(B)SM and the LHC

I. Schienbein
 U Grenoble Alpes/LPSC Grenoble

Summer School in Particle and Astroparticle physics Annecy-le-Vieux, I8-25 July 2023

III. The Standard Model of particle physics (2nd round)

The general procedure

- Introduce Fields \& Symmetries

The general procedure

- Introduce Fields \& Symmetries
- Construct a local Lagrangian density

The general procedure

- Introduce Fields \& Symmetries
- Construct a local Lagrangian density
- Describe Observables
- How to measure them?
- How to calculate them?

The general procedure

- Introduce Fields \& Symmetries
- Construct a local Lagrangian density
- Describe Observables
- How to measure them?
- How to calculate them?
- Falsify: Compare theory with data

Fields \& Symmetries

Matter content of the Standard Model (including the antiparticles)

Matter				Higgs		Gauge	
$Q=\binom{u_{L}}{d_{L}}$	$(\mathbf{3}, 2)_{1 / 3}$	$L=\binom{\nu_{L}}{e_{L}}$	$(1,2)-1$	$H=\binom{h^{+}}{h^{0}}$	$(1,2)_{1}$	A	$(1,1)_{0}$
u_{R}^{c}	$(\overline{3}, 1)_{-4 / 3}$	e_{R}^{c}	$(1,1){ }_{2}$			W	$(1,3)_{0}$
d_{R}^{c}	$(\overline{\mathbf{3}}, \mathbf{1})_{2 / 3}$	ν_{R}^{c}	$(1,1){ }_{0}$			G	$(8,1)_{0}$

$Q^{c}=\binom{u_{L}^{c}}{d_{L}^{c}}$	$(\overline{3}, \overline{2})_{-1 / 3}$	$L^{c}=\binom{\nu_{L}^{c}}{e_{L}^{c}}$	$(1, \overline{2})_{1}$	$H=\binom{h^{-}}{h^{0}}$	$(1, \overline{2})_{-1}$	A	$(1,1){ }_{0}$
u_{R}	$(\mathbf{3}, \mathbf{1})_{4 / 3}$	e_{R}	$(1,1)_{-2}$			W	$(1,3){ }_{0}$
d_{R}	$(3,1)_{-2 / 3}$	ν_{R}	$(1,1){ }_{0}$			G	$(8,1)_{0}$

Matter content of the Standard Model

- Left-handed up quark \mathbf{u}_{L} :
- LHWeyl fermion: $\mathbf{u}_{\text {La }} \sim(1 / 2,0)$ of so(I,3)
- a color triplet: $\mathbf{u}_{\mathrm{Li}} \sim 3$ of $\mathrm{SU}(3)$ c
- Indices: (u_{L})ia with $\mathrm{i}=1,2,3$ and $\mathrm{a}=\mathrm{I}, 2$
- Similarly, left-handed down quark \mathbf{d}_{L}
- u_{L} and d_{L} components of a $S U(2) L$ doublet: $\mathbf{Q}_{\beta}=\left(u_{L}, d_{L}\right) \sim 2$
- \mathbf{Q} carries a hypercharge $I / 3: \mathbf{Q} \sim(3,2)_{I / 3}$ of $S U(3)_{c} \times S U(2)\left\llcorner\times U(I)_{Y}\right.$
- Indices: $\mathbf{Q}_{\beta i a}$ with $\beta=1,2 ; i=1,2,3$ and $a=1,2$

Matter content of the Standard Model

- There are three generations: $\mathbf{Q}_{\mathbf{k}}, \mathrm{k}=\mathrm{I}, 2,3$
- Lot's of indices: $\mathbf{Q}_{k \beta i a}(\mathrm{x})$
- We know how the indices β,i,a transform under symmetry operations (i.e., which representations we have to use for the generators)

Matter content of the Standard Model

- Right-handed up quark \mathbf{u}_{R} :
- RHWeyl fermion: $\mathbf{u}_{\text {Ra. }} \sim(\mathbf{0}, \mathbf{I} / \mathbf{2})$ of so(I,3)
- a color triplet: $\mathbf{u n i}_{\text {R }} \sim \mathbf{3}$ of $\mathrm{SU}(3)_{\mathrm{c}}$
- a singlet of $S U(2)\left\llcorner: \mathbf{u}_{\mathbf{R}} \sim \mathbf{I}\right.$ (no index needed)
- \mathbf{U}_{R} carries hypercharge $4 / 3$: $\mathrm{U}_{\mathrm{R}} \sim(3, \mathrm{I})_{4 / 3}$
- Indices: (\mathbf{u}_{R})ia. with $\mathrm{i}=1,2,3$ and $\mathrm{a} .=1,2$ (Note the dot)
- Note that $\mathbf{u}_{\mathbf{R}}{ }^{\mathrm{c}} \sim(3 *, I)-4 / 3$

Matter content of the Standard Model

- Again there are three generations: $\mathbf{u}_{\mathbf{R k}}, \mathrm{k}=\mathrm{I}, 2,3$
- Lot's of indices: URkia. (x)
- And so on for the other fields ...

