(B)SM and the LHC

I. Schienbein U Grenoble Alpes/LPSC Grenoble

Summer School in Particle and Astroparticle physics Annecy-le-Vieux, 18-25 July 2023

III. The Standard Model of particle physics (2nd round)

• Introduce Fields & Symmetries

- Introduce Fields & Symmetries
- Construct a local Lagrangian density

- Introduce Fields & Symmetries
- Construct a local Lagrangian density
- Describe Observables
 - How to measure them?
 - How to calculate them?

- Introduce Fields & Symmetries
- Construct a local Lagrangian density
- Describe Observables
 - How to measure them?
 - How to calculate them?
- Falsify: Compare theory with data

Fields & Symmetries

Matter content of the Standard Model (including the antiparticles)

Matter				Higgs		GAUGE	
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$({f 3},{f 2})_{1/3}$	$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$({f 1},{f 2})_{ ext{-}1}$	$H = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix}$	$(1,2)_1$	A	$(1,1)_0$
u_R^c	$\left \ (\overline{3},1)_{\text{-4/3}} \ \right $	e_R^c	$oxed{egin{array}{c} (1,1)_2 \end{array}}$			$\mid W \mid$	$({f 1},{f 3})_0$
d_R^c	$oxed{(\overline{f 3},f 1)_{2/3}}$	$ u_R^c$	$({f 1},{f 1})_{\ 0}$			$\mid G \mid$	$(8,1)_0$

- Left-handed up quark **u**L:
 - LH Weyl fermion: $u_{La} \sim (1/2,0)$ of so(1,3)
 - a color triplet: $u_{Li}\sim 3$ of $SU(3)_c$
 - Indices: (u_L)_{ia} with i=1,2,3 and α =1,2
- Similarly, left-handed down quark d_L
- u_L and d_L components of a $SU(2)_L$ doublet: $Q_\beta = (u_L, d_L) \sim 2$
 - Q carries a hypercharge 1/3: Q ~ $(3,2)_{1/3}$ of $SU(3)_c \times SU(2)_L \times U(1)_Y$
 - Indices: $Q_{\beta i\alpha}$ with $\beta=1,2$; i=1,2,3 and $\alpha=1,2$

- There are three generations: Q_k , k = 1,2,3
- Lot's of indices: Qkβia(x)
- We know how the indices β,i,a transform under symmetry operations (i.e., which representations we have to use for the generators)

- Right-handed up quark u_R:
 - RH Weyl fermion: $u_{Ra.}\sim(0,1/2)$ of so(1,3)
 - a color triplet: $u_{Ri}\sim 3$ of $SU(3)_c$
 - a singlet of $SU(2)_L$: $U_R \sim I$ (no index needed)
 - **u**_R carries hypercharge 4/3: **u**_R ~ **(3,1)**_{4/3}
 - Indices: $(u_R)_{ia}$ with i=1,2,3 and a=1,2 (Note the dot)
 - Note that $u_{R^c} \sim (3*, 1)_{-4/3}$

- Again there are three generations: u_{Rk} , k = 1,2,3
- Lot's of indices: URkia.(x)
- And so on for the other fields ...

Exercise

• How many fermions are there in one generation?

Exercise

• How many fermions are there in one generation?

$$u_L: 3, d_L: 3, u_R: 3, d_R: 3$$

 $v_L: 1, e_L: 1, e_R: 1, (v_R: 1)$
15 (+1) fermions and
15 (+1) anti-fermions

Terms for the Lagrangian

How to build Lorentz scalars? Scalar field (like the Higgs)

Real field ϕ

$$\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2}$$

Note: The mass dimension of each term in the Lagrangian has to be 4!

