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Two challenging problems

• Top down prescribes extra dimensions S = mD−2
D ∫ −gDRD + …

1. How to describe 4-dimensional physics? [separation of scales ]

2. How to describe realistic 4-dimensional physics? [dS or more general acc. expansion]

• This talk: how to get constraints from the equations of motion and a way to evade them 

[Ooguri, Vafa, '07, 

Lüst,Palti, Vafa, '19, ... ] [Kachru, Kallosh, Linde, Trivedi '03, DeWolfe, Giryates, Kachru, Taylor, '05,


Polchinksi, Silverstein '09,

Petrini, Solard, Van Riet '13,

Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase ‘21, …,

Carrasco, Coudarchet, Marchesano, Prieto, ‘23

Farakos, Morittu, ‘23]

• Proposed compactifications

• Swampland conjectures

• For AdS, CFT constraints [Polchinksi, Silverstein '09,

Conlon, Quevedo '18, Alday, Perlmutter '19,

Apers, Montero, Van Riet, Wrase '22,... ]

• Conjectures, explicit constructions, consistency conditions, …



Physics of gravity compactifications
S = mD−2

D ∫ −gDRD + matter
ds2

D = e
2

D − 2 f(y)(gΛ
d (x) + gn(y))• At low energies
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D ∫ −gDRD + matter
ds2

D = e
2

D − 2 f(y)(gΛ
d (x) + gn(y))

1
D − 2

e−fΔ(ef ) =
1
d

̂T(d) − Λ

Rmn − ∇m ∇n f +
1

D − 2
∇m f ∇n f = Λgmn + T̃mn

• Equations of motion

• At low energies

[ ̂T(d) ≡ m2−D
D gμν

d (Tμν −
T

D − 2
gμν) , T̃mn ≡ m2−D

D (Tmn −
T(d)

d
gmn)]

• Spectrum of spin 2 fluctuations given by
g4 μν(x) = g(Λ)

μν (x) + ∑
i

hi
μν(x)ψi(y)

[Csaki, Erich, Hollowood, Shirman, ‘00,

Bachas,Estes, ‘11]

Δf ψi ≡ Δψi − ∇f ⋅ ∇ψi = m2
i ψi

• What can we prove in general, that applies to any solution?
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• What can we prove in general, that applies to any solution?

smooth internal space, no boundaries:
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gnef ̂T(d)
 for classical sources and no O-planes⩽ 0

[Gibbons '84,  de Wit, Smit, Hari Dass '87 ,
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• Synthetic Ricci curvature in effective dimension  

• Studied in the Optimal Transport literature, controls the spectrum of 

N = 2 − d
Δf

⟹

[Sturm ’06, Lott, Villani ’07, Villani '09,

Ambrosio, Gigli, Savaré 14 , …]
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Reduced Energy Condition

• Useful to prove theorems on the spectrum of 
 and bound Δf ≡ Δ − ∇f ⋅ ∇ m2

KK / |Λ |

• If  m0 = 0 [ ⟹ ψ0 = const. ]
m2

1

|Λ |
⩾ α(diam/LAdS)

L2
AdS

diam2 ⟹
Separation of scales achieved if 
diam ≪ LAdS

Intuitive, but now rigorous even with D-brane 
singularities and warping 

m2
1 ⩾

1
4

h2
1 ⟹ Rigorous even in presence of O-planes

[GBDL,  
De Ponti, 
Mondino, 
Tomasiello
, ‘22]

h2
1 ∼ N−1/2 , |Λ | ∼ N−3/2

Can be used to check sep. of scale in 
explicit proposed examples. e.g. in 

[DeWolfe, Giryavets, Kachru, Taylor, ‘05

Acharya, Benini, Valandro ‘06,

Junghans ‘20, Marchesano, Palti, Quirant, 
Tomasiello ‘20]

[GBDL,  De Ponti, Mondino, Tomasiello, ‘23]

⩾ 0

Cheeger constant [Cheeger '69]

⩾ − |Λ |
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 and bound Δf ≡ Δ − ∇f ⋅ ∇ m2
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• If  m0 = 0 [ ⟹ ψ0 = const. ]
m2