Exercise

- How many fermions are there in one generation?

Exercise

$$
\begin{aligned}
& u_{L}: 3, d_{L}: 3, u_{R}: 3, d_{R}: 3 \\
& \nu_{L}: 1, e_{L}: 1, e_{R}: 1,\left(\nu_{R}: 1\right)
\end{aligned}
$$

$15(+1)$ fermions and
$15(+1)$ anti-fermions

Terms for the Lagrangian

How to build Lorentz scalars? Scalar field (like the Higgs)

Real field ϕ

$$
\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

Note:The mass dimension of each term in the
Lagrangian has to be 4!
Complex field $\phi=\frac{1}{\sqrt{2}}\left(\varphi_{1}+i \varphi_{2}\right)$
$\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi$

How to build Lorentz scalars? Fermions (spin I/2)

Left-handed Weyl spinor

$$
i \psi_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}
$$

$$
\begin{aligned}
\sigma^{\mu} & =\left(1, \sigma^{i}\right) \\
\bar{\sigma}^{\mu} & =\left(1,-\sigma^{i}\right)
\end{aligned}
$$

Right-handed Weal spinor

$$
i \psi_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_{R}
$$

Mass term mixes left and right

$$
i \psi_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}+i \psi_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_{R}-m\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right)
$$

Dirac spinor in chiral basis

$$
\Psi=\binom{\psi_{L}}{\psi_{R}} \quad i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-m \bar{\Psi} \Psi \quad \text { with } \quad \bar{\Psi}=\Psi^{\dagger} \gamma^{0} \quad \text { and } \quad \gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

How to build Lorentz scalars? Fermions (spin I/2)

Left-handed Weyl spinor

$$
i \psi_{L}^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_{L}
$$

Right-handed Weyl spinor

$$
i \psi_{R}^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_{R}
$$

$$
\begin{aligned}
\sigma^{\mu} & =\left(1, \sigma^{i}\right) \\
\bar{\sigma}^{\mu} & =\left(1,-\sigma^{i}\right)
\end{aligned}
$$

Note: Lorentz-invariance \Rightarrow mass terms 'marry'
left and right chiral fermions

Dirac spinor in chiral basis

$$
\Psi=\binom{\psi_{L}}{\psi_{R}} \quad i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi-m \bar{\Psi} \Psi \quad \text { with } \quad \bar{\Psi}=\Psi^{\dagger} \gamma^{0} \quad \text { and } \quad \gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

How to build Lorentz scalars? Vector boson (spin I)

$\mathrm{U}(1)$ gauge boson ("Photon")

$$
-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} \underbrace{}_{\substack{\text { Mass term allowed by Lorentz invariance; } \\ \text { forbidden by gauge invariance }}}
$$

In principle, there is a second invariant

$$
-\frac{1}{4} F_{\mu \nu} \tilde{F}^{\mu \nu} \quad \text { with } \quad \widetilde{F}_{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

$F \tilde{F} \propto \vec{E} \cdot \vec{B}$
Violates Parity,Time reversal, and CP symmetry; prop. to a total divergence
\rightarrow doesn't contribute in QED
BUT strong CP problem in QCD

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

$$
\begin{aligned}
& S=\int d^{4} \mathscr{L},[S]=[\hbar]=1 \\
& {\left[d^{4} x\right]=\text { Length }^{4}=\text { Mass }^{-4}} \\
& {[\mathscr{L}]=\text { Mass }^{4}} \\
& \mathscr{L} \supset-\frac{1}{2} m_{\phi}^{2} \phi^{2} \Rightarrow[\phi]=\text { Mass } \\
& \mathscr{L} \supset-m_{\psi} \psi_{L}^{\dagger} \psi_{R} \Rightarrow\left[\psi_{L . R}\right]=\text { Mass }^{3 / 2} \\
& \mathscr{L} \supset-\frac{1}{2} m_{A}^{2} A_{\mu} A^{\mu} \Rightarrow\left[A_{\mu}\right]=\text { Mass } \\
& {\left[\partial_{\mu}\right]=\text { Mass, }\left[F_{\mu \nu}\right]=\text { Mass }^{2}}
\end{aligned}
$$

Gauge symmetry

- Idea: Generate interactions from free Lagrangian by imposing local (i.e. $a=a(x))$ symmetries
- Does not fall from heaven; generalization of 'minimal coupling' in electrodynamics
- Final judge is experiment: It works!

