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Two challenging problems

* Top down prescribes extra dimensions S = mg_sz —gpRp + ...

1. How to describe 4-dimensional physics? [separation of scales ]

° " [Ooguri, Vafa, '07,
Swampland ConJeCtureS List,Palti, Vafa, '19, ... ] [Kachru, Kallosh, Linde, Trivedi ‘03, DeWolfe, Giryates, Kachru, Taylor, '05,

Polchinksi, Silverstein '09,
Petrini, Solard, Van Riet '13,

¢ PFO pOSGd COmpaCtIflCathnS Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase ‘21, ...,

Carrasco, Coudarchet, Marchesano, Prieto, ‘23
Farakos, Morittu, ‘23]

e For AdS, CFT constraints [Polchinksi, Silverstein '09,

Conlon, Quevedo '18, Alday, Perimutter '19,
Apers, Montero, Van Riet, Wrase '22,... |

2. How to describe realistic 4-dimensional physics? [dS or more general acc. expansion]

* Conjectures, explicit constructions, consistency conditions, ...

e [his talk: how to get constraints from the equations of motion and a way to evade them



Physics of gravity compactifications

- ds? = ep=2/0)(gN(x) +
* Atlow energies ¢ _ m5_2J /=ZoRp + matter D (87 (X) + 8,(»)



Physics of gravity compactifications

* Atlow energies ¢ _ mg_ZJ —g R, + matter

 Equations of motion

| A
e A ==TD — A
D-2 d

Rmn o Vm an | me an — Agmn + 7Vﬂmn

D -2

o Spectrum of spin 2 fluctuations given by
Ay, = Ay; — V- Vy; = mizl//i

 What can we prove in general, that applies to any solution?

ds} = 77/ (gNx) + g,(»))

8w =gV + Y ()

[Csaki, Erich, Hollowood, Shirman, ‘00,
Bachas,Estes, ‘11]




Physics of gravity compactifications

* Atlow energies ¢ _ m5—2J —g R, + matter

Equations of motion

ds} = 77/ (gNx) + g,(»))

smooth internal space, no boundaries:

n

|
TA(e) = —=T@D _ A :
p_o¢ A)=73
R_—V_V fA V. IV f=A + T

o Spectrum of spin 2 fluctuations given by

Afl//l- = Ay, — Vf- Vy, = mizl//i

 What can we prove in general, that applies to any solution?

— 7(d
d\ = J \/ gnefT( ) < O for classical sources and no O-planes
M

[Gibbons '84, de Wit, Smit, Hari Dass '87 ,
Maldacena-Nunez, '00]

8w =gV + Y ()

[Csaki, Erich, Hollowood, Shirman, ‘00,
Bachas,Estes, ‘11]



Physics of gravity compactifications

. - ds? = e-2/0)(gMx) +
At IOW energles Q = mll))—ZJ _gDRD + matter D (gd( ) gn(y))
. T 3 T
' = mlz)_Dggy <Tﬂv o mgﬂv> mn = mlz)_D (Tmn — 7gmn>
 Equations of motion
smooth internal space, no boundaries:
I >d
e7A(e) ==TY - A : d\ = J A/ gnefT( ) < 0 for classical sources and no O-planes
D-2 d y
" [Gibbons '84, de Wit, Smit, Hari Dass '87 ,
Maldacena-Nunez, '00]
Rmn o Vm an | D_9 me anz Agmn T Tmn

\_,  Synthetic Ricci curvature in effective dimension N =2 — d 'Sturm 06, Lott, Villani °07, Villani '09.
« Studied in the Optimal Transport literature, controls the spectrum of Af Ambrosio, Gigli, Savaré 14, ...]

* Spectrum of spin 2 fluctuations given by .
8w =gV + Y ()

Afl//l- = Ay, — Vf- Vy, = mizl//i

[Csaki, Erich, Hollowood, Shirman, ‘00,
Bachas,Estes, ‘11]

 What can we prove in general, that applies to any solution?




