## (B)SM and the LHC

## I. Schienbein <br> U Grenoble Alpes/LPSC Grenoble



Summer School in Particle and Astroparticle physics Annecy-le-Vieux, I8-25 July 2023

## Plan

I. The Standard Model of particle physics (Ist round)
2. Some Basics
3. The Standard Model of particle physics (2nd round)

- Symmetries \& Fields
- Lagrangian terms
- Higgs mechanism

4. From the SM to predictions at the LHC

- Cross sections, Decay widths
- Feynman rules
- Parton Model

5. Beyond the Standard Model

## Literature

I) Michele Maggiore, A Modern Introduction to Quantum Field Theory, Oxford University Press
2) Matthew D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press
3) Francis Halzen, Alan D. Martin, Quarks \& Leptons,Wiley
4) S.Weinberg, The Quantum Theory of Fields I, Cambridge Univ. Press
5) H. Georgi, Lie algebras in particle physics, Frontiers in Physics
6) Robert Cahn, Semi-Simple Lie Algebras and Their Representations, freely available on internet
7) R. Slansky, Group Theory for Unified Model Building, Phys. Rep. 79 (198I) I-I28

## I.The Standard Model of particle physics (Ist round)

# The ultimate goal (for some at least...) 

## A consistent view of the world

Daß ich erkenne, was die Welt im Innersten zusammenhält...
(Goethe, Faust I)

## AGE-OLD Questions

What are the fundamental constituents which comprise the universe?

## AGE-OLD Questions

What are the fundamental constituents which comprise the universe?

How do they interact?

## AGE-OLD Questions

# What are the fundamental constituents which comprise the universe? 

How do they interact?

What holds them together?

## AGE-OLD Questions

# What are the fundamental constituents which comprise the universe? 

How do they interact?

What holds them together?

Who will win the next World Cup?

## Periodic Table circa 425 BC

## Periodic Table circa 425 BC

## Periodic Table circa 425 BC

## Earth

## Water

 Fire"The periodic table."

## Periodic Table circa 425 BC

## Earth

## Water

 Fire"The periodic table."

## Periodic Table circa 425 BC

## Periodic Table circa 425 BC


"The periodic table."
Compact
Easy to remember
Fits on a T-shirt

"Of course the elements are earth, water, fire and air. But what about chromium? Surely you can't ignore chromium."

Sidney Harris

## Periodic Table circa 425 BC


"The periodic table."
Compact
Easy to remember
Fits on a T-shirt

"Of course the elements are earth, water, fire and air. But what about chromium? Surely you can't ignore chromium."

Sidney Harris

## Unification

## Earth

## Water

 Fire
## Plato:

Since the four elements can transform into each other, it is reasonable to assume that there is only one fundamental substance and the four elements are just different manifestations of it!

Easy to remember
Fits on a T-shirt

## Periodic Table circa 1900

table de mendéléef



Dimitri Mendeleev (1834-I907)

## Periodic Table circa 1900



Dimitri Mendeleev (I834-I907)

## 66 elements!

(count it, if you like)

We currently have 118 elements

## Atoms

$\checkmark$ At the atomic scale, matter is composed of atoms:
\& A core: the nucleus, made of
$\star$ Protons ( ) )
$\star$ Neutrons (O)
© Peripheral electrons (•)

## Atoms

$\checkmark$ At the atomic scale, matter is composed of atoms:
\& A core: the nucleus, made of

$\star$ Neutrons (O)
$\%$ Peripheral electrons (•)

$\checkmark$ Naively, protons and neutrons are composed objects:
\% Proton: two up quarks and one down quark
\& Neutron: one up quarks and two down quarks

$\checkmark$ In reality, they are dynamical objects:
$\because$ Made of many interacting quarks and gluons (see later)

## Elementary Matter Constituents I

$\checkmark$ Elementary matter constituents

$\checkmark$ Neutrons can be converted to protons: the beta decay


## Elementary Matter Constituents I

In the mid-1930s, physicists thought they knew all the subatomic particles of nature - the proton, neutron, and electron of the atom.

Pauli postulated the existence of the neutrino (1930) in order to explain the energy spectrum of electrons in beta-decay*. The neutrino $\left(\bar{\nu}_{\mathbf{e}}\right)$ was finally discovered by Reines and Cowen in 1956.
*Note, the neutron was only discovered in 1932 by Chadwick and also the positron was discovered this year by Anderson. Postulating a new particle was very radical. Bohr rather wanted to sacrifice energymomentum conservation (being valid only statistically)! Note also that while a free neutron is unstable, a bound neutron inside a nucleus can very well be stable precisely due to energy conservation!

