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Motivation	&	problem	set-up
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Swampland,	compactifications	and	Calabi-Yaus

• String	compactifications:	test	Swampland	conjectures
• The	topology	and	geometry	of	compact	dimensions	is	key
• e.g.	Swampland	Distance	Conjecture	

• Calabi-Yau manifolds	are	popular:
• Give	SUSY	Minkowski vacua (with	moduli),	…
• Admit	Ricci-flat	metric	(but	non-construtctive proof)
• Many	examples,	topology	well	understood.

• Ricci-flat	CY	metric has	info	on	geodesics,	curvature,	masses,…
Can we compute it	in	examples?
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Calabi-Yau manifolds:	algebraic	construction

• Build	non-trivial	spaces	from	from	simple	ambient	spaces

𝑥" + 𝑦"+ 𝑧"=1	in	ℝ' 𝑍)* + 𝑍+*+ 𝑍"*+ 𝑍'*+ 𝑍,*=0	in	ℙ,

• Many	examples	collected	in	databases:	
CICY	Candelas	et	al:88,	hypersurfaces	in	toric spaces	Kreuzer-Skarke:00,	…
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CY	manifolds	and	Ricci	flat	metrics

• Let	𝑋	be	an	n-dimensional	compact,	complex,	Kähler manifold	with	
vanishing	first	Chern class.	
Then	in	any	Kähler class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔45.

• There	is	no	analytical	expression	for	𝑔45.	
• Impose	Ricci-flatness:	solve	non-linear	PDE	for	metric.	This	is	hard.

6

Calabi:54,	Yau:78



Ricci-flat	CY	metrics

• Let	𝑋	be	an	n-dimensional	compact,	complex,	Kähler manifold	with	
vanishing	first	Chern class.	
Then	in	any	Kähler class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔45.
• There	is	no	analytical	expression	for	𝑔45.	

But	on	CY	spaces,	we	know	more!	Kähler form	𝐽45 satisfies	
• 𝐽45 = 𝐽 + 		𝜕𝜕̅𝜙	 same	Kähler class;	𝜙 is	a	function

• 𝐽45 ∧ 𝐽45 ∧ 𝐽45 = 𝜅	Ω ∧ Ω=	 Monge-Ampere	equation	(𝜅	 constant)
2nd order	PDE	for	𝜙
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Ricci-flat	CY	metrics

• Let	𝑋	be	an	n-dimensional	compact,	complex,	Kähler manifold	with	
vanishing	first	Chern class.	
Then	in	any	Kähler class	[𝐽],	𝑋	admits	a	unique	Ricci	flat	metric	𝑔45.
• There	is	no	analytical	expression	for	𝑔45.	

Kähler	form	𝐽45satisfies	
• 𝐽45 = 𝐽 + 		𝜕𝜕̅𝜙	 same	Kähler class;	𝜙 is	a	function

• 𝐽45 ∧ 𝐽45 ∧ 𝐽45 = 𝜅	Ω ∧ Ω=	 Monge-Ampere	equation	(𝜅	 constant)
2nd order	PDE	for	𝜙
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We	can	compute	these	in	examples!
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Setting	up	the	problem:

Numerical	method:	Sample large set	of random points on	CY.	
• Compute Ω and	a	reference	𝐽 at	all	points
• Solve	MA	eq.	numerically	for	𝐽45 (or	𝜙)
• Check	solution	(on	new	points): Does	MA	eq hold?	Is	Ricci	tensor	0?
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Machine Learning

Find Ricci flat CY metric gCY () find JCY that solves MA equation

JCY ^ JCY ^ JCY =  ⌦ ^ ⌦̄

where  is some complex constant.

Plan:
Point sample  Neural Network; Train using math knowledge  predict metric

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 22 / 40



Numerical	CY	metrics	– a	longstanding	quest
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Calabi-Yau Manifolds: approximating the metric

Lacking analytic expression for gCY (or JCY ), develop numerical approximations:

Donaldson algorithm

Donaldson:05, Douglas-et.al:06, Douglas-et.al:08, Braun-et.al:08, Anderson-et.al:10, ...,

Energy functionals

Headrick–Nassar:13, Cui–Gray:20, Ashmore–Calmon–He–Ovrut:21, ...

Machine learning

Ashmore–He–Ovrut:19, Douglas–Lakshminarasimhan–Qi:20,

Anderson–Gerdes–Gray–Krippendorf–Raghuram–Ruehle:20, Jejjala–Mayorga–Peña:20 ,

Larfors-Lukas-Ruehle-Schneider:21, 22, Ashmore–Calmon–He–Ovrut:21,

Berglund–Butbaia–Hübsch–Jejjala–Mayorga Peña–Mishra–Tan:22,

Gerdes–Krippendorf:22...

