Charting the landscape of non-supersymmetric strings

Salvatore Raucci

Scuola Normale Superiore

Deconstructing the String Landscape IPhT, Saclay

Plan

\Box Introduction

- Equations of motion without susy
- Non-susy tachyon-free string theories in 10D

\Box Flux compactifications

- Sum rules
- Freund-Rubin vacua

\Box A first-order formalism

Introduction

Context: find geometric string vacua without spacetime susy that are (in some appropriate sense) under control.

However, **SUSY** :

 \diamondsuit Limited control (quantum corrections).

How do we chart the non-susy landscape?

Equations of motion without susy

Double expansion in g_s and α'

$$
S \sim \sum_{n,m=0}^{\infty} \int e^{(n-2)\phi} (\alpha')^{m-4} O_{2+2m}.
$$

Susy:

- \checkmark Protection of terms in the action \to 2-derivative sugra.
- \checkmark First-order equations.
- $\sqrt{ }$ Use of spinors: access to more structure.
- $\sqrt{}$ Dynamical obstruction to decays.

What we expect from string theory is a 2-derivative action

$$
S \sim \int (e^{-2\phi} + c_R)R + (e^{-2\phi} + c_{\phi})4(\partial \phi)^2 - (e^{-2\phi} + c_H)\frac{1}{2}\frac{H^2}{3!} - \Lambda + \dots
$$

Some comments:

- \blacksquare Fine as a perturbative expansion, except the new term Λ .
- **Is there a low-energy principle explaining these types of corrections?**

Can we compute Λ from string theory? \rightarrow non-susy strings.

Non-susy tachyon-free string theories in 10D

- **1** Heterotic: $SO(16) \times SO(16)$ [Alvarez-Gaume, Ginsparg, Moore, Vafa 1986; Dixon, Harvey 1986].
- $\textcircled{2}$ Type IIB with O9⁺ and 32 $\overline{D9}$: USp(32) [Sugimoto 1999].
- ③ Orientifold of bosonic 0B: 0'B [Sagnotti 1995].

 Λ = "tadpole" scalar potential

$$
\delta S = -\int T e^{\gamma \phi} .
$$

- ➠ Residual NS-NS tension, from sources or vacuum energy.
- ➠ From worldsheet: **IR divergences** → background shift. [Fischler, Susskind 1986; Callan, Lovelace, Nappi, Yost 1986-7-8].

Heterotic SO(16) \times SO(16): \sim vacuum energy, positive (more fermions).

$$
Idea: Use \delta S in flux compactifications.
$$

Flux compactifications

$$
S \sim \int e^{-2\phi} \left[R + 4(\partial \phi)^2 \right] - \sum_k \frac{1}{2} e^{\beta_k \phi} \frac{F_k^2}{k!} - T e^{\gamma \phi}.
$$

 \Rightarrow Not quite the right spectra to treat $Te^{\gamma\phi}$ as a small perturbation. (However, see [Angelantonj, Armoni 1999] and [Baykara, Robbins, Sethi 2022; Fraiman, Graña, Parra De Freitas, Sethi 2023])

Sum rules

What should we expect?

- ➠ Generalization of sum rules in [Maldacena, Nunez 2000]: no dS or Minkowski [Basile, Lanza 2020].
- ➠ No-go can be avoided:
	- Orientifolds, negative tension.
	- Allowing **boundaries**.

Boundaries are particularly puzzling in these models [Dudas, Mourad 2000].

Freund-Rubin vacua

Idea: Balance the tadpole with fluxes.

Focus on heterotic SO(16) × SO(16). NS-NS *F*3:

- $AdS_7\times S^3$ with magnetic flux [Mourad, Sagnotti 2016].
	- Perturbatively unstable. We can replace $S³$ with M_3 Einstein, perturbative stability with \mathbb{RP}^3 [Basile, Mourad, Sagnotti 2018].
	- Non-perturbatively unstable [Basile 2019-20].
- $AdS_4 \times X_3 \times Y_3$ with two magnetic fluxes [Basile 2020; wip].

 $U(1)$ flux in the gauge sector:

- $AdS_8\times S^2$ with magnetic flux [SR 2022].
	- Stable under perturbations of metric, dilaton, and $U(1)$.
	- Indications of instability in the mixed abelian-nonabelian gauge sector from flat-space limit [Chang, Weiss 1979; Sikivie 1979].
	- Reminiscent of magnetic monopoles.

Take-home message: It is possible to balance the tadpole with fluxes and curvatures. Simple solutions are usually **unstable**.

- ➠ General issue of stability without susy [Ooguri, Vafa 2016].
- ➠ But we are certainly missing tools to address the problem.

A first-order formalism

Possible tools: **fake supergravity**, following [Freedman, Nunez, Schnabl, Skenderis 2003]: define operators D_M and $\mathcal O$ such that

$$
\begin{array}{c}\nD_M \varepsilon = 0 \\
\mathcal{O} \varepsilon = 0\n\end{array}\bigg\} \ + \ \text{Bianchi id.} \ \Rightarrow \ \text{EoMs of non-susy strings.}
$$

➠ It is a solution-generating technique, in principle there is no physics.

For gravity and the dilaton it is possible [SR 2023]. Simplest possibility:

$$
D_M \varepsilon = (\nabla_M + \mathcal{W}(\phi) \Gamma_M) \varepsilon ,
$$

$$
\mathcal{O} \varepsilon = (d\phi + g(\phi)) \varepsilon .
$$

Significant progress: **fluxes**. However,

$$
D_M \varepsilon = (D_M^{\text{susy}} + \mathcal{W}(\phi) \Gamma_M) \varepsilon
$$

$$
\mathcal{O} \varepsilon = (\mathcal{O}^{\text{susy}} + g(\phi)) \varepsilon
$$

- + Bianchi do **not** imply EoMs.
	- ➠ Change spinor ansatz? Loop corrections?

Subtle points:

- ➠ Loop and tree-level effects would contribute in the same way.
- ➠ Non-uniqueness of fake susy equations.

Summary and conclusions

- \Rightarrow Non-susy strings: can compute Λ .
- ➫ Use Λ as ingredient in **flux compactifications**.
	- No drastic changes.
	- Balance tadpole with fluxes: Freund-Rubin.
- ➫ However, we are missing **techniques** to engineer vacua. Fake susy?

The landscape of non-susy strings remains largely uncharted!