1

|Λ |
⩾ α(diam/LAdS)

L2
AdS

diam2 ⟹
Separation of scales achieved if 
diam ≪ LAdS

Intuitive, but now rigorous even with D-brane 
singularities and warping 

• Even assuming the REC, these do not exclude separation of scales

m2
1 ⩾

1
4

h2
1 ⟹ Rigorous even in presence of O-planes

m2
k ⩽ a(n) max {sup(∂f )2,

1
n − 1 ( |Λ | +

1
D − 2

sup(∂f )2)} + b(n)k2/nVol−2/n
f

[GBDL, Tomasiello, ‘21

using

Hassannezhad, ‘13]

[GBDL,  
De Ponti, 
Mondino, 
Tomasiello
, ‘22]

[cf. Collins, Jafferis, Vafa, Xu, Yau, ‘22,

Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase ‘21,]

h2
1 ∼ N−1/2 , |Λ | ∼ N−3/2

Can be used to check sep. of scale in 
explicit proposed examples. e.g. in 

[DeWolfe, Giryavets, Kachru, Taylor, ‘05

Acharya, Benini, Valandro ‘06,

Junghans ‘20, Marchesano, Palti, Quirant, 
Tomasiello ‘20]

[GBDL,  De Ponti, Mondino, Tomasiello, ‘23]

• Also upper bounds, e.g:

⩾ 0

Cheeger constant [Cheeger '69]

⩾ − |Λ |



Violating the REC
• Generically, with only “positive energy” ( ), it is easy to stabilize positive internal curvatureT(d) < 0

• A simple understanding is through the effective potential

Veff[gn, ϕ; u] ∝ mD−2
D ∫Mn

gnu2 (−Rn − 3
(∇u)2

u2
− T(d)

ϕ )
• Equivalent to the D-dimensional eoms after the warp-factor constraint is enforced

[Douglas, ‘09]

ds2
D = u(y)ds2

4(x) + ds2
n(y)
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• Much richer structure: the length scales (e.g. diameter) and KK modes are not tied to the curvature 
• Negative curvature in particular has no moduli (rigidity) 
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• But if  includes also negative contributions, one can stabilize zero and negative curvature T(d)
ϕ

• Much richer structure: the length scales (e.g. diameter) and KK modes are not tied to the curvature 
• Negative curvature in particular has no moduli (rigidity) 

[Silverstein, Torroba, Dodelson, Dong ‘13; 

Córdova, GBDL, Tomasiello, ‘18 ‘19 ]• Another simple possibility: O-planes and large gradients 

• Many other possibilities for negative energy and uplift, (KKLT, LVS, supercritical,…)

[cf. Douglas, Kallosh, ‘10]



• Then solve the semi-classical equations:

• With a compact internal space, Casimir energy density can be automatically generated

• If the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form

circle directionsother directions small circle size

[Arkani-Hamed, Dubovsky, Nicolis, Villadoro ‘07]
[cf. Maldacena, Milekhin, Popov ‘18]

−
2
−gD

S(class.)
D

δgD
MN

= ⟨T(Cas.)
MN ⟩

Rn = 0 + Casimir → Λ4 < 0
[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]
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• If the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form

circle directionsother directions small circle size
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−
2
−gD

S(class.)
D

δgD
MN

= ⟨T(Cas.)
MN ⟩

Rn = 0 + Casimir → Λ4 < 0

• Non-susy and unstable for M2 bubble nucleation

⟹
parametric separation of scales!

QG effects under 
control

• Compatible with AdS distance conjecture,   m2
KK ∼ |Λ |1/d

[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]

[Lust, Palti, Vafa, ‘19

Gonzalo, Ibáñez, Valenzuela , ‘21]

• [Also non stable dS possible in this way but not under parametric control]



Hyperbolic manifolds → Λ4 > 0
• Negative curvature and explicit metric, smooth manifolds. Quotients of hyperbolic space by 

subgroups  of its isometriesΓ

[e.g. Vinberg ‘ 93, Ratcliffe ‘06]