RiC,%,;ld’f =Ag,, + Tmn

» Useful to prove theorems on the spectrum of
Ar= A — Vf-V and bound mg/| Al




5 2-D ' > O
. 2—df = T =m>P|(T
Ric,,” =Ag,  +T, . 2 — ‘ A‘ mn = "D e Smn = [GBDL, Tomasiello, 21]

For fluxes, scalar fields, scalar

» Useful to prove theorems on the spectrum of ootentials, D-dim cosmological
— 2 constants and localized sources with
Af = A — V-V and bound mg, /| A] ositive tension

Reduced Energy Condition



T(d)

. D—df = T =mzP|T >
RIC,, " = Ay + Ty 2 — ‘ A ‘ mn D mn = Smn |22 0 [GBDL, Tomasiello, ‘21]
For fluxes, scalar fields, scalar
» Useful to prove theorems on the spectrum of ootentials, D-dim cosmological
— 2 constants and localized sources with
Af = A — V-V and bound mg, /| A] ositive tension

Reduced Energy Condition
e |f My = 0 [ — Yo = CcoONSt. [GBDL, De Ponti, Mondino, Tomasiello, ‘23]]
4 Separation of scales achieved if
2 2 .
m L diam << L, 4¢

: A et
> a(diam/Ly ) —% ; —>
(GBDL, | A diam Intuitive, but now rigorous even with D-brane
- O\km/iws

De Pont, singularities and warping
Mondino,

Tomasiello 1

=
22 - - _
| m12 Z —h12 OO : ngorous even In presence of O planes [DeWolfe, Giryavets, Kachru, Taylor, ‘05
4 Can be used to check sep. of scale in ~ #\charva, Benini, valandro ‘06,

'K \!\¢ < q o _ Junghans ‘20, Marchesano, Palti, Quirant,
explicit proposed examples. e.g. In Tomasiello ‘20]
Cheeger constant  [cheeger '69

h12 o N—1/2 , ‘A‘ o N—3/2



T(d)

. D—df = T =mzP|T >
RICmn — Agmn T Tmn 2 T ‘ A ‘ it D i d Smn = O [GBDL, Tomasiello, ‘21]
For fluxes, scalar fields, scalar
» Useful to prove theorems on the spectrum of ootentials, D-dim cosmological
— 2 constants and localized sources with
Af = A — V-V and bound mg, /| A] ositive tension

Reduced Energy Condition
o |f mo — () [ — 1/10 — CONSt. [GBDL, De Ponti, Mondino, Tomasiello, ‘23]]

4 Separation of scales achieved if
2 2 :
m - Lias - diam << L, g
> a(diam/L, ;) : N , .
GBDL, | A diam | Intuitive, but now rigorous even with D-brane
De Ponti, _ O‘W\W/LM§ singularities and warping
Mondino, m
Tomasiello 1
2] m12 > — h12 => Rigorous even in presence of O-planes DoWolfe, Giryavets, Kachru, Taylor, ‘05
: Acharya, Benini, Valandro ‘06,
4 & \!\i << q Can,b,e used to check Sep. of scgle n Junghans ‘20, Marchesano, Palti, Quirant,
explicit proposed examples. e.g. In Tomasiello ‘20]

Cheeger constant  [cheeger '69

h2 o N—1/2 AUNES N—3/2
» Also upper bounds, e.g: i [ A

Hassannezhad, ‘13]

1 1 o
m;; < a(n) max {sup(df — ( Al+—— 2sup(af)2> } + b(n)k?™ol#" 500k Tomasielo. 21

[cf. Collins, Jafferis, Vafa, Xu, Yau, ‘22,
» Even assuming the REC, these do not exclude separation of scales =~ ©"ert Jungnans, van Hemelryek, Van iet, rase 21,



Violating the REC

e Generically, with only “positive energy” (T(d) < (), it is easy to stabilize positive internal curvature
* A simple understanding is through the effective potential