However, in 1936 the muon was discovered (Anderson, Neddermeyer)a new particle having such surprising properties that Nobel laureate I.I. Rabi quipped, "who ordered that?" when informed of the discovery. This was the first particle of an (unstable) 2nd generation.

## Elementary Matter Constituents II

$\checkmark$ Elementary matter constituents: we have three families


```
※ Three up-type quarks
    \(\star\) Up ( u )
    \(\star\) Charm ( c )
    \(\star\) Top ( t )
\& Three down-type quarks
    \(\star\) Down ( d )
    \(\star\) Strange ( s )
    \(\star\) Bottom ( b )
※ Three neutrinos
    \(\star\) Electron \(\left(\nu_{e}\right)\)
    \(\star\) Muon \(\left(\nu_{\mu}\right)\)
    \(\star \operatorname{Tau}\left(\nu_{\tau}\right)\)
※ There charged leptons
    \(\star\) Electron ( e )
    \(\star\) Muon ( \(\mu\) )
    \(\star \operatorname{Tau}(\tau)\)
```


## Four fundamental Interactions



Electromagnetism
\% Interactions between charged particles (quarks, charged leptons)
$\%$ Mediated by massless photons $\gamma$
$\checkmark$ Weak interactions
\& Interactions between all matter fields
$\because$ Mediated by massive weak W-bosons and Z-bosons

$\checkmark$ Strong interactions
\% Interactions between colored particles (quarks)
$\because$ Mediated by massless gluons g
$\because$ Responsible for binding protons and neutrons within the nucleus
$\downarrow$ Gravity
$\because$ Not included in the Standard Model


## The Higgs boson

$\checkmark$ The masses of the particles
*- Elegant mechanism to introduce them
$\%$ Price to pay: a new particle, the so-called Higgs boson

## The Higgs boson

- The masses of the particles
\% Elegant mechanism to introduce them
* Price to pay: a new particle, the so-called Higgs boson
discovered in 2012




## Periodic Table circa 2012 AD



Compact
Easy to remember
Fits on a T-shirt
The Standard Model (SM) for the strong, weak, and electromagnetic interactions

## II. Some Basics

## Overview

- Our goal (next chapter):

Understand the SM at a slightly more detailed level as summarised on the next slide

- Before, we review some basics helpful later for the understanding:
- Units and scales in particle physics
- The general theoretical framework
- Symmetries


## One page summary of the world

Gauge group
Particle content

$$
\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}
$$

| Matter |  |  |  | Higgs |  | Gauge |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q=\binom{u_{L}}{d_{L}}$ | $(3,2)_{1 / 3}$ | $L=\binom{\nu_{L}}{e_{L}}$ | $(1,2){ }_{-1}$ | $H=\binom{h^{+}}{h^{0}}$ | $(1,2){ }_{1}$ | $B$ | $(1,1){ }_{0}$ |
| $u_{R}^{c}$ | $(\overline{\mathbf{3}}, \mathbf{1})_{-4 / 3}$ | $e_{R}^{c}$ | $(\mathbf{1}, \mathbf{1})_{2}$ |  |  | W | $(1,3){ }_{0}$ |
| $d_{R}^{c}$ | $(\overline{\mathbf{3}}, \mathbf{1})_{2 / 3}$ | $\nu_{R}^{c}$ | $(1,1){ }_{0}$ |  |  | G | $(8,1)_{0}$ |

Lagrangian
(Lorentz + gauge + renormalizable)

SSB

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} G_{\mu \nu}^{\alpha} G^{\alpha \mu \nu}+\ldots \bar{Q}_{k} \not D Q_{k}+\ldots\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)-\mu^{2} H^{\dagger} H-\frac{\lambda}{4!}\left(H^{\dagger} H\right)^{2}+\ldots Y_{k \ell} \bar{Q}_{k} H\left(u_{R}\right)_{\ell} \\
& \bullet H \rightarrow H^{\prime}+\frac{1}{\sqrt{2}}\binom{0}{v} \\
& \text { - } \operatorname{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{Q}
\end{aligned}
$$

- $B, W^{3} \rightarrow \gamma, Z^{0} \quad$ and $\quad W_{\mu}^{1}, W_{\mu}^{2} \rightarrow W^{+}, W^{-}$
- Fermions acquire mass through Yukawa couplings to Higgs