• Recent explicit constructions by gluing 
right-angled polytopes [Italiano, Martelli, Migliorini , ‘20] 
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Hyperbolic manifolds → Λ4 > 0
• Negative curvature and explicit metric, smooth manifolds. Quotients of hyperbolic space by 

subgroups  of its isometriesΓ

• Have one or more cusps: regions with small slowly varying circles  

ds2
ℍ7/Γ = dy2 + e− 2y

ℓ7 ds2
T6

0 ⩽ y ⩽ ycRc

• Cusps can be capped off in a smooth way: Anderson-Dehn filling to compact Einstein spaces 

• They are rigid in : the hyperbolic structure is completely determined by the topology 
(no moduli space)

d > 2

•  is gapped at second order in  −R7 hij

[e.g. Vinberg ‘ 93, Ratcliffe ‘06]

• Recent explicit constructions by gluing 
right-angled polytopes [Italiano, Martelli, Migliorini , ‘20] 

[e.g. Besse  ‘87]

[Anderson ‘06]

• Also the filled Einstein manifolds are rigid [Anderson ‘06]
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• Rigidity: essentially, we only have to stabilize the volume modulus [cf. Kaloper, March-Russell, Starkman, Trodden, ‘00]
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• Important: the negative contribution sits in the middle!

• Stabilization occurs at
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1/9

≫ 1 integrated Casimir

• If  :0 < a ≪ 1

•  and Rc ≫ ℓ11 ℓ7 ≪ ℓdS
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• Important: the negative contribution sits in the middle!
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ℓ7

ℓ11
∼ ( K

a )
1/9

≫ 1 integrated Casimir

• If  :0 < a ≪ 1

•  and Rc ≫ ℓ11 ℓ7 ≪ ℓdS• Locally:

−R7 − 3
(∇u)2

u2
= 4ℓ9

11R
−11
c − u−1Λ −

5
2

F2
7

• To reduce , add bulk regions (or reduce cusps)a
• To increase , reduce the flux a

m2
4 = mD−2

D ∫M7
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Backreacted smooth solution in a filled cusp
• At the end of the filled cusp, approximately only radial dependence [Anderson ‘06]

Full set of 11D 
EOMs

ds2
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4,Λ + dy2 + R2
c (y)ds2

𝕋5 + R2(y)dθ2•  PDEs → ODEs
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 (shrinks 
smoothly)

(functions rescaled for clarity, but can make )R ≫ Rc ≫ ℓ11

[Anderson ‘06]

Full set of 11D 
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Rc

R

u

• Gluing to the core of the manifold 
introduces angular dependence

• Most of the volume is in the cusp
[Italiano, Martelli, Migliorini , ‘20] 
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Backreacted smooth solution in a filled cusp
• At the end of the filled cusp, approximately only radial dependence

 (shrinks 
smoothly)

(functions rescaled for clarity, but can make )R ≫ Rc ≫ ℓ11

∫ gu2(α + γ)

∫ gu2β
∼ 1.06

[Anderson ‘06]

Full set of 11D 
EOMs

• We can check our general estimates explicitly:

u2α

u2γ

u2β

a > 0

Rc

R

u

• Gluing to the core of the manifold 
introduces angular dependence

• Most of the volume is in the cusp
[Italiano, Martelli, Migliorini , ‘20] 

δ2V > 0

ds2
11 = u(y)ds2

4,Λ + dy2 + R2
c (y)ds2

𝕋5 + R2(y)dθ2•  PDEs → ODEs



Backreaction on the whole manifold?
• We have described explicit families of hyperbolic manifolds and constructed piece-wise de SItter 

solutions of the M-theory equations of motion.

[Anderson ‘06]• Compare this with Anderson’s proof of the existence of the filled metric

ds2
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dr2
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ds2
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+ V(r)dθ2 + r2ds2

ℝn−2)/ℤn−2

V(r) = r2 (1 − r1−n)r ⩾ 1

Glued at 
r = rj > 1

• The gluing is continuous but not smooth, but a nearby smooth Einstein metric is proved to exist
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• Then add Casimir?

• All cusps needs to be filled simultaneously

• Analytic proofs?