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 8 / 40
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Numerical	CY	metrics	– a	longstanding	quest

Algebraic	CY	metrics
• Expand	𝐾45	in	basis	of	hom.	
polynomials	of	degree	𝑘

• 𝐾@ 𝑧, 𝑧̅ =
+
@
∑ ln𝐻FGH𝑝F𝑝̅G

H�
�

• Solve	for	𝐻FGH using
• Donaldson	algorithm
• Minimize	energy	functional
• Machine	learning

Machine	Learning	CY	metrics
• NNs	are	universal	approximators
Cybenko:89;	Hornik:91;	Leshno et.al:93;	
Pinkus:99

• ML	model	searches	freely	
for	CY	metric
• Training	objective:	minimize	loss
• Control	evolution	via	NN	
architecture	and	loss	functions
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Machine	Learning	implementation

Point	
sample

ML	model
(neural	net)

Metric	
prediction

Loss	functions Error	measures

Training	algorithm	

Moduli
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Example	implementation:	cymetric package
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Learning CY metrics

cymetric

ML package cymetric written in Python and Mathematica (separately).

Decomposes into
1 point generators based on Shi↵man–Zelditch theorem

Uses NumPy, SciPy, SageMath and Mathematica.

2 custom neural networks give CY metric (at given point in moduli space)
• 5 di↵erent models (metric Ansätze)
• Implemented and optimized with TensorFlow/Keras

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 12 / 40



Point	generators
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What	do	we	need?	Error	measures	
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Error Measures

After training, evaluate performance (on separate test set):

does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:

� =
1

VolCY

Z

X

����1� 
⌦ ^ ⌦

(Jpr)3

���� , R =
1

VolCY

Z

X
|Rpr| .

using Monte Carlo integration for any function f

Z

X
dVolCYf =

Z

X

dVolCY
dA

dA f =
1

N

X

i

wi f |pi with wi =
dVolCY
dA

|pi
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Point	generators

We	need	
• random	set	of	points	on	CY	
• sampled	w.r.t.	measure	𝑑𝐴
..so	we	can	compute	integrals	
(e.g to	check	accuracy)
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cymetric: Point generators

Goal:
Random sample of points on CY, distributed w.r.t. known measure dA.
 compute integrals using Monte Carlo integration:

Z

X
dVolCYf =

Z

X

dVolCY
dA

dA f =
1

N

X

i

wi f |pi with wi =
dVolCY
dA

|pi

Pick random point on ambient space, reject all points o↵ the CY.

Select some ambient coordinates, solve for the rest with defining polynomials.

Markov Chain Monte Carlo method

cymetric : Algorithm using Shi↵man–Zelditch theorem.
I CICYs Douglas et. al: 06, Braun et.al:08.
I KS CYs: We generalise this algorithm to toric ambient spaces.

Magdalena Larfors (Uppsala U.) Machine Learning CY metrics with cymetric 9 December 2022 10 / 40



Point	generators
Quintic 		𝑋: 𝑝 = 0	 ⊂ ℙ,		 Douglas	et.	al:	06

• Sample	2	points	on		ℙ,;	connect	&	intersect
• Repeat	𝑀 times	⤳ 5𝑀 random	points	on	𝑋
• Shiffman-Zelditch:	
points	distributed	w.r.t.	FS	measure	on	𝑋

• Generalizations:	
CICY		 Douglas	et.al:	07		
Kreuzer-Skarke ML,	Lukas,	Ruehle,	Schneider:	21,22
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Point	generators	for	KS	CY	manifolds

• Can	we	relate	ambient	toric variety	A	to	projective	spaces?
Yes!	
Use	sections	of	line	bundle	dual	to	Kähler cone	divisors;	
recall	nef divisors	are	base-point	free

• So	Shiffman–Zelditch applies	 and	quintic algorithm generalizes.
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Point Generators

Creating a point sample on KS CY 3-fold

Can we relate ambient toric variety A to projective spaces?
=) and so apply Shi↵man–Zelditch theorem, and generalise the CICY algorithm.

Sections s
(↵)
j of the toric Kähler cone generators J↵ ⇠ coordinates of Pr↵

Use Shi↵man–Zelditch on Pr↵

Express CY 3-fold as non-complete intersection in Â ⇠=
Nh1,1

↵=1 Pr↵

Intersect  sample of random points on CY distributed wrt FS measure.