Local gauge invariance for a complex scalar field

$\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi \quad$ is invariant under $\phi \rightarrow e^{i \alpha} \phi$.
What if now $a=a(x)$ depends on the space-time?

$$
\begin{aligned}
& \partial_{\mu}\left(e^{i \alpha(x)} \phi\right)^{*} \partial^{\mu}\left(e^{i \alpha(x)} \phi\right)-m^{2}\left(e^{i \alpha(x)} \phi\right)^{*}\left(e^{i \alpha(x)} \phi\right) \\
&= {\left[\partial_{\mu} e^{i \alpha(x)} \cdot \phi+e^{i \alpha(x)} \cdot \partial_{\mu} \phi\right]^{*}\left[\partial^{\mu} e^{i \alpha(x)} \cdot \phi+e^{i \alpha(x)} \cdot \partial^{\mu} \phi\right]-m^{2} \phi^{*} \phi } \\
&= {\left[i e^{i \alpha(x)} \partial_{\mu} \alpha(x) \cdot \phi+e^{i \alpha(x)} \cdot \partial_{\mu} \phi\right]^{*}\left[i e^{i \alpha(x)} \partial^{\mu} \alpha(x) \cdot \phi+e^{i \alpha(x)} \cdot \partial^{\mu} \phi\right]-m^{2} \phi^{*} \phi } \\
&= {\left[-i e^{-i \alpha(x)} \partial_{\mu} \alpha(x) \cdot \phi^{*}+e^{-i \alpha(x)} \cdot \partial_{\mu} \phi^{*}\right]\left[i e^{i \alpha(x)} \partial^{\mu} \alpha(x) \cdot \phi+e^{i \alpha(x)} \cdot \partial^{\mu} \phi\right]-m^{2} \phi^{*} \phi } \\
&=-i e^{-i \alpha(x)} \partial_{\mu} \alpha(x) \cdot \phi^{*} \cdot i e^{i \alpha(x)} \partial^{\mu} \alpha(x) \cdot \phi \\
&-i e^{-i \alpha(x)} \partial_{\mu} \alpha(x) \cdot \phi^{*} \cdot e^{i \alpha(x)} \cdot \partial^{\mu} \phi \\
&+e^{-i \alpha(x)} \cdot \partial_{\mu} \phi^{*} \cdot i e^{i \alpha(x)} \partial^{\mu} \alpha(x) \cdot \phi \\
&+e^{-i \alpha(x)} \cdot \partial_{\mu} \phi^{*} \cdot e^{i \alpha(x)} \cdot \partial^{\mu} \phi \\
&-m^{2} \phi^{*} \phi
\end{aligned}
$$

$$
=\partial_{\mu} \phi \cdot \partial^{\mu} \phi-m^{2} \phi^{*} \phi+\text { non-zero terms }
$$

Not invariant under $\mathrm{U}(\mathrm{I})$!

Local gauge invariance for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$
D_{\mu}=\partial_{\mu}+i A_{\mu},
$$

where the gauge field A_{μ} transforms as

$$
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha
$$

Local gauge invariance for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$
D_{\mu}=\partial_{\mu}+i A_{\mu},
$$

where the gauge field A_{μ} transforms as

$$
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha
$$

$$
\begin{aligned}
D_{\mu} \phi & \rightarrow\left(\partial_{\mu}+i\left[A_{\mu}-\partial_{\mu} \alpha(x)\right]\right]\left[e^{i \alpha(x)} \phi\right] \\
& =\partial_{\mu}\left[e^{i \alpha(x)} \phi\right]+i\left[A_{\mu}-\partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \phi\right] \\
& =i e^{i \alpha(x)} \partial_{\mu} \alpha(x) \cdot \phi+e^{i \alpha(x)} \partial_{\mu} \phi+i A_{\mu} e^{i \alpha(x)} \phi-i \partial_{\mu} \alpha(x) e^{i \alpha(x)} \phi \\
& =e^{i \alpha(x)} \partial_{\mu} \phi+i A_{\mu} e^{i \alpha(x)} \phi \\
& =e^{i \alpha(x)}\left[\partial_{\mu} \phi+i A_{\mu}\right] \phi \\
& =e^{i \alpha(x)} D_{\mu} \phi
\end{aligned}
$$

