String Universality and (Mixed) Anomalies

Based on:

2008.09117 with F. Apruzzi and L. Lin

2008.10605 and 2106.07654 with M. Cvetic, L. Lin, and H. Y. Zhang (+ follow-ups)

and

2107.14227 and 2302.00007 with A. Debray, J. J. Heckman, and M. Montero 2212.04503 with P.-K. Oehlmann and T. Schimannek

Deconstructing the String Landscape - December 1, 2023

Markus Dierigl

Higher-form symmetries

[Gaiotto, Kapustin, Seiberg, Willett '14]

Consider a gravitational theory in **d dimensions** with a ${\bf U(1)}$ **p-form gauge field** C_p

(Abundant in string theory, e.g., RR-fields, B-field, ...)

$$\frac{1}{2g^2} \int F_{p+1} \wedge *F_{p+1}$$

Typically has global higher-form symmetries:

- Electric p-form symmetry $C_p \to C_p + \Lambda_p$

- q = d p 2
- Magnetic (d-p-2)-form symmetry $\tilde{C}_q \to \tilde{C}_q + \tilde{\Lambda}_q$ with $\tilde{F}_{q+1} \sim {}^*F_{p+1}$

But global symmetries are not allowed in quantum gravity

See e.g. [Banks, Dixon '88; Banks, Seiberg '11; Harlow, Ooguri '18]

get rid of them!

Breaking of higher-form symmetries

Include dynamical charged objects that break the higher-form symmetries:

p-dimensional

(d-p-2)-dimensional

ightharpoonup Break **everything**: no remnant discrete \mathbb{Z}_N (if charges are in $N\mathbb{Z}$)

Dirac quantization

But also don't break too much! - Inconsistencies

take a minimal magnetic object

$$\frac{1}{2\pi} \int_{S^{p+1}} F_{p+1} = 1$$

include electrically charged object

$$Q\int_{\Sigma_p \subset S^{p+1}} C_p = \int_{H_{p+1}} F_{p+1}$$

Dirac quantization

But also don't break too much!

take a minimal magnetic object

$$\frac{1}{2\pi} \int_{S^{p+1}} F_{p+1} = 1$$

Such that $e^{iQ\int_{\Sigma}C_p}$ single-valued! $Q\in\mathbb{Z}$

include electrically charged object

$$Q\int_{\Sigma_p\subset S^{p+1}}C_p=\int_{H'_{p+1}}F_{p+1}$$

Dirac quantization and large gauge trafos

$$\frac{1}{2\pi} \int_{S^{p+1}} F_{p+1} = 1$$

glue with large gauge transformation:

$$\frac{1}{2\pi} \int_{S_p} \Lambda_p = 1$$

$$e^{iQ\int_{S^p}C_p}=e^{iQ\int_{S^p}C_p+\Lambda_p}$$
 invariant

Breaking correctly

Other charges

Sometimes other sectors can carry charges:

- Gauge sectors with 2-form fieldstrength ${\cal F}$
- Gravitational sectors with curvature 2-form R

Other k-form symmetries

$$\int_{X_d} C_p \wedge \alpha \operatorname{tr}(F^k)$$

$$\int_{X_d} C_p \wedge \beta \operatorname{tr}(R^k)$$

$$\int_{X_d} C_p \wedge \gamma dC_k$$

→ All of them need to satisfy quantization!

Global data

The quantization of these background is sensitive to 'global data' of the theory:

e.g.
$$\in \frac{1}{3}\mathbb{Z}$$
 for

• Gauge sector: depends on gauge group

$$\int \mathrm{tr}(F^2) \in \mathbb{Z} \quad \text{or} \quad \in \mathbb{Q}$$
 simply-connected e.g. SU(3)

- Gravitational sector: depends on tangential structure $\frac{1}{48}\int p_1\in\mathbb{Z}$ or \mathbb{Q} for spin manifolds
- Restrictions from Dirac quantization

Global data

The quantization of these background is sensitive to 'global data' of the theory:

e.g.
$$\in \frac{1}{3}\mathbb{Z}$$
 for

• Gauge sector: depends on gauge group

$$\int \mathrm{tr}(F^2) \in \mathbb{Z} \quad \text{or} \quad \in \mathbb{Q}$$
 simply-connected e.g. SU(3)

- Gravitational sector: depends on tangential structure $\frac{1}{48}\int p_1\in\mathbb{Z}$ or \mathbb{Q} for spin manifolds
- Restrictions from Dirac quantization

Gauge group vs. gauge algebra

e.g. [Aharony, Seiberg, Tachikawa '13]

Pure non-Abelian gauge theories have a center 1-form symmetry (e.g. \mathbb{Z}_N for SU(N))

so in quantum gravity we need to:

- ullet Break it; dynamical states transforming in the center (e.g. N of SU(N))
- Gauge it; forbidding representations, fractional instantons

```
Example: SU(3) x SU(3) has representation (3,1) has fractional instantons (SU(3) x SU(3))/\mathbb{Z}_3 does not but has (3,3) or (3,\overline{3})
```

(After gauging include magnetic states)