Magdalena Larfors (Uppsala U.) CY Metrics from NNs September 2023 18 / 47
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ML	model	architecture	in	cymetric
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Model 
learnable parameters �

H Model 
learnable parameters ��z gab̄

gab̄

K
�

�z

�

Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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ML	models:	Set-up	and	training

Architectural	choices
• What	to	predict?
• Encode	constraints	in	NN	or	loss?
(global,	complex,	Kähler…)

Then	train	
• Minimize	loss	functions
• Choose	optimizer
And	check	performance

21

Moduli
Point	sample 𝑔45, 𝐾45

𝑧@ = 𝜎(𝐴@𝑧@T+ + 𝐵@)



ML	models	in	cymetric package

• 5	ML		models
• Encode few/many constraints so	need more/less	loss	functions

Neural Networks

The network outputs the CY metric.  cymetric models

Model name Ansatz
Free gpr = gNN

Additive gpr = gFS + gNN

Multiplicative, elementwise gpr = gFS + gFS � gNN

Multiplicative, matrix gpr = gFS · (I+ gNN)
�-model gpr = gFS + @@̄�

All models have pros and cons. �-model is most e�cient, and fully encode CY
constraints. But less adaptable to new situations!

Magdalena Larfors (Uppsala U.) CY Metrics and ML 9 Februar 2023 24 / 40
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Loss	functions	encode	math	constraints

• Train	the	network	to	get	unknown Ricci-flat	metric	(in	given	Kähler class)
• Use	semi-supervised	learning
1.	Encode	mathematical	constraints	as	custom	loss	functions
2.	Train	network	(adapt	layer	weights)	to	minimize	loss	functions
• E.g.	satisfy	Monge-Ampere	eq⤳	minimize	Monge-Ampere	loss

• Depending	on	metric	ansatz,	need	more	or	fewer	loss	functions.

Learning CY metrics with cymetric

Custom loss terms controls learning - user chooses ↵i

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LK-class.

LMA =

����

����1�
1

det gpr
⌦ ^ ⌦̄

����

����
n

,

LdJ =
X

ijk

||<cijk ||n + ||=cijk ||n , with cijk = gi j̄,k � gkj̄,i and gi j̄,k = @kgi j̄

Ltransition =
1
d

X

(s,t)

���
���g (t)

pr � T(s,t) · g (s)
pr · T †

(s,t)

���
���
n

, T(s,t) transition matrix

LRicci = ||R||n =
����@@̄ ln det gpr

����
n
,
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1
h11
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i=1

����

����µJFS(Li )�
Z

X

(Jpr)
n�1Fi

����

����
n

.
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Custom	loss	functions	in	cymetric package

• Monge-Ampere	loss

• Ricci	loss		 (duplicates	MA	loss)
• Kähler loss	 (not	needed	for	𝜙 network)
• Transition	loss
• Kähler class	loss	 (needed	when	ℎ(+,+) > 1)

Learning CY metrics with cymetric

Custom loss terms controls learning - user chooses ↵i

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LK-class.

LMA =

����
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����
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n

,
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X
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����
n

.

Magdalena Larfors Learning CY metrics 4 May 2022 13 / 32

24



Error	functions	and	accuracy	measures

• After	training,	check	that	MA	eq holds	and	Ricci	tensor	is	zero

• For	CY	manifolds	with	more	than	one	Kähler class,	must	also	check	
that	we	keep	this	fixed:	
• So	we	check	that	volume	and	line	bundle	slopes	remain	constant.

25

Error Measures

After training, evaluate performance (on separate test set):

does the MA equation hold? is the metric Ricci flat?

Check via established benchmarks:

� =
1

VolCY

Z

X

����1 � 
⌦ ^ ⌦

(Jpr)3

���� , R =
1

VolCY

Z

X
|Rpr| .

using Monte Carlo integration for any function f

Z

X
dVolCYf =

Z

X

dVolCY

dA
dA f =

1

N

X

i

wi f |pi with wi =
dVolCY

dA
|pi
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Experiments
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Fermat	vs.	generic	quintic

Monge-Ampere	loss Error	measures

27

Fermat Generic GenericFermat

100000	points,	𝜙 model,	3	64-node	layers,	GELU,	default	loss,	Adam,		batch	(64,	50000)



KS	CY	example

ℎ+,+ = 2,	ℎ",+ = 80	CY	from	the	Kreuzer-Skarke list
• Ambient	space	is	ℙ+ → Α → ℙ' w.	toric coordinates	(𝑥), … , 𝑥,)

• CY	hypersurface:	𝑝 𝑥), … , 𝑥, = 0 (80	terms;	select	randomly)
• 2	Kähler cone	generators 𝐽F ;									𝐽 = 𝑡+𝐽+ + 𝑡"𝐽"
• Morphisms	to	ℙ+ and	ℙ* using	𝐻)(𝐽F)

• Point	generation	∼ 1	hour	(generic	cpl structure	moduli,	𝑡F = 1).	
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KS	CY	example