Complex field
$$\phi = \frac{1}{\sqrt{2}}(\varphi_1 + i\varphi_2)$$

$$\partial_{\mu}\phi^*\partial^{\mu}\phi - m^2\phi^*\phi$$

How to build Lorentz scalars? Fermions (spin 1/2)

Left-handed Weyl spinor

$$i\psi_L^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\psi_L$$

Right-handed Weyl spinor

$$i\psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_R$$

Mass term mixes left and right

$$i\psi_L^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\psi_L + i\psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_R - m(\psi_L^{\dagger}\psi_R + \psi_R^{\dagger}\psi_L)$$

$$\sigma^{\mu} = (1, \sigma^{i})$$
$$\bar{\sigma}^{\mu} = (1, -\sigma^{i})$$

$$ar{\sigma}^{\mu}=(1,-\sigma^i)$$

Dirac spinor in chiral basis

$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \qquad i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi \quad \text{with} \quad \overline{\Psi} = \Psi^{\dagger}\gamma^0 \quad \text{and} \quad \gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix}$$

How to build Lorentz scalars? Fermions (spin 1/2)

Left-handed Weyl spinor

$$i\psi_L^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\psi_L$$

Right-handed Weyl spinor

$$i\psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_R$$

Mass term mixes left and right

$$i\psi_L^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\psi_L + i\psi_R^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_R - m(\psi_L^{\dagger}\psi_R + \psi_R^{\dagger}\psi_L)$$

$$\sigma^{\mu} = (1, \sigma^{i})$$
$$\bar{\sigma}^{\mu} = (1, -\sigma^{i})$$

Note: Lorentz-invariance

⇒ mass terms 'marry'

left and right chiral

fermions

Dirac spinor in chiral basis

$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \qquad i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi \quad \text{with} \quad \overline{\Psi} = \Psi^{\dagger}\gamma^0 \quad \text{and} \quad \gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix}$$

How to build Lorentz scalars? Vector boson (spin 1)

U(1) gauge boson ("Photon")

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu} \quad \text{where} \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

Mass term allowed by Lorentz invariance; forbidden by gauge invariance

In principle, there is a second invariant

$$-\frac{1}{4}F_{\mu\nu}\widetilde{F}^{\mu\nu} \quad \text{with} \quad \widetilde{F}_{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$$

$$F\tilde{F} \propto \vec{E} \cdot \vec{B}$$

Violates Parity, Time reversal, and CP symmetry; prop. to a total divergence → doesn't contribute in QED

BUT strong CP problem in QCD

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

Exercise

- Why does each term in the Lagrangian has a mass dimension 4?
- What are the mass dimensions of the scalars, fermions and vector fields?

$$S = \int d^4 \mathcal{L}, [S] = [\hbar] = 1$$

$$[d^4x] = Length^4 = Mass^{-4}$$

$$[\mathcal{L}] = \text{Mass}^4$$

$$\mathcal{L} \supset -\frac{1}{2} m_{\phi}^2 \phi^2 \Rightarrow [\phi] = \text{Mass}$$

$$\mathcal{L} \supset -m_{\psi} \psi_L^{\dagger} \psi_R \Rightarrow [\psi_{L,R}] = \text{Mass}^{3/2}$$

$$\mathcal{L} \supset -\frac{1}{2} m_A^2 A_\mu A^\mu \Rightarrow [A_\mu] = \text{Mass}$$

$$[\partial_{\mu}] = \text{Mass}, [F_{\mu\nu}] = \text{Mass}^2$$

Gauge symmetry

- Idea: Generate interactions from free Lagrangian by imposing local (i.e. a = a(x)) symmetries
- Does not fall from heaven; generalization of 'minimal coupling' in electrodynamics
- Final judge is experiment: It works!

$$\partial_{\mu}\phi^*\partial^{\mu}\phi - m^2\phi^*\phi$$
 is invariant under $\phi \to e^{i\alpha}\phi$.

What if now $\alpha = \alpha(x)$ depends on the space-time?

