Detection techniques Lecture 1: dark matter

Teresa Marrodán Undagoitia

marrodan@mpi-hd.mpg.de

MPIK

GraSPA school Annecy, 07/2023

The 'invisible' particles

Measurement of dark matter

- Indications from Cosmology and Astronomy
- No clear measurement yet
- · Goal: determine its mass and its interactions

Neutrinophysics

- Neutrino: well establised particle
- Most parameters/properties measured
- Neutrino astronomy possible

Consistent evidence for the existence of a new component in the Universe at different scales

Teresa Marrodán Undagoitia (MPIK)

What is the nature of dark matter?

Teresa Marrodán Undagoitia (MPIK)

An elementary particle?

- Massive → explain gravitational effects
- Neutral → no EM interaction & Weakly interacting at most
- Stable or long-lived → not to have decayed by now
- Cold (moving non-relativistically) or warm \rightarrow structure formation

In the standard model of particle physics: **Neutrino** fulfil most but it is a hot dark matter candidate

 \rightarrow Models beyond SM typically predict NEW particles

How can we look for dark matter?

Production at LHC

Direct detection

Indirect detection

 $p + p \rightarrow \chi \overline{\chi} + X$

$$\chi N \rightarrow \chi N$$

 $\chi \overline{\chi} \to \gamma \gamma, q \overline{q}, \dots$

Teresa Marrodán Undagoitia (MPIK)

A collider detector ©

Teresa Marrodán Undagoitia (MPIK)

Dark matter searches at LHC

- Signatures: χ in cascades or $\chi \overline{\chi}$ accompanied by a mono-signature $p + p \rightarrow \chi \overline{\chi} + X$
 - Large missing momentum from $\chi \overline{\chi}$
 - X can be a hadronic jet, a photon or a W or Z decaying hadronically
- Comparison of results with direct detection is model dependent

Figures from CMS, arXiv:1703.01651

Indirect detection: ingredients

- Where? → location
 - Galactic center (GC), galactic halo
 - Subhaloes, dwarf spheroidals (DSph), the Sun ..
- Into what? → particles produced (annihilation or decay)

•
$$\chi \overline{\chi} \to \gamma \gamma, \gamma Z, \gamma H$$

• $\chi \overline{\chi} \to q \overline{q}, W^+ W^-$ fragmentation into $\to e^+ e^-, p \overline{p}, \nu$'s

Expected particle flux:

$$\frac{d\Phi_{\rho}}{dE} = \frac{\langle \sigma_{A}v \rangle}{4\pi 2m_{\chi}^{2}} \cdot \frac{dN_{\rho}}{dE} \cdot J(\Delta\Omega), \quad J(\Delta\Omega) = \int d\Omega \int \rho^{2}(\ell) d\ell$$

with ℓ the coordinate along the line of sight

- How measured? → detector technology
 - $\bullet\,$ Satellites or balloons measuring charged particles, $\gamma {\rm 's}$ or X-rays
 - Cherenkov telescopes and large neutrino observatories

Technologies for indirect detection of dark matter

Teresa Marrodán Undagoitia (MPIK)

Indirect detection: particle propagation

AGNs, SNRs, GRBs...

iamma ray

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

They are weak, neutral particles that point to their sources and carry information from deep within their origins. Earth

V.....

air shower

Cosmic rays

They are charged particles and are deflected by magnetic fields.

Teresa Marrodán Undagoitia (MPIK)

black

holes

Indirect searches with ν 's

 Limits from ν-experiments on annihilation not competitive with γ-ray bounds

Teresa Marrodán Undagoitia (MPIK)

Exclusion limits from γ searches

Combined limit of dwarf spheroidals from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS, PoS ICRC2021 (2021) 528

- Dwarf spheroidal observations give best constrains in ~ (1 100) GeV
- Galactic center by HESS (and HAWC) most sensitive at TeV energies

γ searches: galactic center excess

Figures from S. Murgia, Annu. Rev. Nucl. Part. Sci. (2020) 70:455

- Excess of γ -rays at the Galactic Center
- Signal consistent with a dark matter particle with a mass of ~ 50 GeV
- Other interpretations possible: millisecond pulsar emission