• ℎ+,+ = 2,	ℎ",+ = 80	Kreuzer-Skarke

• Toric 𝜙-model,	default	loss,	200	000	points
• NN	width	256,	depth	3,	GELU,	batch	(128,	10000),	SGD	w.	momentum
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Further	developments
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Connecting	to	Swampland

• Compute	moduli-dependent
spectrum	of	Δ45	explicitly in	
example	CY:s

• Level	crossing	&	number	theory	

2

nates. For such families, the rate ↵ has been estimated
in the case where a Kaluza–Klein (KK) tower of states
becomes light from the fact that the mass of the KK tower
is expected to go like

mKK(p1) ⇠
MPl

r2
⇠ mKK(p0)e

�↵d(p0,p1) (2)

with r3
⇠ Vol(X) and ↵ = 4/

p
3 in the large radius

limit [18, 19].1 We can compare our explicit results to this.
However, we do set up the problem such that it generalizes
to more complex situations in which the Picard–Fuchs
system does not need to be solved analytically, or in
which the geodesic trajectory through moduli space is
more complicated and thus makes it hard to determine
the KK spectrum.

We also note that according to Weyl’s law, the eigen-
values �n of the Laplacian on a real d-dimensional Rie-
mannian manifold X with volume V satisfy

lim
n!1

�d/2n

n
!

(4⇡)d/2�(1 + d/2)

V
, (3)

and hence the eigenvalues go to zero as mKK ⇠ �1/2
⇠

V �1/6, i.e. the entire KK tower becomes massless. Includ-
ing the 1/V factor of the 4D metric in Einstein frame, we
recover the scaling in (2).

This project requires carrying out the following steps:

1. Compute the moduli space metric (using either an-
alytic [20] or numeric [21] techniques)

2. Compute the geodesics and the geodesic distances
in moduli space

3. Compute the CY metric along the moduli space
geodesics

4. Compute the massive spectrum from the CY metric
5. Fit a function to the masses and compare with the

prediction from the SDC

We describe steps 1 to 3 in Section II, steps 4 and 5
in Section III, and conclude in Section IV. We discuss
the transformation of the metric to Einstein frame in
Appendix A, and explain how to compute the irreducible
representations of the symmetry groups that lead to the
degeneracies of the Laplace operator in Appendix B.

II. GEODESICS IN MODULI SPACE

In order to check the SDC, we need to fix two points in
the moduli space and then find the shortest geodesic that
connects these points. We will therefore need to discuss
moduli space geodesics. We will start with a review [18–
20] of geodesics in complex structure moduli space and
then briefly comment on the corresponding Kähler moduli
space results. We will be following [20].

1 In fact, [18] asserts mKK ⇠ 1/r2 and [19] asserts mKK ⇠ 1/r1/2,
leading to di↵erent factors of 2 for ↵. We discuss this further in
Appendix A.

A. Geodesics in complex structure moduli space

The Kähler potential for the (Weil–Petersson) Kähler
metric of the complex structure moduli space of a CY
manifold X is

Kcs = � ln

✓
i

Z

X
⌦( ) ^ ⌦̄( ̄)

◆
, gab̄ = @a@̄b̄Kcs , (4)

where ⌦ is the holomorphic (3, 0)-form on X, @a = @/@ a ,
a = 1, 2, . . . h2,1(X), and  a are the complex structure
parameters. The normalization of the Kähler potential has
been chosen such that, upon dimensional reduction on X,
the Einstein–Hilbert term is canonically normalized [22,
23]. This ensures that the geodesic distance is given in
units of the 4D e↵ective Planck mass.

Choosing a symplectic basis of three-cycles AI , BI 2

H3(X, ) and dual three-forms ↵I ,�I with2 I = 0, 1,
normalized such that

AI
\ BJ =

Z

X
↵J ^ �I =

Z

AI

↵J =

Z

BJ

�I = �IJ , (5)

and all other combinations zero, we can define the period
vector

⇧ =

✓
GI

zI

◆
=

✓R
BI

⌦R
AI ⌦

◆
, (6)

such that

⌦ ^ ⌦̄ = zI ḠI � z̄IGI . (7)

The periods have been determined analytically in [20]
as solutions to a hypergeometric system of Picard–Fuchs
equations and can be written in terms of hypergeometric
functions.

In [21], a numerical method for computing the mod-
uli space metric has been proposed, which we compare
with the exact results. The method proceeds by vary-
ing the complex structure, computing a basis of (non-
holomorphic) three-forms under the variation, and evalu-
ating the integral appearing in the metric in (4) numeri-
cally using Monte Carlo integration. Note that we need
to perform the Monte Carlo integral at di↵erent points
in complex structure moduli space for computing the nu-
merical CY metric anyways. Having obtained the moduli
space metric at di↵erent points in moduli space, we inter-
polate the solution and use the interpolated function for
further analysis.