$$\begin{split} \partial_{\mu}(e^{i\alpha(x)}\phi)^{*}\partial^{\mu}(e^{i\alpha(x)}\phi) - m^{2}(e^{i\alpha(x)}\phi)^{*}(e^{i\alpha(x)}\phi) \\ &= [\partial_{\mu}e^{i\alpha(x)}\cdot\phi + e^{i\alpha(x)}\cdot\partial_{\mu}\phi]^{*}[\partial^{\mu}e^{i\alpha(x)}\cdot\phi + e^{i\alpha(x)}\cdot\partial^{\mu}\phi] - m^{2}\phi^{*}\phi \\ &= [ie^{i\alpha(x)}\partial_{\mu}\alpha(x)\cdot\phi + e^{i\alpha(x)}\cdot\partial_{\mu}\phi]^{*}[ie^{i\alpha(x)}\partial^{\mu}\alpha(x)\cdot\phi + e^{i\alpha(x)}\cdot\partial^{\mu}\phi] - m^{2}\phi^{*}\phi \\ &= [-ie^{-i\alpha(x)}\partial_{\mu}\alpha(x)\cdot\phi^{*} + e^{-i\alpha(x)}\cdot\partial_{\mu}\phi^{*}][ie^{i\alpha(x)}\partial^{\mu}\alpha(x)\cdot\phi + e^{i\alpha(x)}\cdot\partial^{\mu}\phi] - m^{2}\phi^{*}\phi \\ &= -ie^{-i\alpha(x)}\partial_{\mu}\alpha(x)\cdot\phi^{*}\cdot ie^{i\alpha(x)}\partial^{\mu}\alpha(x)\cdot\phi \\ &- ie^{-i\alpha(x)}\partial_{\mu}\alpha(x)\cdot\phi^{*}\cdot e^{i\alpha(x)}\cdot\partial^{\mu}\phi \\ &+ e^{-i\alpha(x)}\cdot\partial_{\mu}\phi^{*}\cdot ie^{i\alpha(x)}\partial^{\mu}\alpha(x)\cdot\phi \\ &+ e^{-i\alpha(x)}\cdot\partial_{\mu}\phi^{*}\cdot e^{i\alpha(x)}\cdot\partial^{\mu}\phi \\ &- m^{2}\phi^{*}\phi \\ &= \partial_{\mu}\phi\cdot\partial^{\mu}\phi - m^{2}\phi^{*}\phi + \text{non-zero terms} \quad \text{Not invariant under } \mathbf{U}(\mathbf{0}) \end{split}$$

Not invariant under U(1)!

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$D_{\mu} = \partial_{\mu} + iA_{\mu},$$

where the gauge field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$$

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$D_{\mu} = \partial_{\mu} + iA_{\mu},$$

where the gauge field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$$

$$D_{\mu}\phi \to (\partial_{\mu} + i[A_{\mu} - \partial_{\mu}\alpha(x)])[e^{i\alpha(x)}\phi]$$

$$= \partial_{\mu}[e^{i\alpha(x)}\phi] + i[A_{\mu} - \partial_{\mu}\alpha(x)][e^{i\alpha(x)}\phi]$$

$$= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi$$

$$= e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi$$

$$= e^{i\alpha(x)}[\partial_{\mu}\phi + iA_{\mu}]\phi$$

$$= e^{i\alpha(x)}D_{\mu}\phi$$

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$D_{\mu} = \partial_{\mu} + iA_{\mu},$$

where the gauge field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$$

$$D_{\mu}\phi \to (\partial_{\mu} + i[A_{\mu} - \partial_{\mu}\alpha(x)])[e^{i\alpha(x)}\phi]$$

$$= \partial_{\mu}[e^{i\alpha(x)}\phi] + i[A_{\mu} - \partial_{\mu}\alpha(x)][e^{i\alpha(x)}\phi]$$

$$= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi$$

$$= e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi$$

$$= e^{i\alpha(x)}[\partial_{\mu}\phi + iA_{\mu}]\phi$$

$$= e^{i\alpha(x)}D_{\mu}\phi$$

Nota bene:

• We call D_{μ} the *covariant derivative*, because it transforms just like ϕ itself:

$$\phi \to e^{i\alpha(x)}\phi$$
 and $D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi$

Can we find a derivative operator that commutes with the gauge transformation?