Local gauge invariance for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$
D_{\mu}=\partial_{\mu}+i A_{\mu},
$$

where the gauge field A_{μ} transforms as

$$
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha
$$

$$
\begin{aligned}
D_{\mu} \phi & \rightarrow\left(\partial_{\mu}+i\left[A_{\mu}-\partial_{\mu} \alpha(x)\right]\right)\left[e^{i \alpha(x)} \phi\right] \\
& =\partial_{\mu}\left[e^{i \alpha(x)} \phi\right]+i\left[A_{\mu}-\partial^{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \phi\right] \\
& =i^{i \alpha(x)} e_{\mu} \alpha(x) \cdot \phi+e^{i \alpha(x)} \partial_{\mu} \phi+i A_{\mu} e^{i \alpha(x)} \phi-i \partial_{\mu} \alpha(x) e^{i \alpha(x)} \phi \\
& =e^{i \alpha(x)} \partial_{\mu} \phi+i A_{\mu} e^{i \alpha(x)} \phi \\
& =e^{i \alpha(x)}\left[\partial_{\mu} \phi+i A_{\mu}\right] \phi \\
& =e^{i \alpha(x)} D_{\mu} \phi
\end{aligned}
$$

Nota bene:

- We call D_{μ} the covariant derivative, because it transforms just like ϕ itself:

$$
\phi \rightarrow e^{i \alpha(x)} \phi \quad \text { and } \quad D_{\mu} \phi \rightarrow e^{i \alpha(x)} D_{\mu} \phi
$$

Local gauge invariance for a complex scalar field

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$
D_{\mu}=\partial_{\mu}+i A_{\mu},
$$

where the gauge field A_{μ} transforms as

$$
A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha
$$

$$
\begin{aligned}
D_{\mu} \phi & \rightarrow\left(\partial_{\mu}+i\left[A_{\mu}-\partial_{\mu} \alpha(x)\right]\right)\left[e^{i \alpha(x)} \phi\right] \\
& =\partial_{\mu}\left[e^{i \alpha(x)} \phi\right]+i\left[A_{\mu}-\partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \phi\right] \\
& =i^{i \alpha(x)} \partial_{\mu} \alpha(x) \cdot \phi+e^{i \alpha(x)} \partial_{\mu} \phi+i A_{\mu} e^{i \alpha(x)} \phi-i \partial_{\mu} \alpha(x) e^{i \alpha(x)} \phi \\
& =e^{i \alpha(x)} \mu_{\mu} \phi+i A_{\mu} e^{i \alpha(x)} \phi \\
& =e^{i \alpha(x)}\left[\partial_{\mu} \phi+i A_{\mu}\right] \phi \\
& =e^{i \alpha(x)} D_{\mu} \phi
\end{aligned}
$$

Nota bene:

- We call D_{μ} the covariant derivative, because it transforms just like ϕ itself:

$$
\phi \rightarrow e^{i \alpha(x)} \phi \quad \text { and } \quad D_{\mu} \phi \rightarrow e^{i \alpha(x)} D_{\mu} \phi
$$

$$
D_{\mu} \phi^{*} D^{\mu} \phi-m^{2} \phi^{*} \phi \rightarrow e^{-i \alpha(x)} D_{\mu} \phi^{*} \cdot e^{i \alpha(x)} D^{\mu} \phi-m^{2} e^{-i \alpha(x)} \phi^{*} \cdot e^{i \alpha(x)} \phi=D_{\mu} \phi^{*} D^{\mu} \phi-m^{2}
$$

Expanding the Lagrangian

$D_{\mu} \phi^{*} D^{\mu} \phi-m^{2} \phi^{*} \phi$ invariant under local $\mathbf{U}(\mathrm{I})$ transformations
$D_{\mu} \phi^{*} D^{\mu} \phi-m^{2} \phi^{*} \phi=\partial_{\mu} \phi^{*} \partial^{\mu} \phi+i A^{\mu}\left(\phi \partial_{\mu} \phi^{*}-\phi^{*} \partial_{\mu} \phi\right)+\phi^{*} \phi A_{\mu} A^{\mu}-m^{2} \phi^{*} \phi$