[Douglas, ‘09]
 Equivalent to the D-dimensional eoms after the warp-factor constraint is enforced
D2 2 (Vu©® @ ds? = u(y)ds2(x) + ds2(y)
Vattlg,, @; ul < my Jgu | —R —3 - T¢ p = u\y)as, n\Y
Ml’l
Vo4
X_T20
R So

‘! #4/2




Violating the REC

e Generically, with only “positive energy” (T(d) < (), it is easy to stabilize positive internal curvature
* A simple understanding is through the effective potential

[Douglas, ‘09]
 Equivalent to the D-dimensional eoms after the warp-factor constraint is enforced
. p2| =2 (Vw0 ds? = u(y)ds2(x) + ds2(y)
Veff[gn’ ¢9 I/t] X mp, g,U _Rn 3 iy T¢ D 4 -
Ml’l
Vo4
V4
X T2 -
R So e \ V=0
) .. ,(70 WA~
R
‘ i) >

o But if Tg"’) iIncludes also negative contributions, one can stabilize zero and negative curvature [cf. Douglas, Kallosh, “10]

* Much richer structure: the length scales (e.g. diameter) and KK modes are not tied to the curvature

* Negative curvature in particular has no moduli (rigidity)



Violating the REC

e Generically, with only “positive energy” (T(d) < (), it is easy to stabilize positive internal curvature
* A simple understanding is through the effective potential

[Douglas, ‘09]
 Equivalent to the D-dimensional eoms after the warp-factor constraint is enforced
. p2| =2 (Vw0 ds? = u(y)ds2(x) + ds2(y)
Veff[gn’ ¢9 I/t] X mp, g,U _Rn 3 iy T¢ D 4 -
Ml’l
Vo4
V4
X T2 -
R So e \ V=0
) . ,(70 WA~
4/2
‘ i) >

o But if Tg"’) iIncludes also negative contributions, one can stabilize zero and negative curvature [cf. Douglas, Kallosh, “10]

* Much richer structure: the length scales (e.g. diameter) and KK modes are not tied to the curvature
* Negative curvature in particular has no moduli (rigidity)
* Many other possibilities for negative energy and uplift, (KKLT, LVS, supercritical,...)

[Silverstein, Torroba, Dodelson, Dong ‘13;

* Another simple possibility: O-planes and large gradients Cordova, GBDL, Tomasiello, 18 19



R, = 0 4+ Casimir - A, <0

 With a compact internal space, Casimir energy density can be automatically generated

[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

* |f the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form

D L k [Arkani-Hamed, Dubovsky, Nicolis, Villadoro ‘07]
T ..~ R —D,.
ﬁ % R C(y) gq

j/_) Tab ~ 2 Rc(y) _Dgab [cf. Maldacena, Milekhin, Popov ‘18]
other directions S~

circle directions

small circle size

D
\/ ~ 8D 58AD4N My

class.
 Then solve the semi-classical equations:  __ 2 i 25 <T(Cas')>



R, = 0 4+ Casimir - A, <0

 With a compact internal space, Casimir energy density can be automatically generated

[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

* |f the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form
D L k. [Arkani-Hamed, Dubovsky, Nicolis, Villadoro ‘07]

ﬁ Tz’j ~ Rc(y) _Dgij/_) 1y ~ 2 Rc(y) _Dgab [cf. Maldacena, Milekhin, Popov ‘18]
other directions circle directions \‘ small circle size \/
. . . (class.)
» Then solve the semi-classical equations: __ 2 5b _ <T(Cas')>
V=8 O8N My \ t .
CAS. +
o : 7
o - . 2 172942 2 72
Explicitly in M-theory on AdS, X 1 ds}, = L}ds3 s + R2ds?; "
4
TCas — 9 p—11 Cas — _ __ 9 p—-11, 11
J21% ‘pc‘fll C g//lV le 7 ‘pc‘flch 8ij RC NN722/3 > 1

L; 2401 N® £
F7 =]C7VOZT7 1 J : — = ! > 1 ! QG effects under

F7 — N7 Rc2 4603 pé} control



R, = 0 + Casimir - A, <0

 With a compact internal space, Casimir energy density can be automatically generated