## Units and Scales <br> (Essential for the big picture/orders of magnitude estimates)

## Units

- Use natural units:

$$
c=I(S R), \hbar=I(Q M), \varepsilon_{0}=I \text { (vacuum permittivity) }
$$

- $\mathrm{c}=\mathrm{I}=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \Rightarrow \mathrm{I} \mathrm{s}=3 \cdot 10^{8} \mathrm{~m}$ [time] $=[$ length $] ;[$ velocity $]=$ pure number
- $\mathrm{E}=\mathrm{m} \gamma \mathrm{c}^{2}=\mathrm{m} \gamma$ (Note: m is always the rest mass; $\gamma^{-2}=1-\mathrm{v}^{2} / \mathrm{c}^{2}$ ) [energy] = [mass] = [momentum]
- $\hbar=I=I \cdot 10^{-34} \mathrm{~J} s \Rightarrow I s=10^{34} \mathrm{~J}^{-1}=0.15 \cdot 10^{22} \mathrm{MeV}$ $[$ time $]=[$ length $]=[\text { energy }]^{-1}$


## Scales

## see PDG review: pdg.|bl.gov

- Planck mass: $\sqrt{ }\left(\hbar c / G_{N}\right)=\sqrt{ }\left(1 / G_{N}\right) \sim 1.2 \cdot 1019 G e V$
- mass of a proton/neutron: $m_{p} \sim 1 \mathrm{GeV}$
- proton/neutron radius: $\mathrm{r}_{\mathrm{p}} \sim \mathrm{Ifm}=10^{-15} \mathrm{~m}=1$ fermi
$\hbar \mathrm{c} \sim 200 \mathrm{MeV}$ fm $=\mathrm{I} \Rightarrow \mathrm{I}$ fermi $\sim(200 \mathrm{MeV})^{-1}$
- mass of an electron: $m_{e} \sim 0.5 \mathrm{MeV}$


## Scales

- Fine structure constant:
- Rydberg energy: $E_{R}=1 / 2 m_{e} c^{2} \alpha^{2}=I / 2 m_{e} a^{2}=13.6 \mathrm{eV}$
- Bohr radius: $a_{B}=\hbar /\left(\mathrm{m}_{\mathrm{e}} \mathrm{c} a\right)=\mathrm{I} /\left(\mathrm{m}_{\mathrm{e}} \mathrm{a}\right) \sim 0.5 \quad 10^{-10} \mathrm{~m}$


## Theorist's prejudice

- Everything that is not forbidden is realized in Nature!
- Not forbidden (by symmetries) but not observed = problem!
- The only 'allowed' numbers are $0, I$, infinity (this is nonsense, of course!)
- 0: forbidden because of symmetry
- I: natural number
- infinity: to be redefined
- small but non-zero couplings = problem ('unnatural')
- large finite couplings (>>1) = non-perturbative

The general theoretical framework

## Special relativity (SR)

- All inertial observers see the same physics:
- same light speed c
- Lorentz symmetries = Space-time "rotations"


$$
\begin{aligned}
x^{\mu} & =(t, \vec{x}) \\
x^{2} & =\eta_{\mu \nu} x^{\mu} x^{\nu}=x^{\mu} x_{\mu}=\text { invariant } \\
\eta_{\mu \nu} & =\operatorname{diag}(1,-1,-1,-1)
\end{aligned}
$$

- Energy-momentum relation: $p=(E, p), p^{2}=m^{2}=E^{2}-\mathbf{p}^{2}$


## Special relativity (SR)

- Lorentz group $O(1,3)=\left\{\Lambda \mid \Lambda^{\top} \eta \wedge=\eta\right\}$
- Proper Lorentz group $S O(1,3)=\left\{\Lambda \mid \Lambda^{\top} \eta \Lambda=\eta, \operatorname{det} \Lambda=I\right\}$
- Proper orthochronous Lorentz group $\mathrm{SO}_{+}(\mathrm{I}, 3): \wedge_{00} \geq 1$ Called the Lorentz group in the following
- Poincaré group $=$ Inhomogeneous Lorenz group $=$ ISO+(I,3)

SO+(I,3) and space-time Translations

## Quantum Mechanics (QM)

- Determinism is not fundamental: $\quad \Delta x^{\mu} \times \Delta p_{\nu} \geq(\hbar / 2) \delta_{\nu}^{\mu}$
- Nature is random $\rightarrow$ probability rules
- The vacuum is not void, it fluctuates!

