}}$ 
  - Tritium decays (<sup>3</sup>H  $\rightarrow$ <sup>3</sup>He  $+\bar{\nu}_e + e^-$ ):  $m_{\nu_e} \lesssim 0.8$  eV [KATRIN'22] the only direct mass determination
  - $0\nu 2\beta$  decays if Majorana nature:  $|m_{ee}| \lesssim 0.06 0.16$  eV
  - Cosmology (CMB, LSS, Ly $\alpha$ ):  $\sum_i m_{\nu_i} \lesssim 0.26 \rightarrow 0.39$  eV





IH

NH

 $10^{-2}$ 

m<sub>lightest</sub> (eV)

 $10^{-1}$ 

50 100 150

А

 $10^{-3}$ 

 $10^{-2}$ 

 $10^{-3}$ 

 $10^{-4}$ 

ν

atmospheric  $\sim 2 \times 10^{-3} eV^2$   $m^2$ 

solar~7×10<sup>-5</sup>eV

atmospheric  $\sim 2 \times 10^{-3} eV^2$ 

[KamLAND-Zen Coll., '16]

# Leptonic *CP* Asymmetry

$$\Delta_{CP}(\alpha\beta) \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu_{\alpha}} \to \bar{\nu_{\beta}})$$
$$= 4\sum_{j>k} \operatorname{Im} \left( U_{\alpha j} U_{\beta j}^{*} U_{\alpha j}^{*} U_{\beta k} \right)^{*} \sin \left( \Delta m_{jk}^{2} \frac{L}{2E} \right)$$

Cannot be observed in appearance experiments

$$CPT \to \Delta_{CP}(e\mu) = \Delta_{CP}(\mu\tau) = \Delta_{CP}(\tau e) \equiv 16\mathcal{J}\ell_{12}\ell_{23}\ell_{31}$$

- $\Im \equiv \operatorname{Im} \left( U_{e3} U_{e1}^* U_{\mu 3}^* U_{\mu 1} \right) \simeq \sin 2\theta_{23} \sin 2\theta_{12} \sin \theta_{13} \sin \delta$ (Jarlskog Invariant)
- $\mathbb{R} \,\ell_{ij} \equiv \sin\left(1.27\Delta m_{ij}^2 (\mathrm{eV})^2 \frac{L(\mathrm{km})}{E(\mathrm{GeV})}\right)$
- $\bowtie \theta_{23}$  large (OK) and also  $\Delta m_{13}^2$ .
- $\bowtie \theta_{12}$  large (OK) and also  $\Delta m_{12}^2$ .
- $\Theta_{13}$  conditions the measurement of CPV phase:  $\theta_{13} \sim 8.5^{\circ}$

**Indisputable:**  $\nu$ s are massive and mix



¥

An observational Caveat that is also theoretical one!

 $\blacktriangleright \nu$  mixings "add fuel to the fire": add to the fermion flavour puzzle!

$$U_{CKM} = egin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \ A\lambda^3(1 - 
ho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}, \lambda \sim 0.2, A \simeq 0.8, 
ho \simeq 0.1, \eta \simeq 0.4$$

 $\rightarrow$  Quarks: small mixing angles, 1 Dirac CPV phase

$$U_{PMNS} = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & -s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \times \operatorname{diag}\left(e^{i\alpha_{1}}, e^{i\alpha_{2}}, 1\right)$$

Leptons: 2 large mixing angles, 1 Dirac + 2 Majorana CPV phases

 $\Rightarrow$  Very different mixing pattern for Leptons and Quarks

➤ Is this related to different mass generation mechanisms?



 $\triangleright$   $\nu$  data worsens fermion hierarchy problem!

 $\rightarrow$ 







What is the absolute neutrino mass scale?

### Are there some extra fermionic gauge singlets (steriles)?



#### $3-\nu$ mixing scheme

 $3+?-\nu$  mixing schemes





 ${\bf I}$  Unitarity triangle surface  $\propto J_{\rm CP}^{\rm lepton}$  :  $J_{\rm CP,max}^{\rm lepton} \simeq 1000 \times J_{\rm CP}^{\rm quark}$ 



 $\mathcal{J} = \sin 2\theta_{23} \sin 2\theta_{12} \sin \theta_{13} \sin \delta$ 

Unitarity Triangle (in  $e, \mu$ )

Jarlskog Invariant

New possibility for having Baryogenesis from Leptogenesis ?

### Lepton mixing & massive neutrinos: a gateway to NP

 $\square$   $\nu$ -SM = New Physics just to explain  $\nu$  masses and mixings

- ▶ Need other d.o.f, for instance Right-Handed Neutrinos, m<sub>ν</sub> ← HY<sup>ν</sup> ν<sub>L</sub> ν<sub>R</sub> + ...
   ▶ What is the neutrino mass generation mechanism?
  - $\triangleright \nu \leftrightarrow \overline{\nu}$  the only particle that can have *both* Dirac or Majorana descriptions
    - ▶ If  $\nu$  has Majorana nature → New physics scale ( $\neq$  EW scale)
- $\bowtie$   $\nu$ -SM will allow for many new phenomena
- ▶ Lepton flavour violation in neutral sector, not in the charged one?  $\ell_i \rightarrow \ell_j \ell_k \ell_l$ ,  $\ell_i \rightarrow \ell_j \gamma$ , ...
  - ▶ Contributions to other observables like g 2, Lepton EDMs
    - Collider searches for new heavy states ...
- $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$  SM has other issues that call for larger BSM frameworks
  - ▶ observational problems ( $\nu$  masses & mixings): BAU and Dark Matter
    - ▶ theoretical caveats: fine-tuning, hierarchy and flavour problems ....

 $\rightarrow$  Determination of  $\nu$ -SM/BSM model requires combinations of  $\neq$  observables





#### ► Ingredients:

- 1. mass generation mechanism (seesaw, radiative corrections, extra dim, ...)
- extension of SM: SM + new d.o.f, or BSM (extend Higgs and/or gauge sectors, e.g. SUSY, ...)
- Observables (peculiar to these extensions):
  - Produce directly new d.o.f at LHC (if accessible)
  - or study impact of 1. (and 1. + 2.) on observables at lowenergy/high-intensity experiments (MEG, ...) and high-energy (LHC)

Probe New Physics: finterplay between low- and high-energy observables