X-ray searches and the 3.5 keV line

- Search for monoenergetic signals from decaying dark matter, e.g. sterile neutrino $\chi \rightarrow \nu_{\ell} \gamma$
- X-ray line at 3.5 keV in the XMM-Newton and Chandra satellites Present in several nearby galaxies and galaxy clusters but not found in large statistic searches (Dessert et al. 2018 & Foster et al. 2021)

Abazaijan (2017) arXiv:1705.01837

Teresa Marrodán Undagoitia (MPIK)

Charged particles: positron excess

- Positron excess observed by PAMELA in 2008
- Confirmed by AMS-02 and measured at higher energies
- Unclear origin of source term: dark matter annihilation or local pulsars
- → Interesting upcoming searches with antinuclei in GAPS

Direct detection: dark matter in the Milky Way

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_{\chi} \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) \, \mathrm{d}^3 \mathbf{v}$$

 $E_{\rm R} \sim \mathcal{O}(10\,{\rm keV})$

Astrophysical parameters:

- ρ₀ = local density of the dark matter in the Milky Way
- $f(\mathbf{v}, t) = WIMP$ velocity distribution

Parameters of interest:

- *m*_χ = WIMP mass (~ 100 GeV)
- σ = WIMP-nucleus elastic scattering cross section (SD or SI)

Isotropic, isothermal sphere with a Maxwellian velocity distribution

$$f(\mathbf{v}) = \mathbf{N} \cdot \exp\left(\frac{-3|\mathbf{v}|^2}{2\sigma^2}\right)$$

Local density $\rho_0 = 0.3 \,\text{GeV/cm}^3 = 0.008 \,M_{\odot}/pc^3 = 5 \cdot 10^{-23} \,\text{g/cm}^3$ determined via mass modelling of the Milky Way

About 1 WIMP in a coffee cup (assuming $m_{\chi} \sim 100 \,\text{GeV}/c^2$)

Circular velocity $v_c = 220 \text{ km/s}$ & Escape velocity $v_{esc} = 544 \text{ km/s}$

Dark matter distribution

Via Lactea II projected dark matter density map of a galaxy with the mass of the Milky Way,

J. Diemand et al., Nature 454 (2008)

Density profile:

- Sub-structure is predicted
- Profile dependent on baryonic history

Rates depend on the velocity distribution:

- Standard model: isotropic Maxwellian
- Simulations: triaxial and with non-smooth |v|

Velocity modulus distribution a simulated halo (Acquarius). Vogelsberger *et al.*, Mon. Not. R. Astron. Soc. **395** (2009) 797

Detector requirements and signatures

• Requirements for a dark matter detector

- Large detector mass
- Low energy threshold ~ sub-keV to few keV's
- Very low background and/or background discrimination
- Long term stability

Possible signatures of dark matter

- Spectral shape of the recoil spectrum
- Annual modulated rate
- Directional dependance

Signatures: spectral shape

J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

Event rates as function of nuclear recoil energy for different target materials

Teresa Marrodán Undagoitia (MPIK)

Signatures: Annual modulation

$$\frac{dR}{dE}(E,t) \approx S_0(E) + S_m(E) \cdot \cos\left(\frac{2\pi(t-t_0)}{T}\right)$$

- Earth rotation around the Sun
- Relative speed of DM particles larger in summer
- Larger number of nuclear recoils above threshold in summer

Signatures: directionality

$$\frac{dR}{dE \ d\cos\gamma} \propto \exp\left[\frac{-[(v_E + v_\odot)\cos\gamma - v_{min}]^2}{v_c^2}\right]$$

 γ : NR direction relative to the mean direction of solar motion v_E and v_{\odot} : the Earth and Sun motions $v_c = \sqrt{3/2v_{\odot}}$: halo circular velocity

- Nuclear recoil direction has an angular dependence
- Mostly low-pressure gases used for directional searches