- Classical physics emerges from constructive interference of probability amplitudes:

Feynman's path integral:


$$
A=\int[d q] \exp (i S[q(t), \dot{q}(t)])
$$

a rational for the least action principle


## Quantum Field Theory (QFT)

- The general theoretical framework in particle physics is Quantum Field Theory
- Weinberg I:

QFT is the only way to reconcile quantum mechanics with special relativity
"QFT = QM + SR"

## Quantum Field Theory (QFT)

- QM: It's the same quantum mechanics as we know it!
- SR:
- Relativistic wave equations are not sufficient!

We need to change number and types of particles in particle reactions

- Need fields and quantize them ("quantum fields")

Particles $=$ Excitations (quanta) of fields

Symmetries I
(Lie groups, Lie algebras)

## Symmetries are described by Groups

A group $(G, \odot)$ is a set of elements $G$ together with an operation
$\odot: G \times G \rightarrow G$ which satifies the following axioms:

- Associativity: $\forall a, b, c \in G:(a \odot b) \odot c=a \odot(b \odot c)$
- Neutral element: $\exists e \in G: \forall a \in G: e \odot a=a \odot e=a$
- Inverse element: $\forall a \in G: \exists a^{-1} \in G: a^{-1} \odot a=a \odot a^{-1}=e$

The group is called commutative or Abelian if also the following axiom is satisfied:

- Commutativity: $\forall a . b \in G: a \odot b=b \odot a$


## Lie groups (simplified)

A Lie group is a group with the property that it depends differentiably on the parameters that define it.

## Lie groups (simplified)

A Lie group is a group with the property that it depends differentiably on the parameters that define it.

- The number of (essential) parameters is called the dimension of the group.
- Choose the parametrization such that $g(\overrightarrow{0})=e$.


## Lie groups (simplified)

A Lie group is a group with the property that it depends differentiably on the parameters that define it.

- The number of (essential) parameters is called the dimension of the group.
- Choose the parametrization such that $g(\overrightarrow{0})=e$.

Example:
Rotation $R(\phi) \in \mathrm{SO}(3)$ by an angle $\phi$ around the $z$-axis:

$$
R(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

## Generators of a Lie group

Be $D(\vec{\alpha})$ an element of a n-dimensional Lie-group $\mathrm{G}, \vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
We can do a Taylor expansion around $\vec{\alpha}=\overrightarrow{0}$ with $D(\overrightarrow{0})=e$ :

$$
\begin{aligned}
D(\vec{\alpha}) & =D(\overrightarrow{0})+\sum_{a} \frac{\partial}{\partial \alpha_{a}} D(\vec{\alpha})_{\mid \vec{\alpha}=0} \alpha_{a}+\ldots \\
& =e+i \sum_{a} \alpha_{a} T^{a}+\ldots
\end{aligned}
$$

## Generators of a Lie group

Be $D(\vec{\alpha})$ an element of a n-dimensional Lie-group $\mathrm{G}, \vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
We can do a Taylor expansion around $\vec{\alpha}=\overrightarrow{0}$ with $D(\overrightarrow{0})=e$ :

$$
\begin{aligned}
D(\vec{\alpha}) & =D(\overrightarrow{0})+\sum_{a} \frac{\partial}{\partial \alpha_{a}} D(\vec{\alpha})_{\mid \vec{\alpha}=0} \alpha_{a}+\ldots \\
& =e+i \sum_{a} \alpha_{a} T^{a}+\ldots
\end{aligned}
$$

The $T^{a}(a=1, \ldots, n)$ are the generators of the Lie group:

$$
T^{a}:=-i\left[\frac{\partial}{\partial \alpha_{a}} D(\vec{\alpha})\right]_{\mid \vec{\alpha}=0}
$$

## Generators of a Lie group

Be $D(\vec{\alpha})$ an element of a n-dimensional Lie-group $\mathrm{G}, \vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
We can do a Taylor expansion around $\vec{\alpha}=\overrightarrow{0}$ with $D(\overrightarrow{0})=e$ :

$$
\begin{aligned}
D(\vec{\alpha}) & =D(\overrightarrow{0})+\sum_{a} \frac{\partial}{\partial \alpha_{a}} D(\vec{\alpha})_{\mid \vec{\alpha}=0} \alpha_{a}+\ldots \\
& =e+i \sum_{a} \alpha_{a} T^{a}+\ldots
\end{aligned}
$$

The $T^{a}(a=1, \ldots, n)$ are the generators of the Lie group:

$$
T^{a}:=-i\left[\frac{\partial}{\partial \alpha_{a}} D(\vec{\alpha})\right]_{\mid \vec{\alpha}=0}
$$