[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

* |f the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form

D L k’ [Arkani-Hamed, Dubovsky, Nicolis, Villadoro ‘07]
K—) Tij ~ Rc(y) —Dgijfé 1y ~ i Rc(y) _Dgab [cf. Maldacena, Milekhin, Popov ‘18]
other directions circle directions \‘ small circle size \/
_ , , (class.)
» Then solve the semi-classical equations: __ 2 5b _ <T(Cas')>
\/—8 O8N My \ t .
CAS. +
« Explicitly in M-theory on A T’ 2 _ 12742 272
Cas _ 9 p—11 4 _
L™ = 1Pl 1R 8 TiJCaS - VALZS 11é’ij R N22/3 s 1
L; 2401 N§ £
S = 1 QG effects under

2 4 >
F7 — N7 Rc 4608 Pc control

F, = fvol 1 J —

\/ parametric separation of scales!

* Non-susy and unstable for M2 bubble nucleation
: : : : 1 Lust, Palti, Vafa, ‘19
+ Compatible with AdS distance conjecture, m2, ~ | A|" o b e \atenzucla . 21]

e [Also non stable dS possible in this way but not under parametric control]



Hyperbolic manifolds — A, > 0

[e.g. Vinberg ‘ 93, Ratcliffe ‘06]
 Negative curvature and explicit metric, smooth manifolds. Quotients of hyperbolic space by
subgroups I of its isometries

* Recent explicit constructions by gluing

| K

ury
right-angled polytopes  (itajiano, Martelii, Migliorini , *20] /\_‘ /&\N
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Hyperbolic manifolds — A, > 0

[e.g. Vinberg ‘ 93, Ratcliffe ‘06]
 Negative curvature and explicit metric, smooth manifolds. Quotients of hyperbolic space by
subgroups I of its isometries

| (
* Recent explicit constructions by gluing ‘ \
right-angled polytopes [ltaliano, Martelli, Migliorini , ‘20] /v //&\N
L0 Y

* Have one or more cusps: regions with small slowly varying circles

) o, 2L .2
dsyr=dy +e 7dsy,  p O0<y<y,
\_/ C




Hyperbolic manifolds — A, > 0

[e.g. Vinberg ‘ 93, Ratcliffe ‘06]
 Negative curvature and explicit metric, smooth manifolds. Quotients of hyperbolic space by
subgroups I of its isometries

| (
* Recent explicit constructions by gluing ‘ \
right-angled polytopes [ltaliano, Martelli, Migliorini , ‘20] /v /&\N
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* Have one or more cusps: regions with small slowly varying circles

) o, 2L .2
dsyr=dy +e 7dsy,  p O0<y<y,
\_/ C

* Cusps can be capped off in a smooth way: Anderson-Dehn filling to compact tEinstein spaces
[Anderson ‘00]



Hyperbolic manifolds — A, > 0

[e.g. Vinberg ‘ 93, Ratcliffe ‘06]
 Negative curvature and explicit metric, smooth manifolds. Quotients of hyperbolic space by
subgroups | of its isometries G

«/

v C \
-

©)

* Recent explicit constructions by gluing

right-angled polytopes  jizjiano, Martelli, Migliorini , ‘20] /l
\ ‘

* Have one or more cusps: regions with small slowly varying circles

)
dsui/r =dy +e "dsz R O0<y<y,
S~ C

* Cusps can be capped off in a smooth way: Anderson-Dehn filling to compact tEinstein spaces
[Anderson ‘00]

» They are rigid in d > 2: the hyperbolic structure is completely determined by the topology
(ho moduli space)

» Also the filled Einstein manifolds are rigid [Anderson “06]

« —R, is gapped at second order in hij ©.g. Besse 671



* Rigidity: essentially, we only have to stabilize the volume modulus (¢t kaloper, March-Russell, Starkman, Trodden, “00]