Directionality visualisation

• WIMP flux in the case of an isothermal spherical halo

• WIMP-induced recoil distribution

 A typical simulated measurement: 100 WIMP recoils and 100 background events (low angular resolution)

Backgrounds and reduction strategies

- External γ 's from natural radioactivity:
 - Material screening & selection + Shielding
- External neutrons: muon-induced. (α, n) and from fission reactions
 - Go underground!
 - Shield: passive (polyethylene) or active (water/scintillator vetoes)
 - material selection for low U and Th concentrations
 - + Neutrinos from the Sun, atmospheric and from supernovae

Internal backgrounds:

- Liquids/gases: Rn-emanation from surrounding materials
- Solids: surface events from α or β -decays
- Cosmogenic activation important for all

LSM SURF 10^{-9} SNOLAB Depth [km w. e.

Boulby LNGS

J. Phys. G: 43 (2016) 1 & arXiv:1509.08767

WIPP/LSBB Kamioka Soudan

Muon flux [cm⁻² s⁻¹]

10 Y2L

 10^{-8}

Result of a direct detection experiment

→ Statistical significance of signal over expected background?

Reference limit Signal contour Smaller target nucleus Lower energy threshold Increased Exposure

J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

Positive signal

• Region in σ_{χ} versus m_{χ}

Zero signal

- Exclusion of a parameter region
- Low WIMP masses: detector threshold matters
- Minimum of the curve: depends on target nuclei
- High WIMP masses:
 exposure matters ε = m × t

WIMP mass

Overview of WIMP searches

Teresa Marrodán Undagoitia (MPIK)

Direct detection experiments

J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

Teresa Marrodán Undagoitia (MPIK)

- Mostly Nal (TI) and CsI (TI) used in dark matter searches
- Arrays of several crystals at room temperature
 → simple operation, important for long-term stability
- No particle discrimination
 - → Low radioactivity of the target material
 - → Rejection of multiple scatters in different crystals

Annual modulation signature

- DAMA experiment @LNGS using ultra radio-pure Nal crystals
- Annual modulation of the background rate in the energy region (2 – 6) keV
- Last results (2021): signal at 13.7 σ

ANAIS using Nal crystals @Canfranc:

- DAMA modulation disfavoured at 3.8 σ for [1-6] keV at 4.2 σ for [2-6] keV
- Experiment continuously taking data

Teresa Marrodán Undagoitia (MPIK)

Tests of annual modulation with Nal

Teresa Marrodán Undagoitia (MPIK)

Cryogenic bolometers

Thermal bath

- Crystals at (10 100) mK
- Temperature rise: $\Delta T = E/C(T)$

E.g. Ge at 20 mK, $\Delta T = 20 \,\mu\text{K}$ for few keV recoil

- Measurements of ΔT NTD: neutron transmutation-doped Ge sensors TES: Transition edge sensors
- Discrimination: combination with light or charge read-out
- Large separation of electronic and nuclear recoil bands

Example from CRESST, EPJC 72 (2012) 1971

Bolometer experiments

CRESST experiment

EDELWEISS experiment

CDMS experiment

- Excellent sensitivities (low m_{χ}) due to their low energy thresholds
- CRESST: scintillating bolometer (CaWO₄)

CRESST, PRD 100 (2019) 102002 (E_{th} = 30 eV)

Super-CDMS/EDELWEISS: germanium bolometers

CDMS-Lite, PRD 99 (2019) 062001 (*E*_{th} = 70 eV)

• COSINUS: Nal target, new in the game!