Once we have the periods and the metric, the next step
is to compute the Christo↵el connection, which, for a
Kähler metric, is

�c
ab = gcd̄@agbd̄ , �c̄

āb̄ = �c
ab , (8)

2 Note that there are 2h2,1(X)+2 three-forms, which can be divided
into two pairs of h2,1(X) + 1 three-forms.

31

Ashmore:20,	Ashmore	&	Ruehle:21	Ahmed	&	Ruehle:23

�2.5 �2.0 �1.5 �1.0 �0.5 0.0
�

0

50

100

150

200

250

300

E
n

1
,n

2

Multiplicities

1

12

3

3

3

Figure 7: Spectrum of the scalar Laplacian on the quartic as a function of complex structure. We plot
a codimension 1 slice  = (1 + i)⇢ in the moduli space, which contains CM points at  �4 = �1/48 and
 
�4 = �9/16 (corresponding to the dashed lines at ⇢ = �0.61 and ⇢ = �1.86). We can see eigenvalue

crossings in the vicinity of these values.

Using the same method that we outlined in Section 2.1 for the torus, we find the irreps

dim(irrep) 1 2 3 6 12
number(irreps) 2 1 6 1 2

(63)

In our numerical analysis, we choose an arbitrary branch of the fourth root of unity and approach the
CM points along the trajectory  = (1 + i)⇢ for ⇢ 2 . We approximate the CY metric using the
cymetric package [26,27]. We use the phi model with a three-layer neural network (NN) with 64 hidden
nodes each and gelu activation, and train the NN with 1 million points generated for ⇢ 2 [�3, 0]. We
train the NN until the sigma loss is . 0.01, which happens already at around 5 epochs. With this
approximate CY metric, we then compute the spectrum using k� = 2, which gives us access to the first
100 eigenmodes of the scalar Laplacian on 3. The full calculation takes around 2 hours on a modern
desktop PC. We then group the eigenmodes according to their multiplicities as computed in (63). The
result is shown in Figure 7. We see that there are eigenmode crossings among low eigenmodes that are
consistent with the CM points on the quartic given in (61). We want to point out, however, that the
crossing around ⇢ = 0.61 is hard to disentangle and could also be consistent with the red, green, and
purple line approaching each other but not actually crossing. Since all three have multiplicity 3, they
cannot be distinguished by their multiplicity, unlike the much cleaner crossing around ⇢ = �1.86. In
any case, the spectrum behaves in a special way around ⇢� = 0.61 as compared to other values for  ,
where the eigenmodes just decay or grow exponentially.

5.3 Crossing and attractor points for the quintic

For the quintic, the only CM point that is known analytically is at  = 0, Computation of the scalar
Laplacian eigenmodes show a plethora of crossings at  = 0, which is known to be a CM point as

24

Quartic,	
Ahmed	
Ruehle:23



Accuracy	and	benchmarks

Improve	accuracy
• Larger	point	sample
• Wider/deeper	NN
• Train	longer

• Benchmark	on	cubic	CY	in	ℙ"
(a.k.a.	the	torus)

• Spectrum	of	Δ45
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Figure 4: The first 36 massive eigenmodes (averaged per multiplet with error bars corresponding to one
standard deviation) as we vary the number of points for the FS and the exact CY metric, compared to
the analytic result.

4.2 Spectrum

Next, we compute the spectrum numerically, varying the number of points np, the complex structure
parameter  and the number k� of the basis functions in which we expand the Laplacian eigenfunctions.
We perform all computations for the pullback of the FS metric (which is the lowest-order approximation
to the CY metric in the sense of Donaldson’s algorithm [18]) and for the exact CY metric (obtained
from |⌦|

2, which is proportional to the determinant of the metric, and hence to the metric itself for
one-folds) to see the influence of choosing various qualities of approximations to the CY metric. In all
cases, we can compare the approximate result to the analytic result (18) to quantify the error of the
approximation.

Varying the number of points

To study the influence of the number of points, we choose np 2 {1, 000, 10, 000, 100, 000}. We present the
results for each of the first 36 massive eigenmodes (the single massless mode is omitted from the plot)
in Figure 4. These 36 eigenmodes fall into various irreps under the symmetry group, such that there
are 11 distinct eigenvalues. For each eigenvalue, we plot the spectrum as computed with respect to the
exact CY metric obtained from |⌦|

2 (labeled CY in the plot), the analytic result computed from (18),
and the spectrum computed on the CY hypersurface when using the pullback of the ambient space FS
metric as a proxy for the exact CY metric. For the plot, we fix the other parameters like k� = 3 and
 = �1. The error bars represent 95 percent confidence intervals for multiplets with multiplicity larger
1. The di↵erent colors represent the three di↵erent choices for the number of points used to compute
the spectrum.