2
2 _ 2
ds; = 5ds,

2 _ . D-2
my; = my J \/8U
M

7

* |Important: the negative contribution sits in the middle! o ~ f7—2 B~ f7—11 y ~ 57—14

Voglgr, C] = : u?| —R 3(V”)2 L7 R()—“+1\F\2
eﬂ:g7’ 6 _zflgl M\/§ 7 12 11PN I 7




* Rigidity: essentially, we only have to stabilize the volume modulus (¢t kaloper, March-Russell, Starkman, Trodden, “00]

2
2 _ 2
ds; = 5ds,

: 2 (Vw)® i, e

m? = mg_zj \/§u Vefflgr, Cel = 209 JM7\/§M <—R7 3 " CIPARY) T+ 5\F7| )
* Important: the nj\ggative contribution sits in the middle! a ~ f7—2 g~ oy~
*F0<a<xl: d C b 3 terms power law stabilization:

J\/guza >AQ, andJ\/guza + J\/guzy N\— J\/guzﬁ > V(e2) ) . c

Positive first term  Gompetition of classical and quantum effects

— 1

119
e ‘7 K
* Stabilization occurs at 7 ~ (;) > 1 ntegrated Casimir —

c R.> ¢ and 0 K € ¢



* Rigidity: essentially, we only have to stabilize the volume modulus (¢t kaloper, March-Russell, Starkman, Trodden, “00]

2
2 _ p2
ds; = 5ds,

: 2 (Vw)® i, e

m? = mg_zj \/§u Vefflgr, Cel = 209 JM7\/§M <—R7 3 " CIPARY) T+ 5\F7| )
* Important: the nﬂggative contribution sits in the middle! a ~ f7—2 g~ oy~
*F0<a<xl: d C b 3 terms power law stabilization:

J\/guza > { | andJ\/guza + J\/gbﬂy N\— J\/guzﬂ —> V() b c

Positive first term  Gompetition of classical and quantum effects

. K\ 1P <« . ,
« Stabilization occurs at 7" \a > 1 ntegrated Casimir —
7
. Locally: « R.> ¢ and 7 K €
(Vu)? 0 o1l . —1 S  To increase a, reduce the flux
Ry =3 = AR —u TN SF

* To reduce a, add bulk regions (or reduce cusps)



Backreacted smooth solution in a filled cusp

* At the end of the filled cusp, approximately only radial dependence [Anderson ‘06]
+ PDEs — ODEs dst, = u(y)ds; \ + dy” + RZ(y)dszs + R*(y)d6”

V

/ ! D/ /1\2
0 = 4A/ <5Rc + R ) + 6(AI)2 . ie_SAfg . %e—2AC 4+ S5R Rc |pC| 1O(Rc)

RR. 2RI R2
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R! /
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Backreacted smooth solution in a filled cusp

* At the end of the filled cusp, approximately only radial dependence [Anderson ‘0]
2
. PDEs — ODEs 0 dsi, = u(y)ds;  + dy” + RZ(y)dsg; + R*(y)d6
0=4A (5}5,0 4 g) + 6(A’)2 _ ie_&qu _ %e—2AC+ 5}};?} _ Jfé'l + 1O(RRg/C)2 A R
- :
- _A/<4A/+5?Rc/c+%/)+%€—8A<Z€6AC+J¢3>_J%C;l 1.25F /
Full set of 11D g R(W+3+B) | 4 (py 0> t— \ |
EOMSs R. R. —g¢  Jo TER T TR \ R (shrinks
o RAA+5+5) 1 s\ (R) 0.75F smoothly)
— = - ( - )+6<—e fo—RLél)‘l' R2 el \
0.25} \ U
05 y 5 > "

(functions rescaled for clarity, but can make R > R. > ;)

e Most of the volume is In the cusp

[Italiano, Martelli, Migliorini , ‘20]