Define

$$D_{\mu} = \partial_{\mu} + iA_{\mu},$$

where the gauge field A_{μ} transforms as

$$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$$

$$D_{\mu}\phi \to (\partial_{\mu} + i[A_{\mu} - \partial_{\mu}\alpha(x)])[e^{i\alpha(x)}\phi]$$

$$= \partial_{\mu}[e^{i\alpha(x)}\phi] + i[A_{\mu} - \partial_{\mu}\alpha(x)][e^{i\alpha(x)}\phi]$$

$$= ie^{i\alpha(x)}\partial_{\mu}\alpha(x) \cdot \phi + e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi - i\partial_{\mu}\alpha(x)e^{i\alpha(x)}\phi$$

$$= e^{i\alpha(x)}\partial_{\mu}\phi + iA_{\mu}e^{i\alpha(x)}\phi$$

$$= e^{i\alpha(x)}[\partial_{\mu}\phi + iA_{\mu}]\phi$$

$$= e^{i\alpha(x)}D_{\mu}\phi$$

Nota bene:

• We call D_{μ} the *covariant derivative*, because it transforms just like ϕ itself:

$$\phi \to e^{i\alpha(x)}\phi$$
 and $D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi$

$$D_{\mu}\phi^{*}D^{\mu}\phi - m^{2}\phi^{*}\phi \rightarrow e^{-i\alpha(x)}D_{\mu}\phi^{*} \cdot e^{i\alpha(x)}D^{\mu}\phi - m^{2}e^{-i\alpha(x)}\phi^{*} \cdot e^{i\alpha(x)}\phi = D_{\mu}\phi^{*}D^{\mu}\phi - m^{2}e^{-i\alpha(x)}\phi = D_{\mu}\phi^{*}D^{\mu}\phi - m^{2}e^{-i\alpha(x)}$$

Expanding the Lagrangian

 $D_{\mu}\phi^{*}D^{\mu}\phi-m^{2}\phi^{*}\phi$ invariant under local U(1) transformations

$$D_{\mu}\phi^*D^{\mu}\phi - m^2\phi^*\phi = \partial_{\mu}\phi^*\partial^{\mu}\phi + iA^{\mu}(\phi\partial_{\mu}\phi^* - \phi^*\partial_{\mu}\phi) + \phi^*\phi A_{\mu}A^{\mu} - m^2\phi^*\phi$$

- Demand symmetry \rightarrow Generate interactions
- Generated mass for gauge boson (after ϕ acquires a vacuum expectation value)
- Explicit mass term forbidden by gauge symmetry (although otherwise allowed):

$$m^2 A_\mu A^\mu \to m^2 (A_\mu - \partial_\mu \alpha)(A_\mu - \partial_\mu \alpha) \neq m^2 A_\mu A^\mu$$

- Simplest form of Higgs mechanism
- Vector-scalar-scalar interaction

Non-Abelian gauge symmetry

Abelian	Non-Abelian: component notation	Non-Abelian: vector notation
$U = e^{i\alpha(x)}$	$U = e^{i\alpha^a(x)T_R^a}$	$U = e^{i\alpha^a(x)T_R^a}$
$\phi \to U\phi$	$\Phi^i o U^i_{\ k} \Phi^k$	$\mathbf{\Phi} \to U\mathbf{\Phi}$
A_{μ}	$A_{\mu}^{a}T_{R}^{a}$	$m{A}_{\mu}$
$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha$	$A^a_\mu T^a \to U A^a_\mu T^a U^\dagger - \frac{i}{g} (\partial_\mu U) U^\dagger$	$m{A}_{\mu} ightarrow U m{A}_{\mu} U^{\dagger} - rac{i}{g} (\partial_{\mu} U) U^{\dagger}$
$F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$	$F^a_{\mu\nu} := \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu$	$oxed{F_{\mu u} := \partial_{\mu} A_{ u} - \partial_{ u} A_{\mu} + ig[A_{\mu}, A_{ u}]}$
$F_{\mu\nu} \to F_{\mu\nu}$		$m{F}_{\mu u} ightarrow U m{F}_{\mu u} U^\dagger$
$F_{\mu\nu}$ invariant	$F^a_{\mu\nu}F^{a\mu\nu}$ invariant	$\operatorname{Tr}(\boldsymbol{F}_{\mu\nu}\boldsymbol{F}^{\mu\nu})$ invariant

$$D_{\mu} = \partial_{\mu} + igA_{\mu}^{a}T_{R}^{a}$$

Conjecture

- All fundamental internal symmetries are gauge symmetries.
 See also the discussion in Schwartz!
- Global symmetries are just "accidental" and not exact.