The group element for general $\vec{\alpha}$ can be recovered by exponentiation:

$$
D(\vec{\alpha})=\lim _{k \rightarrow \infty}\left(e+\sum_{a} \frac{i \alpha_{a} T^{a}}{k}\right)^{k}=e^{i \sum_{a} \alpha_{a} T^{a}}
$$

## Lie algebra

- The generators $\mathrm{T}^{\mathrm{a}}$ form a basis of a Lie algebra

Def.: A Lie algebra $g$ is a vector space together with a skew-symmetric bilinear map [, ]: g x g $\rightarrow \mathrm{g}$ (called the Lie bracket) which satisfies the Jacobi identity

## Lie algebra

- The generators $\mathrm{T}^{\mathrm{a}}$ form a basis of a Lie algebra
- $\quad\left[\mathrm{T}^{\mathrm{a}}, \mathrm{T}^{\mathrm{b}}\right]=\mathrm{i} \mathrm{fab}_{\mathrm{c}} \mathrm{T}^{\mathrm{c}}$ (Einstein convention)
- The $\mathrm{fab}_{\mathrm{c}}$ are called structure constants

Def.: A Lie algebra $g$ is a vector space together with a skew-symmetric bilinear map [, ]: g x g $\rightarrow \mathrm{g}$ (called the Lie bracket) which satisfies the Jacobi identity

## Lie algebra

- The generators $\mathrm{T}^{\mathrm{a}}$ form a basis of a Lie algebra
- $\left[\mathrm{T}^{\mathrm{a}}, \mathrm{T}^{\mathrm{b}}\right]=\mathrm{i}$ fab ${ }_{\mathrm{c}} \mathrm{Tc}^{\mathrm{c}}$ (Einstein convention)
- The $f_{\mathrm{ab}}^{\mathrm{c}}$ are called structure constants
- Any group element connected to the neutral element can be generated using the generators:
$\mathbf{g}=\exp \left(\mathbf{i} \mathbf{c}_{\mathbf{a}} \mathbf{T}^{\mathbf{a}}\right)$ (Einstein convention)
Def.: A Lie algebra g is a vector space together with a skew-symmetric bilinear map [, ]: g x g $\rightarrow \mathrm{g}$ (called the Lie bracket) which satisfies the Jacobi identity


## Rank

- Rank $=$ Number of simultanesouly diagonalizable generators
- Rank $=$ Number of good quantum numbers
- Rank $=$ Dimension of the Cartan subalgebra
- Rank $=$ Number of independent Casimir operators


## Symmetries II

 (Representations)
## Representations of a group

- Def.:A linear representation of a group $G$ on a vector space $V$ is a group homomorphism $\mathrm{D}: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$.
- Remarks:
- $g \mapsto D(g)$, where $D(g)$ is a linear operator acting on $V$
- The operators $D(g)$ preserve the group structure: $D\left(g_{1} g_{2}\right)=D\left(g_{1}\right) D\left(g_{2}\right), D(e)=$ identity operator
- V is called the base space, $\operatorname{dim} \mathrm{V}=$ dimension of the representation


## Representations of a group

- A representation $(\mathrm{D}, \mathrm{V})$ is reducible if a non-trivial subspace $\mathrm{U} \subset \mathrm{V}$ exists which is invariant with respect to D :
$\forall g \in \mathrm{G}: \forall \mathbf{u} \in \mathrm{U}: \mathrm{D}(\mathrm{g}) \mathbf{u} \in \mathrm{U}$
- A representation $(\mathrm{D}, \mathrm{V})$ is irreducible if it is not reducible
- A representation $(D, V)$ is completely reducible if all $D(g)$ can be written in block diagonal form (with suitable base choice)


## Representations of a Lie algebra

- Def.: A linear representation of a Lie algebra A on a vector space V is a group homomorphism $\mathrm{D}: \mathrm{A} \rightarrow \operatorname{End}(\mathrm{V})$.
- Remarks:
- $t \mapsto T=D(t)$, where $T$ is a linear operator acting on $V$
- The operators $\mathrm{D}(\mathrm{t})$ preserve the algebra structure: $\left[\mathrm{t}^{\mathrm{a}}, \mathrm{t}^{\mathrm{b}}\right]=\mathrm{i} \mathrm{fab}^{\mathrm{ab}} \mathrm{t}^{\mathrm{c}} \rightarrow\left[\mathrm{T}^{\mathrm{a}}, \mathrm{T}^{\mathrm{b}}\right]=\mathrm{ifab} \mathrm{C} \mathrm{T}^{\mathrm{c}}$
- A representation for the Lie algebra induces a representation for the Lie group


## Tensor product

Composite systems are described mathematically by the tensor product of representations