* Gluing to the core of the manifold
introduces angular dependence



Backreacted smooth solution in a filled cusp

* At the end of the filled cusp, approximately only radial dependence [Anderson ‘06]
. PDEs — ODEs 0 dst, = u(y)ds;  + dy* + R2(y)dsys + R*(y)d6”
0=4A (5}?:0 + Z) +6(A")? — 36_8Af02 — %e‘2AC+ 5}}5;2/0 — 2';){%'1 + 10(1%}2/0)2 . R
- :
- _A/<4A/+5?Rc/c+%l>+%€—8A(Z€6AC+J¢3>_%C;l 1.25F /
Full set of 11D g R(W+E+E) | g (mp 0> I \ |
EOMs R~ . o0 N ERn T TR \ R (shrinks
o RAA+5+5) 1 s\ (R) 0.75F smoothly)
— = - ( - )+6<—e fO_RLél)-i_ R2 ol \
0.25} \ U
 We can check our general estimates explicitly: | | | | -
0.5 1. 1.5 2.

(functions rescaled for clarity, but can make R > R. > ;)
250 - uza > O
ol / ¢ * Most of the volume is in the cusp
I/t2}/ o> J\/gu(a+7) [Italiano, Martelli, Migliorini , ‘20]

50 - ~ 1.06

l | l . J\/gup . .

o —— * Gluing to the core of the manifold
_5oﬂ introduces angular dependence

— \u<p 52V > 0 Y P



* We have described explicit families of hyperbolic manifolds and constructed piece-wise de Sltter
solutions of the M-theory equations of motion.

 Compare this with Anderson’s proof of the existence of the filled metric [Anderson ‘06]
d]’z 7'2 2
2 _ | 2
ds cusp— o " 2 dSTn—1 Glued at dSZBH = ar - V(r)dO? + rza’suin_2 |72
J _ V(r)
r—4>1
I"ZO 1”21 V(r)=r2<1_rl—n>

* The gluing is continuous but not smooth, but a nearby smooth Einstein metric is proved to exist



* We have described explicit families of hyperbolic manifolds and constructed piece-wise de Sltter
solutions of the M-theory equations of motion.

 Compare this with Anderson’s proof of the existence of the filled metric [Anderson ‘06]
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J _ V(r)
r—4>1
I"ZO 1”21 V(r)=r2<1_rl—n>

* The gluing is continuous but not smooth, but a nearby smooth Einstein metric is proved to exist

* But finding the full non-cohomogeneity 1 Einstein metric in this purely geometric setting is
numerically challenging and an open problem in hyperbolic geometry, already for n = 4

« All cusps needs to be filled simultaneously [Martelli “15]



* We have described explicit families of hyperbolic manifolds and constructed piece-wise de Sltter
solutions of the M-theory equations of motion.

 Compare this with Anderson’s proof of the existence of the filled metric [Anderson ‘06]
dl"z 7'2 2
2 _ | 2
ds cusp =~ .2 " 2 dSTn—1 Glued at dSzBH = ar - V(r)dO? + rza’sén_2 |72
J _ V(r)
r—4>1
I/'ZO 1"21 V(r)=r2<1_rl—n>

* The gluing is continuous but not smooth, but a nearby smooth Einstein metric is proved to exist

* But finding the full non-cohomogeneity 1 Einstein metric in this purely geometric setting is
numerically challenging and an open problem in hyperbolic geometry, already for n = 4

« All cusps needs to be filled simultaneously [Martelli “15]

* |n progress: using Machine Learning techniques to first solve the 0] \
geometric problem 0\

 Then add Casimir? M=3> —» \M“
FlLLinG A Cosp ™ _LLJ

* Analytic proofs?
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Backreaction on the whole manifold?

B . 5 . boiics s 3 F s o3
~ 2 %
. % ';(4._. 7 i ; 37

« We have described explicit families of hyperbolic manifolds and constructed piece-wise de Sltter ~
solutions of the M-theory equations of motion.