- Demand symmetry \rightarrow Generate interactions
- Generated mass for gauge boson (after ϕ acquires a vacuum expectation value)
- Explicit mass term forbidden by gauge symmetry (although otherwise allowed):

$$
m^{2} A_{\mu} A^{\mu} \rightarrow m^{2}\left(A_{\mu}-\partial_{\mu} \alpha\right)\left(A_{\mu}-\partial_{\mu} \alpha\right) \neq m^{2} A_{\mu} A^{\mu}
$$

- Simplest form of Higgs mechanism
- Vector-scalar-scalar interaction

Non-Abelian gauge symmetry

Abelian	Non-Abelian: component notation	Non-Abelian: vector notation
$U=e^{i \alpha(x)}$	$U=e^{i \alpha^{a}(x) T_{R}^{a}}$	$U=e^{i \alpha^{a}(x) T_{R}^{a}}$
$\phi \rightarrow U \phi$	$\boldsymbol{\Phi}^{i} \rightarrow U_{k}^{i} \boldsymbol{\Phi}^{k}$	$\boldsymbol{\Phi} \rightarrow U \boldsymbol{\Phi}$
A_{μ}	$A_{\mu}^{a} T_{R}^{a}$	\boldsymbol{A}_{μ}
$A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha$	$A_{\mu}^{a} T^{a} \rightarrow U A_{\mu}^{a} T^{a} U^{\dagger}-\frac{i}{g}\left(\partial_{\mu} U\right) U^{\dagger}$	$\boldsymbol{A}_{\mu} \rightarrow U \boldsymbol{A}_{\mu} U^{\dagger}-\frac{i}{g}\left(\partial_{\mu} U\right) U^{\dagger}$
$F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$	$F_{\mu \nu}^{a}:=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}$	$\boldsymbol{F}_{\mu \nu}:=\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]$
$F_{\mu \nu} \rightarrow F_{\mu \nu}$		$\boldsymbol{F}_{\mu \nu} \rightarrow U \boldsymbol{F}_{\mu \nu} U^{\dagger}$
$F_{\mu \nu}$ invariant	$F_{\mu \nu}^{a} F^{a \mu \nu}$ invariant	$\operatorname{Tr}\left(\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right)$ invariant

$D_{\mu}=\partial_{\mu}+i g A_{\mu}^{a} T_{R}^{a}$

Conjecture

- All fundamental internal symmetries are gauge symmetries. See also the discussion in Schwartz!
- Global symmetries are just "accidental" and not exact.

Spontaneous Symmetry Breaking

The Higgs mechanism

- The Higgs potential:V $=\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}$
- Vacuum $=$ Ground state $=$ Minimum of V :
- If $\mu^{2}>0$ (massive particle): $\phi_{\text {min }}=0$ (no symmetry breaking)

- If $\mu^{2}<0$: $\phi_{\text {min }}= \pm v= \pm\left(-\mu^{2} / \lambda\right)^{1 / 2}$

These two minima in one dimension correspond to a continuum of minimum values in $\mathrm{SU}(2)$.
The point $\phi=0$ is now instable.

- Choosing the minimum (e.g. at +v) gives the vacuum a preferred direction in isospin space \rightarrow spontaneous symmetry breaking
- Perform perturbation around the minimum

Higgs self-couplings

In the SM, the Higgs self-couplings are a consequence of the Higgs potential after expansion of the Higgs field $\mathrm{H} \sim(1,2)$ । around the vacuum expectation value which breaks the ew symmetry:

$$
V_{H}=\mu^{2} H^{\dagger} H+\eta\left(H^{\dagger} H\right)^{2} \rightarrow \frac{1}{2} m_{h}^{2} h^{2}+\sqrt{\frac{\eta}{2}} m_{h} h^{3}+\frac{\eta}{4} h^{4}
$$

with:

$$
m_{h}^{2}=2 \eta v^{2}, v^{2}=-\mu^{2} / \eta
$$

Note: $\mathrm{v}=246 \mathrm{GeV}$ is fixed by the precision measures of G_{F}

In order to completely reconstruct the Higgs potential, on has to:

- Measure the 3 h -vertex: via a measurement of Higgs pair production

$$
\lambda_{3 h}^{\mathrm{SM}}=\sqrt{\frac{\eta}{2}} m_{h}
$$

- Measure the 4 h -vertex:
more difficult, not accessible at the LHC in the high-lumi phase

One page summary of the world

Gauge group
Particle content

$$
\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}
$$

Matter				Higgs		Gauge	
$Q=\binom{u_{L}}{d_{L}}$	$(3,2)_{1 / 3}$	$L=\binom{\nu_{L}}{e_{L}}$	$(1,2){ }_{-1}$	$H=\binom{h^{+}}{h^{0}}$	$(1,2){ }_{1}$	B	$(1,1){ }_{0}$
u_{R}^{c}	$(\overline{\mathbf{3}}, \mathbf{1})_{-4 / 3}$	e_{R}^{c}	$(\mathbf{1}, \mathbf{1})_{2}$			W	$(1,3){ }_{0}$
d_{R}^{c}	$(\overline{\mathbf{3}}, \mathbf{1})_{2 / 3}$	ν_{R}^{c}	$(1,1){ }_{0}$			G	$(8,1)_{0}$

Lagrangian
(Lorentz + gauge + renormalizable)

SSB

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} G_{\mu \nu}^{\alpha} G^{\alpha \mu \nu}+\ldots \bar{Q}_{k} \not D Q_{k}+\ldots\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)-\mu^{2} H^{\dagger} H-\frac{\lambda}{4!}\left(H^{\dagger} H\right)^{2}+\ldots Y_{k \ell} \bar{Q}_{k} H\left(u_{R}\right)_{\ell} \\
& \bullet H \rightarrow H^{\prime}+\frac{1}{\sqrt{2}}\binom{0}{v} \\
& \text { - } \operatorname{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{Q}
\end{aligned}
$$

- $B, W^{3} \rightarrow \gamma, Z^{0} \quad$ and $\quad W_{\mu}^{1}, W_{\mu}^{2} \rightarrow W^{+}, W^{-}$
- Fermions acquire mass through Yukawa couplings to Higgs
IV. From the SM to predictions at the LHC

Scattering theory

\uparrow Cross sections can be calculated as

$$
\sigma=\frac{1}{F} \int \operatorname{dPS}^{(n)} \overline{\left|M_{f i}\right|^{2}}
$$

\because We integrate over all final state configurations (momenta, etc.).
\star The phase space (dPS) only depend on the final state particle momenta and masses
\star Purely kinematical
$\%$ We average over all initial state configurations
\star This is accounted for by the flux factor F
\star Purely kinematical
\because The matrix element squared contains the physics model
\star Can be calculated from Feynman diagrams
\star Feynman diagrams can be drawn from the Lagrangian
\star The Lagrangian contains all the model information (particles, interactions)

Cross section

The differential cross section: $d \sigma=\frac{1}{F}|M|^{2} d \Phi_{n}$

The Lorentz-invariant phase space:

$$
d \Phi_{n}=(2 \pi)^{4} \delta^{(4)}\left(p_{a}+p_{b}-\sum_{f=1}^{n} p_{f}\right) \prod_{f=1}^{n} \frac{d^{3} p_{f}}{(2 \pi)^{3} 2 E_{f}}
$$

The flux factor: $\quad F=\sqrt{\left(p_{a} \cdot p_{b}\right)^{2}-p_{a}^{2} p_{b}^{2}}$

Decay width

The differential decay width: $\quad d \Gamma=\frac{1}{2 E_{a}}|M|^{2} d \Phi_{n}$

The Lorentz-invariant phase space:

$$
d \Phi_{n}=(2 \pi)^{4} \delta^{(4)}\left(p_{a}-\sum_{f=1}^{n} p_{f}\right) \prod_{f=1}^{n} \frac{d^{3} p_{f}}{(2 \pi)^{3} 2 E_{f}}
$$

Rest frame of decaying particle: $\quad E_{a}=M_{a}$

Life time and branching ratio

Life time:

$$
\tau=1 / \Gamma
$$

Branching ratio:

$$
\mathrm{BR}(i \rightarrow f)=\frac{\Gamma(i \rightarrow f)}{\Gamma(i \rightarrow \text { all })}
$$

The model

All the model information is included in the Lagrangian
\&Before electroweak symmetry breaking: very compact