- Tensor products of irreps are in general reducible!
- They are a direct sum of irreps: Clebsch-Gordan decomposition
- Examples:
- System of two spin-l/2 electrons
- Mesons: quark-anti-quark systems, Baryons: systems of three quarks


## Symmetries III

(Space-time symmetries)

## Space-time symmetry

- The minimal symmetry of a (relativistic) QFT is the Poincaré symmetry
- Observables should not change under Poincaré transformations of
- Space-time coordinates $x=(t, \mathbf{x})$
- Fields $\phi(x)$
- States of the Hilbert space |p, ... $\rangle$
- Need to know how the group elements are represented as operators acting on these objects (space-time, fields, states)
- At the classical level Poincaré invariant Lagrangians is all we need


## Poincaré algebra I

- Poincaré group = Lorentz group SO+(I,3) + Translations
- Lorentz group has 6 generators: J ${ }_{\mu v}=-J_{v \mu}$

Lorentz algebra: $\left[J_{\mu v}, J_{\rho \sigma}\right]=-i\left(\eta_{\mu \rho} J_{v \sigma}-\eta_{\mu \sigma} J_{v \rho}-[\mu \leftrightarrow v]\right)$

- Poincaré group has $10=6+4$ generators: $J_{\mu v}, P_{\mu}$

Poincaré algebra:
$\left[P_{\mu}, P_{v}\right]=0,\left[J_{\mu v}, P_{\lambda}\right]=i\left(\eta_{\nu \lambda} P_{\mu}-\eta_{\mu \lambda} P_{v}\right)$, Lorentz algebra

## Poincaré algebra II

- Poincaré group has $10=6+4$ generators: $J_{\mu \nu}, P_{\mu}$
- 3 Rotations $\rightarrow$ angular momentum $\mathrm{J}=\mathrm{I} / 2 \varepsilon_{\mathrm{ijk}} \mathrm{j}_{\mathrm{jk}}$ $\left[\mathrm{i}_{\mathrm{i}, \mathrm{j}} \mathrm{j}=\mathrm{i} \varepsilon_{\mathrm{ijk}} \mathrm{J}_{\mathrm{k}}\right.$
- 3 Boosts $\rightarrow \mathrm{K}_{\mathrm{i}}=\mathrm{J}_{\mathrm{o}}$ $\left[\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{j}}\right]=-\mathrm{i} \varepsilon_{\mathrm{ijk}} \mathrm{J}_{\mathrm{k}} ;\left[\mathrm{j}, \mathrm{K}_{\mathrm{i}}\right]=\mathrm{i} \varepsilon_{\mathrm{ijk}} \mathrm{K}_{\mathrm{k}}$
- 4 Translations $\rightarrow$ energy/momentum $\mathrm{P}_{\mu}$

$$
\left[\mathrm{l}_{i}, \mathrm{P}_{\mathrm{i}}\right]=\mathrm{i} \varepsilon_{\mathrm{ijk}} \mathrm{P}_{\mathrm{k}},\left[\mathrm{~K}_{\mathrm{i}}, \mathrm{P}_{\mathrm{j}}\right]=-\mathrm{i} \delta_{\mathrm{ij}} \mathrm{P}_{0},\left[\mathrm{P}_{\left.0, \mathrm{j}_{\mathrm{i}}\right]}=0,\left[\mathrm{P}_{0}, \mathrm{~K}_{\mathrm{i}}\right]=\mathrm{i} \mathrm{P}_{\mathrm{i}}\right.
$$

## Tensor representations of so(l,3) (integer spin, real vector space)

- All physical quantities can be classified according to their transformation properties under the Lorentz group
- Representations characterized by two invariants: mass, spin (Casimir operators $\mathrm{P}^{2}, \mathrm{~W}^{2}$ )
- Physical particles are irreps of the Poincaré group:

$$
\begin{array}{cc}
\phi=\text { scalar, } & V_{\mu}=\text { vector, } \\
s=0 & T_{\mu v}=\text { tensor, } . . . \\
s=2
\end{array}
$$