Examples

Periodic scalars in 4d
$$\int a \operatorname{tr}(F^2)$$
 [Cordova, Freed, Lam, Seiberg '18],..., [Reece '23], [Choi, Forslund, Lam, Shao '23] [Cordova, Hong, Wang '23] actual constraints

2-forms in 6d

$$\alpha^i \Omega_{ij} B^j \wedge \operatorname{tr}(F_i^2)$$
 e.g. [Apruzzi, MD, Lin '20], [Braun, Larfors, Oehlmann '21]

4-forms in 8d

$$\int C_4 \wedge \alpha_i \operatorname{tr}(F_i^2) \qquad \text{[Cvetic, MD, Lin, Zhang '20]}$$

Focus on this, since in $\mathcal{N}=1$ SUGRA:

single 4-form coupling to all gauge sectors

8d Supergravity

[Cvetic, MD, Lin, Zhang '20]

$$\Delta \int C_4 \wedge \alpha_i \operatorname{tr}(F_i^2) = \int \Lambda_4 \wedge \alpha_i \operatorname{tr}(F_i^2)$$

$$\rightarrow \sum_i \alpha_i \in \mathbb{Z} \quad \text{otherwise anomaly}$$

Include restrictions on gauge rank r:

- $r \le 18$: from anomaly inflow on dual strings [Kim, Tarazi, Vafa '19], [Kim, Shiu, Vafa '19], [Lee, Weigand '19]
- (r-2) divisible by 8: from anomaly inflow on I-folds

[Montero, Vafa '20]

8d Supergravity

[Cvetic, MD, Lin, Zhang '20]

For non-Abelian gauge group:

$$G = \frac{\bigotimes_i G_i}{\mathbb{Z}_n}$$

The α_i are composed of:

$$\alpha_i = q_i k_i^2 m_i$$

- ullet q_i determined by fractional instantons
- k_i embedding coefficients
- m_i levels (has to be 1 for r = 18)

Anomaly hints for (internal) geometry

Example: All G_i are $SU(N_i)$ and r=18: $\sum_{i} \frac{N_i - 1}{2N_i} k_i^2 \in \mathbb{Z}$

$$\sum_{i} \frac{N_i - 1}{2N_i} k_i^2 \in \mathbb{Z}$$

strong bottom-up restrictions (without using string theory)

Many such models can be derived in string theory:

F-theory on elliptically-fibered K3

Indeed there is a geometrical condition:

[Miranda, Persson '89]

on torsional sections

$$\sum_{i} \frac{N_i - 1}{2N_i} k_i^2 \in \mathbb{Z}$$

Other string theory constructions

Same results from heterotic on T^2 with gauge fields

[Font, Fraiman, Grana, Nunez, Parra de Freitas '20 + '21]

$$\Lambda_{root} \hookrightarrow \Lambda_{string}$$

String junctions in type IIB and their M-theory analogs

[Cvetic, MD, Lin, Zhang '21, '22]

strong top-down restrictions (using string theory)

Lesson 1:

→ Anomalies very powerful to constrain models and approach string universality

- Hints on geometry of string realization
- SUSY not needed for computations (but powerful in restricting spectrum)
- Include all (generalized) symmetries

The flip side of the coin

Maybe string theory is not as unique as we think?!?

Think of a theory that has an anomaly parametrized by \mathbb{Z}_k [Dai, Freed '94], [Witten '15], [Yonekura '16], [Montero, Garcia-Etxebarria '18] which we want to cancel:

Embedding in larger (discrete) group

[Ibanez, Ross '91], [Montero, Garcia-Etxebarria '18]

Topological Green-Schwarz

[Garcia-Etxebarria, Hayashi, Ohmori, Tachikawa, Yonekura '17]

Discrete modification of Bianchi identities

[Debray, MD, Heckman, Montero '21], [MD, Oehlmann, Schimannek '22]

No modification of local dynamics, hard to test, not unique!

Example I: Duality in type IIB

[Debray, MD, Heckman, Montero '21 + '23]

Duality of type IIB is anomalous!

Can be cancelled by:

- Discrete modification of Bianchi identity of ${\cal F}_5$
- Topological Green-Schwarz of BF type with \mathbb{Z}_3 higher-form fields

Example II: Discrete gauge theories in 6d

[MD, Oehlmann, Schimannek '22]

6d SUGRA with \mathbb{Z}_3 gauge group:

- Number of tensors
- Number of neutral hypers
- Number of charged hypers

	Т	Neutral	Charged
Model 1	0	78	195
Model 2	0	78	195

different F-theory geometry

Same model? — No! — Anomaly cancellation differs!

can be tested by twisted-twined genera of topological string

Lesson 2:

→ Anomalies and their cancellation can lead to discrete landscape?

- Forbidden? Why?
- Discrete Swampland constraints?
- Allowed? How many UV completions?

Summary

→ Anomalies very powerful to constrain models and approach string universality

Anomalies and their cancellation can lead to discrete landscape?

Swamplandia in "Kloster Seeon" close to Munich: May 26 - May 30, 2024

(Back-to-back with "Strings & Geometry" in Hamburg, the week before)