Spontaneous Symmetry Breaking

The Higgs mechanism

- The Higgs potential: $V = \mu^2 \varphi^{\dagger} \varphi + \lambda (\varphi^{\dagger} \varphi)^2$
- Vacuum = Ground state = Minimum of V:

- If $\mu^2 > 0$ (massive particle): $\varphi_{min} = 0$ (no symmetry breaking)
- If $\mu^2 < 0$: $\varphi_{min} = \pm v = \pm (-\mu^2/\lambda)^{1/2}$ These two minima in one dimension correspond to a continuum of minimum values in SU(2). The point $\varphi = 0$ is now instable.
- Choosing the minimum (e.g. at +v) gives the vacuum a preferred direction in isospin space → spontaneous symmetry breaking
- Perform perturbation around the minimum

Higgs self-couplings

In the SM, the Higgs self-couplings are a consequence of the Higgs potential after expansion of the Higgs field $H\sim(1,2)_1$ around the vacuum expectation value which breaks the ew symmetry:

$$V_H = \mu^2 H^{\dagger} H + \eta (H^{\dagger} H)^2 \rightarrow \frac{1}{2} m_h^2 h^2 + \left[\sqrt{\frac{\eta}{2}} m_h h^3 \right] + \left[\frac{\eta}{4} h^4 \right]$$

with:

$$m_h^2 = 2\eta v^2, v^2 = -\mu^2/\eta$$

Note: v=246 GeV is fixed by the precision measures of G_F

In order to completely reconstruct the Higgs potential, on has to:

Measure the 3h-vertex:
 via a measurement of Higgs pair production

$$\lambda_{3h}^{\rm SM} = \sqrt{\frac{\eta}{2}} m_h$$

Measure the 4h-vertex:
 more difficult, not accessible at the LHC in the high-lumi phase

One page summary of the world

Gauge group

Particle content

Lagrangian (Lorentz + gauge + renormalizable)

SSB

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$

MATTER			Higgs	G	GAUGE	
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$({f 3},{f 2})_{1/3}$	$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$({f 1},{f 2})_{ ext{-}1}$	$H = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix} (1, 2)_1$	В	$({f 1},{f 1})_0$
u_R^c	$(\overline{f 3},{f 1})_{ ext{-}4/3}$	e_R^c	$oxed{\left(1,1 ight)}_{2}$		$\parallel W$	$({f 1},{f 3})_0$
d_R^c	$(\overline{f 3},{f 1})$ $_{2/3}$	$ u_R^c$	$({f 1},{f 1})_{\ 0}$		$\parallel G$	$(8,1)_0$

$$\mathcal{L} = -\frac{1}{4}G^{\alpha}_{\mu\nu}G^{\alpha\mu\nu} + \dots \overline{Q}_k \mathcal{D}Q_k + \dots (D_{\mu}H)^{\dagger}(D^{\mu}H) - \mu^2 H^{\dagger}H - \frac{\lambda}{4!}(H^{\dagger}H)^2 + \dots Y_{k\ell}\overline{Q}_k H(u_R)_{\ell}$$

•
$$H \to H' + \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$

•
$$SU(2)_L \times U(1)_Y \to U(1)_Q$$

• Fermions acquire mass through Yukawa couplings to Higgs

Scattering theory

♦Cross sections can be calculated as

$$\sigma = \frac{1}{F} \int dPS^{(n)} \overline{\left| M_{fi} \right|^2}$$

- *We integrate over all final state configurations (momenta, etc.).
 - ★The phase space (dPS) only depend on the final state particle momenta and masses
 - ★ Purely kinematical
- *We average over all initial state configurations
 - ★ This is accounted for by the flux factor F
 - ★ Purely kinematical
- The matrix element squared contains the physics model
 - ★ Can be calculated from Feynman diagrams
 - ★ Feynman diagrams can be drawn from the Lagrangian
 - ★ The Lagrangian contains all the model information (particles, interactions)

Cross section

The differential cross section:
$$d\sigma = \frac{1}{F} |M|^2 d\Phi_n$$

The Lorentz-invariant phase space:

$$d\Phi_n = (2\pi)^4 \delta^{(4)}(p_a + p_b - \sum_{f=1}^n p_f) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}$$