## Spinor representations of so(1,3) (half integer spin, complex vector space)

- $s o(1,3) \sim s(2, C) \sim s u(2) L \oplus s u(2) R$
$\mathrm{J}_{\mathrm{m}}{ }^{+}:=\mathrm{J}_{\mathrm{m}}+\mathrm{i} \mathrm{K}_{\mathrm{m}}, \mathrm{J}_{\mathrm{m}}{ }^{-}:=\mathrm{J}_{\mathrm{m}}-\mathrm{i} \mathrm{K}_{\mathrm{m}}:\left[\mathrm{J}_{\mathrm{m}}{ }^{+}, \mathrm{Jn}^{-}\right]=\mathbf{0},\left[\mathrm{Ji}^{+}, \mathrm{J}^{+}\right]=\mathbf{i} \varepsilon_{\mathrm{ijk}} \mathrm{J}_{\mathrm{k}^{+}},\left[\mathrm{Ji}^{-}, \mathrm{Jj}^{-}\right]=\mathbf{i} \varepsilon_{\mathrm{ijk}} \mathrm{Jk}^{-}$
- $\operatorname{su}(2) \mathrm{L}, \mathrm{R}$ labelled by $\mathrm{j}, \mathrm{R}=0, \mathrm{I} / 2, \mathrm{I}, 3 / 2,2, \ldots$
- $(\mathrm{j}, \mathrm{j}, \mathrm{R})=(0,0)$ scalar
- $(I / 2,0)$ left-handed Weyl spinor; $(0,1 / 2)$ right-handed Weyl spinor
- $(\mathrm{I} / 2, \mathrm{I} / 2)$ vector
- Dirac spinor $=(I / 2,0)+(0, I / 2)$ is reducible (not fundamental) Note: $(\mathrm{I} / 2,0)$ and $(0, \mathrm{I} / 2)$ can have different interactions
- Majorana spinor $=(I / 2,0)+(I / 2,0)$ c for neutral fermions only


## Representation of so(I,3) on fields

- A field $\phi(\mathrm{x})$ is a function of the coordinates
- Lorentz transformation: $x^{\mu} \rightarrow x^{\prime \mu}=\Lambda^{\mu_{v}} x^{v}, \phi \rightarrow \phi^{\prime}$
- Scalar field: $\phi^{\prime}\left(x^{\prime}\right)=\phi(x)$

At the same time $\phi^{\prime}(x)=\exp \left(\mathrm{i} / / 2 \omega_{\mu \mathrm{V}} \mathrm{J}^{\mu \mathrm{V}}\right) \phi(\mathrm{x})$
Comparison allows to find a concrete expression for J Juv: $J^{\mu v}=L^{\mu v}+S^{\mu v}$ with $S^{\mu v}=0$, $L^{\mu v}=x^{\mu} P^{v}-x^{v} P^{\mu}$ where $P^{\mu}=i \partial^{\mu}$

- Similar procedure forWeyl, Dirac,Vector fields, ... and for the full Poincaré group


## Laws of Nature

- Laws of Nature:
- Tensor equations
- Spinor equations
- A tensor index can always be replaced by a pair of spinor indices (but not the other way round):
$X^{\mu} \rightarrow X^{\alpha \dot{\beta}}=X_{\mu}\left(\sigma^{\mu}\right)^{\alpha \dot{\beta}}$ where $\sigma^{\mu}=\left(\mathbf{1}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$ with $\sigma^{1,2,3}$ the Pauli matrices
In this sense spinors are more fundamental and all laws of Nature can be written as Spinor equations


## Symmetries IV

(Unitary symmetries)

## Internal symmetries

- Coleman-Mandula theorem:

The most general symmetry of a relativistic QFT:
Space-time symmetry x Internal symmetry (direct product)

- Algebra: direct sum space-time generators and internal symmetry generators
- 3 rotations
- 3 boosts
- 4 translations
- generators $T^{a}$ of internal symmetry


## SU(n)

- Group: $S U(n)=\left\{U \in M_{n}(\mathbf{C}) \mid U \dagger U=I_{n}\right.$, $\left.\operatorname{det} U=I\right\}$
- Algebra: su(n) $=\left\{t \in M_{n}(\mathbf{C}) \mid \operatorname{tr}(\mathrm{t})=0, \mathrm{t}^{\dagger}=\mathrm{t}\right\}$
- $\operatorname{dim} S U(n)=\operatorname{dim} \operatorname{su}(n)=n^{2}-1$
- $\quad$ rank $\operatorname{su}(\mathrm{n})=\mathrm{n}$-I
- Important representations (D,V):
- The fundamental representation: $\mathbf{n}$ ( V is an n -dimensional vector space)
- The anti-fundamental representation: $\mathbf{n}^{*}$
- The adjoint representation: $V=s u(n)$, dimension of adjoint representation $=n^{2}-I$