 Compare this with Anderson’s proof of the existence of the filled metric [Anderson ‘06]
dl"z 1"2 2
2 _ | 2
ds cusp =~ .2 " 2 dST”—1 Glued at dSZBH = ar - V(r)dO? + rzdsu%n_2 |72
J _ V(r)
r—g>1
I"ZO 1"21 V(r)=r2<1_r1—n>

* The gluing is continuous but not smooth, but a nearby smooth Einstein metric is proved to exist

* But finding the full non-cohomogeneity 1 Einstein metric in this purely geometric setting is
numerically challenging and an open problem in hyperbolic geometry, already for n = 4

* All cusps needs to be filled simultaneously [Martelli “15]

* |n progress: using Machine Learning techniques to first solve the
geometric problem

e Then add Casimir? M=2> —» L
FiLLinGg A Cosp 7

* Analytic proofs?
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An explicit uncontrolled dS with Casimir

» Consider M-theory on dS; X T* (or dsS, X S5 x T*), with magnetic F, on the torus

V -8 2 _ 122 2 7.2
* dsi) = Lydsyg + Ridsy,

Recall for AdS, X T

R
[ — ~ N7P > 1
fll
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Putting everything together

integrated Casimir
2 (V”)2 e If 0 <a<xI: F
JM7\/§M ( R; =3 ) <4 2 K\ 1
a= o Stabilization occursat —— ~ — > 1

IM \/_I/l242 Z/ﬂll
7

e R.> 7 ,and 7 K €

e And:

* JTadpoles around the hyperbolic starting point are bounded and small
* Full Hessian is likely to be positive, gapped:
* Rigidity + 0B stabilized by warp factor rextending Douglas, ‘09]



F integrated Casimir
( gu)z ° "

K 1/9
a = e Stabilization occurs at — ~ (;) > 1

4
jM7 \/§u2772 11

¢ RC>> Z/ﬂll and Z/ﬂ7 <4 de

e And:

* Tadpoles around the hyperbolic starting point are bounded and small
* Full Hessian is likely to be positive, gapped:

[Douglas, Kallosh , “10]

e Can we obtain it? (Vu)?
* Locally (from the EOMs): —R;—3

e Jo reduce a, add bulk regions (or reduce cusps) g\g';fe'ig‘gﬂﬂ,%m.

 Jo Increase a, reduce the flux parameters.

5
=4¢) R —um'A - > 7

142



F integrated Casimir
( gu)z ° "

K 1/9
a = e Stabilization occurs at — ~ (;) > 1

4
jM7 \/§u2772 11

¢ RC>> Z/ﬂll and Z/ﬂ7 <4 de

e And:

* Tadpoles around the hyperbolic starting point are bounded and small
* Full Hessian is likely to be positive, gapped:

 Rigidity + oB stabilized by warp factor rextending Douglas, ‘09]
[Douglas, Kallosh , “10]
» Can we obtain it? Vu)? 5
* Locally (from the EOMs): —R; — 3( 2) = 4L”191RC_11 Y > 72
U
V | |
 To reduce a, add bulk regions (or reduce cusps) Available tuning

| discrete topological
 Jo Increase a, reduce the flux parameters.

 Can we also solve all the equations of motion explicitly?



Organizing the equations of motion

 The 11D equations of motion can be obtained from the effective potential  [Douglas, ‘09]

1 , (Vuy* TR )
Veff[ua g79 C6] — 9 \/gu _R7 3 9 fl 1pcRc(y) + = |F7 ‘
207, M. 2
11 Y% 1 , 031 |
5&41/ D> 5eff — 0 D> Au—§<—R7—|— F* il )u — A warp factor constraint
U C
« When Af72 < 1 is an analogue Schrodinger problem
* “Negative energy” — potential barriers for warping
58°1°1 > OV eff -0 > Set of 7d second order non-linear PDEs!
/ 087 ij * Organized in terms of their geometrical origin:

1 - -
087;;(y) = hy(y) + —87 oB(y) 0B(y) = oV + 0B(y)

k . . — L measure
anisotropies volume

iInhomogeneinities
+ Flux equations and fixed G, = J g u’