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} W_{\mu \nu}^{i} W_{i}^{\mu \nu}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& +\sum_{f=1}^{3}\left[\bar{L}_{f}\left(i \gamma^{\mu} D_{\mu}\right) L^{f}+\bar{e}_{R f}\left(i \gamma^{\mu} D_{\mu}\right) e_{R}^{f}\right] \\
& +\sum_{f=1}^{3}\left[\bar{Q}_{f}\left(i \gamma^{\mu} D_{\mu}\right) Q^{f}+\bar{u}_{R f}\left(i \gamma^{\mu} D_{\mu}\right) u_{R}^{f}+\bar{d}_{R f}\left(i \gamma^{\mu} D_{\mu}\right) d_{R}^{f}\right] \\
& +D_{\mu} \varphi^{\dagger} D^{\mu} \varphi-V(\varphi)
\end{aligned}
$$

※After electroweak symmetry breaking: quite large
Example: electroweak boson interactions with the Higgs boson:

$$
\begin{aligned}
D_{\mu} \varphi^{\dagger} D^{\mu} \varphi= & \frac{1}{2} \partial_{\mu} h \partial^{\mu} h+\frac{e^{2} v^{2}}{4 \sin ^{2} \theta_{w}} W_{\mu}^{+} W^{-\mu}+\frac{e^{2} v^{2}}{8 \sin ^{2} \theta_{w} \cos ^{2} \theta_{w}} Z_{\mu} Z^{\mu} \\
& +\frac{e^{2} v}{2 \sin ^{2} \theta_{w}} W_{\mu}^{+} W^{-\mu} h+\frac{e^{2} v}{4 \sin ^{2} \theta_{w} \cos ^{2} \theta_{w}} Z_{\mu} Z^{\mu} h \\
& +\frac{e^{2}}{4 \sin ^{2} \theta_{w}} W_{\mu}^{+} W^{-\mu} h h+\frac{e^{2}}{8 \sin ^{2} \theta_{w} \cos ^{2} \theta_{w}} Z_{\mu} Z^{\mu} h h
\end{aligned}
$$

Feynman diagrams and Feynman rules I

\checkmark Diagrammatic representation of the Lagrangian

* Electron-positron-photon ($q=-I$)

© Muon-antimuon-photon ($q=-1$)

- The Feymman rules are the building blocks to construct Feynman diagrams

Loop diagrams

Loops exist, but their contribution is often small

Feynman diagrams and Feynman rules II

\downarrow From Feynman diagrams to $M_{f i}$:

Feynman rules for the Standard Model

$\gamma \sim$	QED	Sur	$\begin{aligned} & \text { ²0rn } \\ & W^{+} W^{-\gamma} \gamma \end{aligned}$	
$Z \sim$	QED	Yun	$\begin{aligned} & \text { Whorn } \\ & \text { ş } \\ & W^{+} W^{-} Z \end{aligned}$	
$\mathrm{W}^{+-} \sim$	QED	qur		$\begin{aligned} & \text { Wुज } \\ & \text { जै } \end{aligned}$
g	QCD			
h	QED (m)	$>\ldots$	$\begin{gathered} \text { 2 } \\ \text { s..... } \\ W^{+} W^{-} h \end{gathered}$	$\begin{aligned} & 2^{2} \\ & \text { 今, } \\ & Z Z h \end{aligned}$

Almost all the building blocks necessary to draw any SM diagrams

QCD coupling much stronger than QED coupling
\rightarrow dominant diagrams

Drawing Feynman diagrams I

Drawing Feynman diagrams II

$\gamma \sim$	QED	Sur	230n $W^{+} W^{-} \gamma$	
$Z \sim$	QED	Sivi	$W^{+} W^{-} Z$	
$\mathrm{W}^{+-} \sim$	QED	>in		WWWW
g eee	QCD			
h \cdots...	$\begin{aligned} & \text { QED } \\ & (\mathrm{m}) \end{aligned}$	$>\ldots$		

\checkmark Find out the dominant diagrams for
\because Process I. $g g \rightarrow t \bar{t}$

* Process 2. $g g \rightarrow t \bar{t} h$
\because Process $3 . u \bar{u} \rightarrow t \bar{t} b \bar{b}$
\downarrow What is the QCD/QED order?
(keep only the dominant diagrams)

MadGraph5_aMC@NLO

- Check your answer online:

MadGraph5_aMC@NLOwebpage

- Requires registration

Web process syntax

Initial state

$$
\mathrm{u} \mathrm{u} \sim>\mathrm{b} \mathrm{~b} \sim \underset{\text { Final state }}{\mathrm{t}} \mathrm{t} \sim
$$

$$
\mathrm{u} u \sim>b \mathrm{~b} \sim \mathrm{t} \quad \mathrm{t} \sim \underset{\substack{\mathrm{QED}=2 \\ \text { Minimal coupling order }}}{\text { Q }}
$$

$$
\mathrm{u} u \sim>\mathrm{h}>\mathrm{b} \mathrm{~b} \sim \mathrm{t} \mathrm{t} \sim
$$

Required intermediate particles

$$
\mathrm{u} u \sim>\mathrm{b} \mathrm{~b} \sim \mathrm{t} \mathrm{t} \sim / \mathrm{z}^{\text {Excluded particles }}
$$

$$
\mathrm{u} u \sim>\mathrm{b} \quad \mathrm{~b} \sim \mathrm{t} t \sim, \mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim
$$ Specific decay chain

MadGraph output

\uparrow User requests a process

```
%g g> t t~ b b~
% u d~ > w+ z, w+ > e+ ve, z > b b~
% etc.
```

```
SUBROUTINE SMATRIX(P1,ANS)
c
C Generated by MadGraph II Version 3.83. Updated 06/13/05
C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS
C AND HELICITIES
C FOR THE POINT IN PHASE SPACE P(0:3,NEXTERNAL)
C
C FOR PROCESS : g g -> t t~ b b~
C
C Crossing 1 is gg->tt~bb~
    IMPLICIT NONE
C
C CONSTANTS
C
    Include "genps.inc
    INTEGER NCOMB, NCROSS
    PARAMETER ( NCOMB=64, NCROSS=1)
    INTEGER THEL
    PARAMETER (THEL=NCOMB*NCROSS)
C
C ARGUMENTS
C
    REAL*8 P1(0:3,NEXTERNAL),ANS(NCROSS)
C
```

- MADGRAPH returns:
* Feynman diagrams
\div Self-contained Fortran code for $\left|\mathrm{M}_{\mathrm{f}}\right|^{2}$
-Still needed:
\div What to do with a Fortran code?
\because How to deal with hadron colliders?

Proton-Proton collisions I

\checkmark The master formula for hadron colliders

$$
\sigma=\frac{1}{F} \sum_{a b} \int \mathrm{dPS}^{(n)} \mathrm{d} x_{a} \mathrm{~d} x_{b} f_{a / p}\left(x_{a}\right) f_{b / p}\left(x_{b}\right) \overline{\left|M_{f i}\right|^{2}}
$$

*We sum over all proton constituents (a and b here)
*We include the parton densities (the f-function)

They represent the probability of having a parton a inside the proton carrying a fraction x_{a} of the proton momentum

PDFs: x-dependence

- Valence quarks

$$
\mathrm{p}=\mid \text { uud }\rangle
$$

PDFs: x-dependence

- Valence quarks $p=|u u d\rangle$
- Gluons
carry about 40% of momentum

PDFs: x-dependence

- Valence quarks $p=|u u d\rangle$
- Gluons carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

PDFs: Q-dependence

Altarelli-Parisi evolution equations

- Valence quarks $p=|u u d\rangle$
- Gluons
carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

PDFs: Q-dependence

Altarelli-Parisi evolution equations

- Valence quarks $p=|u u d\rangle$
- Gluons
carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

PDFs: Q-dependence

Altarelli-Parisi evolution equations

- Valence quarks p=|uud〉
- Gluons
carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

PDFs: Q-dependence

Altarelli-Parisi evolution equations

- Valence quarks $p=|u u d\rangle$
- Gluons
carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

PDFs: Q-dependence

Altarelli-Parisi evolution equations

- Valence quarks $p=|u u d\rangle$
- Gluons
carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

Proton-Proton collisions II

\checkmark This is not the end of the story...
\because At high energies, initial and final state quarks and gluons radiate other quark and gluons

* The radiated partons radiate themselves
* And so on...
* Radiated partons hadronize
※ We observe hadrons in detectors

Input parameters

- In order to make predictions, the input parameters have to be fixed! Most importantly the coupling constants
- For N parameters need N measurements
- $a_{s}=0.5$? or 0.11 8 ?

Need to consider running couplings, i.e., take into account loop effects!
Otherwise very rough predictions!

- $\mathrm{a}=\mathrm{I} / \mathrm{I} 37 \sim 0.007$ or $\mathrm{I} / \mathrm{I} 27 \sim 0.008$?
- etc.