Teresa Marrodán Undagoitia (MPIK)

Results from cryogenic bolometers

→ Excess of low energy events present in CRESST and several other experiments - detector effect being investigated (EXCESS workshop series)

Teresa Marrodán Undagoitia (MPIK)

Low threshold searches with CCDs

SENSEI PRL 125 (2020) 171802

DAMIC PRL 123, 181802 (2019)

DANAE EPJC 77 (2017) 12, 905

DMSQUARE N. Avalos@TAUP2021

- Gram-scale Si detectors with *E*_{th} ~ 50 eV_{ee}
- 3D track reconstruction
- Test of DM-e⁻ scattering below to 1 MeV DM mass

& low mass WIMPs tests

→ Future: OSCURA, a 10 kg detector by SENSEI & DAMIC

DM-e⁻ scattering (light mediator) DAMIC, arXiv:2302.02372

Advantages of liquid noble gases for DM searches

- Large masses and homegeneous targets (LNe, LAr & LXe)
 Two detector concepts: single & double phase
- 3D position reconstruction \rightarrow fiducialization
- Transparent to their own scintillation light

	LNe	LAr	LXe
Z (A)	10 (20)	18 (40)	54 (131)
Density [g/cm ³]	1.2	1.4	3.0
Scintillation λ	78 nm	125 nm	178 nm
BP [K] at 1 atm	27	87	165
Ionization [e ⁻ /keV]*	46	42	64
Scintillation [γ /keV]*	7	40	46

* for electronic recoils

Single phase (liquid) detectors

- High light yield using 4π photosensor coverage
- Position resolution in the cm range
- Pulse shape discrimination (PSD) from scintillation

- Very different singlet and triplet lifetimes in argon & neon
- Relative amplitudes depend on particle type → discrimination

DEAP-I obtained 10^{-8} discrimination in LAr above 25 keV_{ee} (50% acceptance)

M. G. Boulay et al., arXiv:0904.2930

→ PSD less powerful in LXe: similar decay constants XMASS, NIM. A659 (2011) 161

The DEAP single phase LAr detector

DEAP - LAr detector at SNOLAB, Canada

Dark matter Experiment with Argon and Pulse shape discrimination

- 3 600 kg total mass & 3 280 kg fiducial volume
- Results of 231 d DEAP, PRD 100 (2019) 022004

• Most competitive liquid argon results

From Jan. 2018 to Mar. 2020: blinded data → results soon!

Two phase noble gas TPC

- Drift field
- Electronegative purity
- Position resolution

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- → Electron- /nuclear recoil discrimination

Double phase LAr & LXe experiments

Teresa Marrodán Undagoitia (MPIK)

The DarkSide experiment

Top SiPM array

 Aiming at high mass dark-matter search
 ROI (20 – 200) keV_{nr}
 → filling with underground argon planned for 2026

DarkSide-50 run @LNGS with 50 kg mass
 DarkSide, PRD 98 (2018) 102006 & PRL 121 (2018) 8, 081307

- DarkSide-20K: new global LAr collaboration
 - 50 t total target mass
 - TPC inside an acrylic vessel
 - SiPM for light read-out (~ 19 m²)

Teresa Marrodán Undagoitia (MPIK)

Annecy, 07/2023 41 / 56

Current generation: LZ, PandaX-4T and XENONnT

LZ:

• 7 T target mass

PANDAX-4T:4T target mass

XENONnT:6 T target mass

All running and collecting data!

 \rightarrow A race to measure WIMPs down to $\sigma \sim 10^{-48} \, \mathrm{cm}^2$

Teresa Marrodán Undagoitia (MPIK)

Detection Techniques - L1

Annecy, 07/2023 42 / 56

XENONnT

TPC: 1.5 m long und $1.5 \text{ m} \varnothing$ 5.9 t liquid xenon in the detector (8.5 t total mass)

- Assembled and commissioned during 2020
- First science run in 2021: SR0 with 1.16 tonne-years
- 3× larger target mass
- 5× less background

Teresa Marrodán Undagoitia (MPIK)

WIMP spin-independent result

Comparison of recent LXe experimental results applying the same conservative power-constrained method for the limit setting

 \rightarrow Next steps: more data to reach the final sensitivity of ~ 2 × 10⁻⁴⁸ cm²

Radon background

Dominating background in XENONnT & other LXe experiments → Extensive radon screening campaigns @MPIK

- SR0: distillation in gas mode
 → 1.8 μBq/kg
- Lowest radon level ever achieved in a LXe experiment!