The flux factor: $F = \sqrt{(p_a \cdot p_b)^2 - p_a^2 p_b^2}$

Decay width

The differential decay width: $d\Gamma = \frac{1}{2E_n} |M|^2 d\Phi_n$

$$d\Gamma = \frac{1}{2E_a} |M|^2 d\Phi_n$$

The Lorentz-invariant phase space:

$$d\Phi_n = (2\pi)^4 \delta^{(4)}(p_a - \sum_{f=1}^n p_f) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}$$

Rest frame of decaying particle: $E_a = M_a$

Life time and branching ratio

Life time:

$$\tau = 1/\Gamma$$

Branching ratio:

$$BR(i \to f) = \frac{\Gamma(i \to f)}{\Gamma(i \to all)}$$

The model

- ◆ All the model information is included in the Lagrangian
 - ❖Before electroweak symmetry breaking: very compact

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}W^{i}_{\mu\nu}W^{\mu\nu}_{i} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

$$+ \sum_{f=1}^{3} \left[\bar{L}_{f} \left(i\gamma^{\mu}D_{\mu} \right) L^{f} + \bar{e}_{Rf} \left(i\gamma^{\mu}D_{\mu} \right) e_{R}^{f} \right]$$

$$+ \sum_{f=1}^{3} \left[\bar{Q}_{f} \left(i\gamma^{\mu}D_{\mu} \right) Q^{f} + \bar{u}_{Rf} \left(i\gamma^{\mu}D_{\mu} \right) u_{R}^{f} + \bar{d}_{Rf} \left(i\gamma^{\mu}D_{\mu} \right) d_{R}^{f} \right]$$

$$+ D_{\mu}\varphi^{\dagger}D^{\mu}\varphi - V(\varphi)$$

After electroweak symmetry breaking: quite large Example: electroweak boson interactions with the Higgs boson:

$$\begin{split} D_{\mu} \varphi^{\dagger} \ D^{\mu} \varphi &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h + \frac{e^{2} v^{2}}{4 \text{sin}^{2} \theta_{w}} W_{\mu}^{+} W^{-\mu} + \frac{e^{2} v^{2}}{8 \text{sin}^{2} \theta_{w} \text{cos}^{2} \theta_{w}} Z_{\mu} Z^{\mu} \\ &+ \frac{e^{2} v}{2 \text{sin}^{2} \theta_{w}} W_{\mu}^{+} W^{-\mu} h + \frac{e^{2} v}{4 \text{sin}^{2} \theta_{w} \text{cos}^{2} \theta_{w}} Z_{\mu} Z^{\mu} h \\ &+ \frac{e^{2}}{4 \text{sin}^{2} \theta_{w}} W_{\mu}^{+} W^{-\mu} h h + \frac{e^{2}}{8 \text{sin}^{2} \theta_{w} \text{cos}^{2} \theta_{w}} Z_{\mu} Z^{\mu} h h \; . \end{split}$$

Feynman diagrams and Feynman rules I

- ◆ Diagrammatic representation of the Lagrangian
 - **&** Electron-positron-photon (q = -1)

❖ Muon-antimuon-photon (q = -1)

◆ The Feynman rules are the building blocks to construct Feynman diagrams

Loop diagrams

two interactions

four interactions

Loops exist, but their contribution is often small

Feynman diagrams and Feynman rules II

- *We construct all possible diagrams with the set of rules at our disposal
- *We can then calculate the squared matrix element and get the cross section

Feynman rules for the Standard Model

γ ~~	QED	$q \overline{q} \gamma l^- l^+ \gamma$	$W^+W^-\gamma$	
Z ~	QED	$q\bar{q}Z$ $l\bar{l}Z$	W^+W^-Z	
W+-	QED	$q\overline{q}'W$ lvW		WWWW WWWW
g esso	QCD	$q\overline{q}g$	2020 888	8888 8888
h	QED (m)	>	مري	مح
	(m)	$q\overline{q}h$ llh	W^+W^-h	ZZh