From the plot, we can make the following two observations. First, the metric dependence is rather weak.
In particular, the error we get from using the FS metric is often comparable to the error we get for the
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Accuracy,	performance	and	architecture

• Is	the	control	by	loss	functions	accurate	enough?
• Can	performance	be	improved?

Change	ML	architecture
• Algebraic	metric	Ansatz

Anderson	et	al	:	20,	Douglas	et	al	:	20,	Gerdes &	Krippendorf:22,	...

• cymetric with	spectral	layer
Berglund	et	al:22
• Metric	Neural	Tangent	Kernel	
Halverson	&	Ruehle:23
• Symmetries	and	Geometric	Deep	Learning
in	progress
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Figure 29: Numerical values of (2.24) along the Cefalú pencil near � = 1. The plot markers

are the same as in Figure 4. The value of �CY using fully-connected network at � = 0.99 is

o↵ the chart: �CY
⇡ 85510.

.

Figure 30: Convergence plot for c2(X�) around � = 1; the spectral network results (green,

“s” subscript) show significant improvement.

Computation of topological quantities is a crucial fitness check for numerical Calabi–

Yau metrics. At first one might think that these relatively straightforward computations

automatically work out as they are metric independent. However, one has to bear in mind

that the possible neural network approximations constitute a far broader set of solutions

than that of globally defined Kähler metrics. Choosing smooth activation functions for the

neural network ensures that the metric is smooth over each of the patches. Similarly, if the

metric is obtained from the so-called PhiModel, over each patch one has dJ = 0, satisfying

some local form of Kählerity. In the matching of patches, however, it is not guaranteed

a priori that the perturbation �NN respects the Kähler transformation rules of the seed

Kähler potential (in our case, the Fubini–Study potential). That is an inherent issue with

these numerical approximations and for the cases in which this situation is non-negligible we

expect significant deviations when computing topological quantities.
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Figure 30: Convergence plot for c2(X�) around � = 1; the spectral network results (green,

“s” subscript) show significant improvement.
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than that of globally defined Kähler metrics. Choosing smooth activation functions for the

neural network ensures that the metric is smooth over each of the patches. Similarly, if the

metric is obtained from the so-called PhiModel, over each patch one has dJ = 0, satisfying

some local form of Kählerity. In the matching of patches, however, it is not guaranteed

a priori that the perturbation �NN respects the Kähler transformation rules of the seed

Kähler potential (in our case, the Fubini–Study potential). That is an inherent issue with

these numerical approximations and for the cases in which this situation is non-negligible we

expect significant deviations when computing topological quantities.
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Conclusion	and	outlook

• Simple	NNs	can	learn	Ricci	flat	CY	metrics	
• Mathematical	constraints:	encoded	in	NN	or	in	loss	functions
• cymetric package:		 applies	to	all	CICY	and	Kreuzer-Skarke list

at	given	point	in	moduli	space
• Architecture	and	accuracy,	performance,	generality,…

• Moduli-dependent	CY	metrics	
• Applications	in	physics:	
massive	modes,	swampland	conjectures,	Yukawa	couplings,	wrapped	
branes,	...	
• Go	beyond	CY:	G2	metrics,	G-structure	manifolds,	...
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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Different	metric	ansatze on	Fermat	quntic
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198	000	points,	0.1	val split,	5	experiments/model.	
NN	width	64,	depth	3,	GELU,	batch	size	64,	Adam	optimizer.		Ricci	and	K-class	loss	disabled.



Calabi-Yau spaces:	details

• Complex:	 local	coordinates	𝑧b, 𝑧c̅̅
holomorphic	top	form	Ω = 𝑑𝑧b ∧ 𝑑𝑧d ∧ 𝑑𝑧@

• Kähler: metric	determined	by		Kähler potential
𝑔bc̅ = 	𝜕b𝜕c̅𝐾,			𝑔bd= 	𝑔ec̅̅ = 0

Kähler form	𝐽 = b
"
	∑𝑔b@H 𝑑𝑧d ∧ 𝑑𝑧̅@

H�
�

• Come	in	families	parametrized	by	complex	structure/Kähler moduli

• Satisfy	topological	restriction	(𝑐+ = 0	)	
à admit a	unique Ricci-flat	CY	metric

38



Traditional	methods

Donaldson	algorithm
• 𝐻@ :	fixed	point	of	iteration	
scheme	
• Slow	convergence	at	given	𝑘
• Proven	𝐾	 → 𝐾45 as	𝑘	 → ∞

Energy	functional
• 𝐻@ :	minimum	of	functional	
encoding	MA	equation	
• Fast	convergence at	given	𝑘