An explicit uncontrolled dS with Casimir

ds2
11 = L2

7ds2
dS7

+ R2
c ds2

T4

TCas
μν = |ρc |ℓ9

11R
−11
c gμν

TCas
ij = −

7
4

|ρc |ℓ9
11R

−11
c gij

F4 = f4volT4

1
ℓ3

11 ∫ F4 = N4

• Consider M-theory on dS  (or dS ), with magnetic  on the torus7 × T4
4 × S3 × T4 F4

Rc

ℓ11
∼ N−2/3

4 ≫ 1⟹

[ Rc

ℓ11
∼ N2/3

7 ≫ 1]
Recall for AdS4 × T7

L7

ℓ11
∼ N−11/3

4



Putting everything together

a ≡
∫

M7
gu2 (−R7 − 3 (∇u)2

u2 )
∫

M7
gu2

ℓ2
7
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Putting everything together

a ≡
∫

M7
gu2 (−R7 − 3 (∇u)2

u2 )
∫

M7
gu2

ℓ2
7

• Stabilization occurs at
ℓ7

ℓ11
∼ ( K

a )
1/9

≫ 1

integrated Casimir

• Tadpoles around the hyperbolic starting point are bounded and small
• Full Hessian is likely to be positive, gapped:

• If  :0 < a ≪ 1

• Rigidity +  stabilized by warp factorδB [extending Douglas, ‘09]

•  and Rc ≫ ℓ11 ℓ7 ≪ ℓdS

• And:
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Putting everything together

a ≡
∫

M7
gu2 (−R7 − 3 (∇u)2

u2 )
∫

M7
gu2

ℓ2
7

• Locally (from the EOMs): −R7 − 3
(∇u)2

u2
= 4ℓ9

11R
−11
c − u−1Λ −

5
2

F2
7

• To reduce , add bulk regions (or reduce cusps)a

[Douglas, Kallosh , ‘10]

• To increase , reduce the flux a
Available tuning 
discrete topological 
parameters.

• Stabilization occurs at
ℓ7

ℓ11
∼ ( K

a )
1/9

≫ 1

integrated Casimir

• Tadpoles around the hyperbolic starting point are bounded and small
• Full Hessian is likely to be positive, gapped:

• If  :0 < a ≪ 1

• Can we obtain it?

• Rigidity +  stabilized by warp factorδB [extending Douglas, ‘09]

•  and Rc ≫ ℓ11 ℓ7 ≪ ℓdS

• And:
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(∇u)2
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= 4ℓ9

11R
−11
c − u−1Λ −

5
2

F2
7

• To reduce , add bulk regions (or reduce cusps)a

[Douglas, Kallosh , ‘10]

• To increase , reduce the flux a
Available tuning 
discrete topological 
parameters.

• Stabilization occurs at
ℓ7

ℓ11
∼ ( K

a )
1/9

≫ 1

integrated Casimir

• Can we also solve all the equations of motion explicitly?

• Tadpoles around the hyperbolic starting point are bounded and small
• Full Hessian is likely to be positive, gapped:

• If  :0 < a ≪ 1

• Can we obtain it?

• Rigidity +  stabilized by warp factorδB [extending Douglas, ‘09]

•  and Rc ≫ ℓ11 ℓ7 ≪ ℓdS

• And:
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Organizing the equations of motion
[Douglas, ‘09]• The 11D equations of motion can be obtained from the effective potential

Veff[u, g7, C6] ≡
1

2ℓ9
11 ∫M7

gu2 (−R7 − 3
(∇u)2

u2
− ℓ9

11ρcRc(y)−11 +
1
2

|F7 |2 )
δg11

μν

• When  is an analogue Schrodinger problem 

• “Negative energy”  potential barriers for warping

Λℓ2
7 ≪ 1

→

δg11
ij

δVeff
δg7 ij

= 0

δVeff
δu

= 0

• Organized in terms of their geometrical origin:

δg7 ij(y) ≡ hij(y) +
1
7

g7 ijδB̃(y) δB̃(y) ≡ δV + δB(y)

anisotropies volume measure

inhomogeneinities

Set of 7d second order non-linear PDEs!

+ Flux equations and fixed GN = ∫ g7u2

warp factor constraint