Almost all the building

blocks necessary to

draw any SM diagrams

QCD coupling much stronger than QED coupling → dominant diagrams

Drawing Feynman diagrams I

- ♦ We can now combine building blocks to draw diagrams
 - * This ensures to focus only on the allowed diagrams
 - ❖ We must only consider the dominant diagrams
- lacktriangle Process 0. $uar{u} \to tar{t}$

Drawing Feynman diagrams II

γ ~~	QED	$q\overline{q}\gamma l^-l^+\gamma$	$W^+W^-\gamma$	
Z ~~	QED	$q\overline{q}Z$ $l\overline{l}Z$	W^+W^-Z	
W+	QED	$q\overline{q}'W \ lvW$		WWWW Long WWWW
g esse	QCD	$q\overline{q}g$	2000 2000 2000 2000 2000 2000 2000 200	8888
h	QED (m)	$q\overline{q}h$ $l\overline{l}h$	کم یک W ⁺ W ⁻ h	ZZh

- ◆ Find out the dominant diagrams for
 - $ightharpoonup \operatorname{Process}$ I. gg o t ar t
 - $ightharpoonup \operatorname{Process}$ 2. $gg o t \bar{t} h$
 - $ightharpoonup \operatorname{Process} \mathbf{3}.uar{u} o tar{t} \ bar{b}$
- What is the QCD/QED order? (keep only the dominant diagrams)

MadGraph5_aMC@NLO

Check your answer online:

MadGraph5_aMC@NLOwebpage

Requires registration

Web process syntax

Initial state

$$u u^{-} > h > b b^{-} t t^{-}$$

Required intermediate particles

Excluded particles

$$u u^{-} > b b^{-} t t^{-} / z a$$

$$u u^{-} > b b^{-} t t^{-}, t^{-} > w^{-} b^{-}$$

$$Specific decay chain$$

MadGraph output

```
♦ User requests a process
```

```
$ g g > t t~ b b~
$ u d~ > w+ z, w+ > e+ ve, z > b b~
$ etc.
```


- Feynman diagrams
- * Self-contained Fortran code for $|M_{fi}|^2$

♦Still needed:

- ❖ What to do with a Fortran code?
- ♣ How to deal with hadron colliders?

Proton-Proton collisions I

◆The master formula for hadron colliders

$$\sigma = \frac{1}{F} \sum_{ab} \int dPS^{(n)} dx_a dx_b f_{a/p}(x_a) f_{b/p}(x_b) \overline{|M_{fi}|^2}$$

- ❖ We <u>sum</u> over all proton constituents (a and b here)
- ❖ We include the <u>parton densities</u> (the f-function)

They represent the probability of having a parton a inside the proton carrying a fraction x_a of the proton momentum

Valence quarksp=|uud>

- Valence quarksp=|uud>
- Gluonscarry about 40% of momentum

- Valence quarksp=|uud>
- Gluonscarry about 40% of momentum
- Sea quarks

light quark sea, strange sea

- Valence quarksp=|uud>
- Gluons
 carry about 40% of momentum
- Sea quarks

light quark sea, strange sea

- Valence quarksp=|uud>
- Gluonscarry about 40% of momentum
- Sea quarks

light quark sea, strange sea

- Valence quarksp=|uud>
- Gluonscarry about 40% of momentum
- Sea quarks

light quark sea, strange sea

- Valence quarksp=|uud>
- Gluonscarry about 40% of momentum
- Sea quarks

light quark sea, strange sea

- Valence quarksp=|uud>
- Gluonscarry about 40% of momentum
- Sea quarks

light quark sea, strange sea

Proton-Proton collisions II

- ♦ This is not the end of the story...
 - * At high energies, initial and final state quarks and gluons radiate other quark and gluons
 - The radiated partons radiate themselves
 - ♣ And so on...
 - Radiated partons hadronize
 - We observe hadrons in detectors

Input parameters

- In order to make predictions, the input parameters have to be fixed!
 Most importantly the coupling constants
- For N parameters need N measurements
 - a_s = 0.5? or 0.118?
 Need to consider running couplings, i.e., take into account loop effects!
 Otherwise very rough predictions!
 - $\alpha = 1/137 \sim 0.007$ or $1/127 \sim 0.008$?
 - etc.