39

• Approximate	𝐾45	 via	algebraic	expansion	in	polynomial	basis

𝐾@ 𝑧, 𝑧̅ =
1
𝑘
hln𝐻FGH𝑝F𝑝̅G

H
�

�
• Hermitian	matrix	𝐻 to	be	computed



Traditional	methods	– scaling	problem

• Approximate	𝐾45	 via	algebraic	expansion	in	polynomial	basis

𝐾@ 𝑧, 𝑧̅ =
1
𝑘
hln𝐻FGH𝑝F𝑝̅G

H
�

�
• Hermitian	matrix	𝐻 to	be	computed
• Problem:	polynomial	basis	dim	𝑁@	grows	with	𝑘,	and	𝐻~𝑁@"
On	quintic:	

= 5, 15, 35, 70, 125, 205, 315,…	

• Use	discrete	symmetries	to	cut	down	𝑁@.	Restriction	on	moduli.
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Figure 9: Scatter-plot comparing real and imaginary parts of the affine coordinates of
the variety in 2 defined by z30 + z31 + z32 + 10 z0z1z2 = 0, generated using either sampling
algorithm introduced in Section A. The values all lie in the affine patch Û0 defined by
|z1|, |z2|  |z0| = 1.

B Algebraic metrics and Donaldson’s algorithm

B.1 Constructing the monomial basis

When the basis of the line bundle O n+1(k), given by all homogeneous monomials defined
in the homogeneous projective coordinates, is restricted to X, the basis has to be reduced
for k � n+2. The reason is that on X the defining polynomial , p vanishes, which means
that all polynomials containing p (a degree n+2 polynomial) must be removed to obtain
a basis. Formally, the basis is defined as

C[z0, . . . zn+1]k /
⌦
p (~z)

↵
, (B.1)

where
⌦
p (~z)

↵
= p (~z)C[z0, . . . zn+1]k�(n+2) . (B.2)

Another perspective on this is that each linearly independent polynomial in
⌦
p (~z)

↵
can be

rewritten to express one of the constituent monomials in terms of the remaining monomials.
We get the following expression for the number of basis sections of OX(k):

Nk =

 
k + 4

k

!
�

 
k � 1

k � 5

!
. (B.3)

The second term is precisely the number of sections that become linearly dependent under
pullback. (We follow the convention that a binomial coefficient with negative entries is
zero).

To make this clearer, consider k = 6, n = 3, and p (~z) =
P

i z
5
i +  

Q
i zi. A basis of

hp (~z)i is then given by multiplying p with the basis {z0, z1, z2, z3, z4} of C[z0, . . . , z4]1.
Since p vanishes, the following relations are generated

zj

0

@
X

i

z5i +  
Y

i

zi

1

A = 0 8j . (B.4)
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ML	model	architectures

1. Learn	Donaldson’s	H	matrix	
Anderson	et	al	2012.04656,	Gerdes et	al	
2211.12520

2. Learn	Kähler potential
Anderson	et	al	2012.04656,		Douglas	et	al	
2012.04797,	Larfors et	al	2111.01436	&	
2205.13408	,	Berglund	et	al	2211.09801	

3. Learn	metric	
Anderson	et	al	2012.04656,	Jejjala et	al	
2012.15821,	Larfors et	al	2111.01436	&	
2205.13408
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.

same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
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The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.
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same ansatz for the Kähler potential, but utilize the �-accuracy measure to directly opti-
mize the output of our neural network. While Donaldson’s algorithm is guaranteed to con-
verge for k ! 1, for finite, fixed k there exist better approximations (as quantified by the
flatness measure �) than the ones obtained from Donaldson’s algorithm. We also demon-
strate that using the more expensive Ricci scalar as a loss is feasible (cf. Appendix C.3).
Although this is similar to the approach in [9], our approach takes into account the moduli
dependence of the H-matrix as an input to our neural network (cf. Section 2.6.2). We stress
that altering the setup to include multiple complex structure moduli is straightforward in
terms of the architecture. In principle, one can also start with a different ansatz for the
Kähler potential in the neural network, which we do not pursue further in this article.
Instead, we learn the metric directly which we discuss in Section 2.7.

The advantage of learning the Kähler potential is that it automatically satisfies dJ = 0
and in the case of the algebraic metric ansatz the overlap conditions are guaranteed. The
advantage of learning the metric g directly is that it is more general, for instance allowing
for larger functional flexibility (e.g. ability to capture solutions with dJ 6= 0). Moreover,
learning the metric directly requires only learning the independent components of the
hermitian d ⇥ d metric, while the ansatz for the Kähler potential requires dealing with
matrices whose number of components N2

k grows rapidly.