- SR1: distillation in liquid mode $\rightarrow 0.8 \,\mu \text{Bq/kg}$
- Radon background at the level of solar neutrino background!

SR0 electronic-recoil science data

- Spectrum still dominated by ²¹⁴Pb at low energies
- Above 40 keV, 2nd order weak processes dominate:
 - → Double electron capture 2ν ECEC of ¹²⁴Xe ($t_{1/2} = 2.23 \times 10^{21}$ y)
 - \rightarrow Double beta decay $2\nu\beta\beta$ of ¹³⁶Xe ($t_{1/2} = 1.1 \times 10^{22}$ y)

Constrains on physics models

Teresa Marrodán Undagoitia (MPIK)

XLZD consortium

XENON, LUX ZEPLIN & DARWIN meeting in Karlsruhe, July 2022

Common paper with physics case: arXiv:2203.02309

Teresa Marrodán Undagoitia (MPIK)

Cross sections for WIMP elastic scattering

- Spin-independent interactions: coupling to nuclear mass $\sigma_{SI} = \frac{m_N^2}{4\pi (m_{\chi} + m_N)^2} \cdot [Z \cdot f_p + (A - Z) \cdot f_n]^2, \quad f_{p,n}: \text{ eff. couplings to } p \text{ and } n$
- Spin-dependent interactions: coupling to nuclear spin

$$\sigma_{SD} = \frac{32}{\pi} \cdot G_F \cdot \frac{m_{\chi}^2 m_N^2}{(m_{\chi} + m_N)^2} \cdot \frac{J_N + 1}{J_N} \cdot [a_p \langle S_p \rangle + a_n \langle S_n \rangle]^2$$

 $\langle S_{p,n} \rangle$: expectation of the spin content of the p, n in the target nuclei $a_{p,n}$: effective couplings to p and n

Superheated fluid detectors

COUPP experiment

- Energy depositions > E_{th}
 → expanding bubble
 detected with cameras +
 piezo-acoustic sensors
- Bubble chamber with C₃F₈ superheated fluid

Great sensitivity to spin-dependent σ

Figure from Eric Vázquez Jáuregui @ICHEP2022

- PICO40L: about to take data @SNOLAB
- PICO-500: ton-scale experiment to be installed in the miniCLEAN space @SNOLAB on 2023-2024

Teresa Marrodán Undagoitia (MPIK)

Distinguish dark matter from neutrinos

Vahsen et al., Ann. Rev. Nucl. Part. Sci. 71 (2021) 189-224 & arXiv:2102.04596

Directional searches

- In solids or liquids, several keV recoil is below 100 nm
- But for a low pressure-gas, P < 100 Torr, the range is ~ (1 − 2) mm
- Most projects use low pressure TPCs with CF₄ (¹⁹F) as target
 - → Challenge: measure ~ mm tracks in cubic meter volumes

Directional searches

 \rightarrow Not competitive at the moment with liquids or solids but important confirmation in case of a WIMP detection

CYGNO (Italy)

CYGNUS/DRIFT (UK)

CYGNUS-Oz (Australia)

Slide from S. Vahsen UCLA 2023

Summary of dark matter searches

- LHC is producing very stringent results for the production of dark matter particles
- Exciting signal hints have appeared in indirect detection
 → but astrophysical explanations also exist for the observed features
- Large improvement of sensitivity in direct detection
 LXe technology is most sensitive at WIMP masses above ~ 5 GeV
 Below this mass cryogenic bolometers have best results
- We hope for a dark matter discovery in various detectors and ideally via different searches!

Purposes of detector calibration:

• Data stability:

monitoring of detector parameters (amplification of signals, slow control parameters, ..) and of the related electronics

• Determination of energy scale:

detector signals are photoelectrons, charges or heat \rightarrow need to convert to keV $_{\it nr}$

• Determination of signal and background regions: description of nuclear and electronic recoil regions

Detector calibration: signal and background

- Discrimination in a cryogenic germanium detector (left) No surface events included!
- Discrimination in a liquid xenon detector (middle)
- Discrimination in a liquid argon detector (right)
 Two parameters available for discrimination