## SU(2)

- $\operatorname{dim} \mathrm{SU}(2)=\operatorname{dim} \mathrm{su}(2)=2^{2}-\mathrm{I}=3$
- rank su(2) = 2-I = I
- Algebra: $\left[\mathrm{t}_{\mathrm{k}}, \mathrm{t}\right]=\mathrm{i} \varepsilon_{\mathrm{klm}} \mathrm{t}_{\mathrm{m}}$
- The fundamental representation: 2 $T_{i}=I / 2 \sigma_{i}(i=1,2,3), \sigma_{i}$ Pauli matrices
- irreps: Basis states $\mid \mathrm{j}, \mathrm{j}_{\mathrm{z}}>, \mathrm{j}=0, \mathrm{I} / 2, \mathrm{I}, 3 / 2,2, \ldots ; \mathrm{j}_{\mathrm{z}}=-\mathrm{j},-\mathrm{j}+\mathrm{I}, \ldots, \mathrm{j}-\mathrm{I}, \mathrm{j}$


## SU(3)

- $\operatorname{dim} \operatorname{SU}(3)=\operatorname{dim} \operatorname{su}(3)=3^{2}-\mathrm{I}=8$
- rank su(3) $=3-\mathrm{I}=2$
- Algebra: $\left[\mathrm{t}_{\mathrm{a}}, \mathrm{t}_{b}\right]=\mathrm{i} \mathrm{f}_{\mathrm{abc}} \mathrm{t}_{\mathrm{c}}$
- The fundamental representation: 3 $T_{i}=I / 2 \lambda_{i}(i=I, 2,3), \lambda_{i}$ Gell-Mann matrices
- The structure constants can be calculated using the generators in the fundamental irrep: $\mathrm{f}_{\mathrm{abc}}=-2 \mathrm{i} \operatorname{Tr}([\mathrm{Ta}, \mathrm{Tb}] \mathrm{Tc})$
- irreps: labeled by 2 integer numbers (rank = 2 )


## Glossary of Group Theory: I. Basics

- Group
- discrete, continuous, Abelian, non-Abelian
- subgroup = subset which is a group
- invariant subgroup = normal subgroup
- simple group = has no proper invariant subgroups
- Lie group: continuous group which depends differentiably on its parameters
- dimension $=$ number of essential parameters
- Lie algebra
- generators = basis of the Lie algebra; elements of the tangent space $T_{e} G$
- dimension $=$ number of linearly independent generators
- structure constants = specifiy the algebra (basis dependent)
- subalgebra = subset which is an algebra
- ideal = invariant subalgebra
- simple algebra $=$ has no proper ideals (smallest building block; irreducible)
- semi-simple algebra $=$ direct sum of simple algebras


## Glossary of Group Theory: II. Representations

- Representations
- of groups
- of algebras
- equivalent, unitary, reducible, entirely reducible
- irreducible representations (irreps)
- fundamental representation
- adjoint representation
- Direct sum of two representations
- Tensor product of two representations
- Clebsch-Gordan decomposition
- Clebsch-Gordan coefficients
- Quadratic Casimir operator
- Dynkin index


## Glossary of Group Theory: III. Cartan-Weyl

- Cartan-Weyl analysis of simple Lie algebras: $\mathrm{G}=\mathrm{H} \oplus \mathrm{E}$
- $\mathrm{H}=$ Cartan subalgebra $=$ maximal Abelian subalgebra of $G$
- rank $G=$ dimension of Cartan subalgebra $=$ number of simultaneously diagonalisable operators
- $\mathrm{E}=$ space of ladder operators
- Root vector (labels the ladder operators)
- positive roots $=$ if first non-zero component positive (basis dependent)
- simple roots $=$ positive root which is not a linear combination of other positive roots with positive coefficients
- Weight vector (quantum numbers of the physical states)
- heighest weight


## Glossary of Group Theory: IV. Dynkin

- Dynkin diagrams
- complete classification of all simple Lie algebras by Dynkin
- Dynkin diagrams $\leftrightarrow$ simple roots $\rightarrow$ roots $\rightarrow$ ladder operators
- Dynkin diagrams $\leftrightarrow$ simple roots $\rightarrow$ roots $\rightarrow$ geometrical interpretation of commutation relations
- Cartan matrix
- Simple Lie algebra $\leftrightarrow$ root system $\leftrightarrow$ simple roots $\leftrightarrow$ Dynkin diagrams $\leftrightarrow$ Cartan matrix
- Dynkin lables (of a weight vector)
- Dynkin diagrams + Dynkin labels $\Rightarrow$ recover whole algebra structure
- analysis of any irrep of any simple Lie algebra (non-trivial in other notations)
- tensor products
- subgroup structure, branching rules