The feed-forward neural networks are implemented with standard packages. However, the
loss functions associated to the accuracy measures are custom implementations. It is also
worth noting that, when learning the metrics directly, we are not dealing with a supervised
learning approach. Indeed, we do not know the CY metrics and hence cannot provide labels
for supervised learning. Instead, the loss functions encode the continuous optimization task
needed to solve the equations that ensure that the resulting metric is CY. In particular,
we implemented the transition function computations as well as the matrix multiplication
and the complex derivatives in terms of real and imaginary parts of the NN output g and
the inputs zi in order to be able to back-propagate in the optimization step through the
respective losses. This splitting into real and imaginary parts is required in Tensorflow and
PyTorch but can be avoided by using JAX.

2.6 Learning the Kähler potential

As mentioned above, learning the H-matrix as a parametrization of Kähler potentials has
several advantages:

• The CY metric is guaranteed to be complex Kähler.

• The CY metric is by construction globally defined, i.e. it glues nicely across different
patches of 4.
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Figure 1: Schematic overview of how models predicting the Hermitian matrix H (left) and
the metric gab̄ (right) are designed. The respective models are neural networks of different
complexity.
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Point Generators

Creating a point sample on KS CY 3-fold, part 1

Assume toric ambient space w. coordinates xi ⇠ Di divisors

Kähler cone generators J↵ =
P

c
i
↵Di dual to nef line bundle O(J↵)

Sections of O(J↵) ⇠ coordinates of Pr↵

�↵ : [x0 : x1 : . . .] ! [s(↵)0 : s(↵)1 : . . . : s(↵)r↵ ]

FS metrics on Pr
�! (non-FS) Kähler metric on A.

Build random sections

S =
r↵X

j=0

a
(↵)
j s

↵
j

drawing a
(↵)
j independently from Gaussian distribution

Theorem[Shi↵man and Zelditch]:
Zeros of random sections of are distributed according to the FS measure.
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Point Generators

Creating a point sample on KS CY 3-fold, part 2

Got map �↵ : [x0 : x1 : . . .] ! [s(↵)0 : s(↵)1 : . . . : s(↵)r↵ ]

Know zeros of random sections S =
Pr↵

j=0 a
(↵)
j s

↵
j have good distribution.

Express the CY 3-fold in terms of Kähler cone sections s(↵)j
I Problem 1: too many sections! Problem 2: relations among sections!

First find relations among sections ...
I Groebner basis analysis using Singular (access via Sage)

I Linear algebra routine (faster, requires generic points in section space)

Y

I

s fII =

Y

J

sgJJ ,
Y

I

shII = 1 , sJ =

Y

a

x
Ma,J
a =)

X

I

Ma,IhI = ~0a

... then combine relations + hypersurface eq:

CY 3-fold as non-complete intersection in Â ⇠=
Nh1,1

↵=1 Pr↵ .

Intersect: random point sample on CY distributed wrt FS measure.
Back to slide 16
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Custom	loss	functions	in	cymetric package

44

Loss Functions

L = ↵1LMA + ↵2LdJ + ↵3Ltransition + ↵4LRicci + ↵5LK-class.

LMA =

����

����1�
1


det gpr
⌦ ^ ⌦̄

����

����
n

,

LdJ =

X

ijk

||Re cijk ||n + ||Im cijk ||n , with cijk = gi j̄,k � gkj̄,i and gi j̄,k = @kgi j̄

Ltransition =
1

d

X

(s,t)

���
���g (t)

pr � T(s,t) · g (s)
pr · T †

(s,t)

���
���
n

, T(s,t) transition matrix

LRicci = ||R||n =
����@@̄ ln det gpr

����
n

LK-class =
1

h11

h11X

i=1

����

����µJFS(Li )�
Z

X

(Jpr)
n�1Fi

����

����
n
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Derivatives	– TensorFlow gradient	tapes	on	input	

Integral	– weighted	sum;	2-step	training	loop
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Multiple Kähler moduli: preserving the Kähler class

Loss function preserving the Kähler class

Could define a loss function fixing curve, divisor and CY volumes
(but have not; this requires sampling points on curves and divisors).

Instead use that OX (k) (line bundle over X with c1 = [k↵J↵]) has slope

µJ :=

Z

X
J ^ J ^ c1(OX (k)) = �

i

2⇡

Z

X
J ^ J ^ F = d↵��t

↵
t
�
k
� ,

The slope is topological, so agrees for metrics in the same Kähler class!

Loss function:
LK-class =

1
h11

Ph11

i=1

����µJFS(Li )�
R
X Jpr ^ Jpr ^ Fi

����
n
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Multiple Kähler moduli: preserving the Kähler class

Loss function preserving the Kähler class

Loss function: LK-class =
1
h11

Ph11

i=1

����µJFS(Li )�
R
X Jpr ^ Jpr ^ Fi

����
n

Integral requires many points  2-batch training loop.

Cross-check after training: compare volume and line bundle slopes
(from intersection numbers, FS and CY metric).
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