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Advance physics knowledge—from the smallest building blocks of nature to the 
largest structures in the universe—and galvanize AI research innovation
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Jobs @ Northeastern

https://academicjobsonline.org/ajo/jobs/25427

IAIFI (ML + strings) postdoctoral research associate,
with me and Fabian Ruehle.

‘

https://academicjobsonline.org/ajo/jobs/25670

2 jobs, postdoctoral research associates,
with Fabian Ruehle and Sarah Harrison.

https://academicjobsonline.org/ajo/jobs/25427
https://academicjobsonline.org/ajo/jobs/25670


Upcoming Meetings
Mathematics and Machine Learning 2023

Dec 10-12, 2023, @ Caltech
https://mathml2023.caltech.edu/

String Data 2023
Dec 13-15, 2023, @ Caltech

https://stringdata2023.caltech.edu/

Strings, Fields, and Deep Learning
January 14-19, 2023, @ Aspen Center for Physics

https://indico.cern.ch/event/1299185/

come join us! send me an e-mail.

https://mathml2023.caltech.edu/
https://stringdata2023.caltech.edu/
https://indico.cern.ch/event/1299185/


String Theory, 
QG are Hard.



Ask an Oracle
1. Complete non-pert.

definition of M-theory?
2. All the vacua?

Decay rates, 
channels?

3. What is the
cosmo measure?

4. How to make
 statistical predictions 

tractable?



Need Formal 
Theory.



Need Smart 
Computation.



Caveats and Comments from the Modern Era

● a number string pheno folks working on ML 
have interesting non-string-pheno 
off-shoots. will cite some refs!

● using LLMs for research, ML or otherwise, is 
cool! I won’t talk about it, but feel free to ask 
me questions anyways.

● to those working in this area: 
my sincere apologies if I didn’t adequately 
cite / cover / present your work. Please 
briefly raise your exciting results in Q&A.

● stats language: “sampling”, “drawn from”, etc.

sounds gross, but if you’ve ever done a 
compuation in an actual string compactification, 
you yourself have sampled string data.

● numerical techniques can be rigorous.

“rigor” is loaded. I don’t mean statistical 
convergence, I mean zero-error results,
applied ML or from ML theory.

see upcoming article with Gukov, Ruehle.



Outline:
ML Preliminaries Cursory Glances

1) Neural Networks
2) Universal Approximation
3) Architectures
4) Famous Examples and Verbs

1) Prediction: Supervised Learning 
2) Rigor: Conjecture Gen. + Theorems
3) Structure: Persistent Homology
4) Search: Reinforcement Learning,    
     Gen. Algs, Quantum Annealers

1) Auto-diff everything: Flux Vacua
2) Flow: CY-metrics and NN theory

In-Depth Looks
1) Generative Models: Simulating
    String Theory and Statistical Inference
     

Dreams



Preliminaries
1. Neural Networks 2. Universal Approximation 

and Network Architectures
3. Famous Examples 

and their Verbs



Neural Networks
A neural network is a parameterized function,
typically a “big” function composed out of many other 
simpler functions, with many parameters.

Therefore, map from param space to function space.

Parameters θ drawn θ ~ P(θ) at init. 
Puts stats on NN function space, 
defines a field theory, compute correlators, etc.

State of the art NNs have 500 billion parameters,
cost millions of dollars to train.

e.g. the perceptron, building block for deep FFNN.
for FT, 2307 of [Demirtas, J.H., Maiti, Schwartz, Stoner] + refs therein



     Convolutional Net                          

image data, identifies local 
features with conv kernels.

Universal Approximation and Architectures
Universal Approximation Theorems:

essence: approximation any function,
error O(1/N), N = width.

Many versions, see Wiki.

Architecture: 
How you stitch simple functions into complex ones.
Architecture choice depends on data structure.

e.g. from before, FFNN. but there are others:

               Transformer                         

language data, attention 
mechanism, “T” in GPT.

Image Credit: “Geometric Deep Learning” book

knots app [Gukov, J.H, Ruehle, Sulkowski]



Famous Examples, Quantified with Verbs

Predict: Supervised Learning, e.g. MNIST classification.

Search / Play: Reinforcement Learning, e.g. AlphaZero.

Generate / Simulate: Generative Models, 
e.g. Text2Img, GPT-4.

e.g. Text2Text. GPT-4. 
Prompt was iteration on strings and Paris.



Cursory 
Glances



Prediction: Supervised Learning

Early String / ML papers were usually supervised

● Data: a set of input-output pairs, (x,y) ∈ X x Y

● Parameterized Model:   fθ:  X → Y
e.g., lin. reg, neural net.

● Loss Function:   L: Y x Y → R
measures quality of preds of fθ(x) rel. true labels yi. 
e.g. LMSE= 𝝨 (yi - fθ(xi))

2

● Optimize: change θ to minimize L on data.
e.g. gradient descent.



Rigor: Conjecture Generation, My Path Into ML

Theorem: related to prevalence of E6 grand 
unification in ensemble of 10755 string geometries.

Big Data: there, 10755 < # geoms < ∞.

The Idea:

1) use ML, e.g. supervised, on interesting problem.

2) “open the box” to discover key decision variables.
    e.g. decision tree, automatic
    e.g. gradient saliency in NNs (see DeepMind results)

3) bring human expert into the ML loop. 
    think hard. conjecture. maybe iterate.

4) prove theorem.

     [J.H., Long, Sung]                    [Di Cerbo, Svaldi]



arXiv: 2007.00009

arXiv: 1906.08730

We investigate different approaches to machine learning of line bundle 
cohomology on complex surfaces as well as on Calabi-Yau three-folds. 
Standard function learning based on simple fully connected networks with 
logistic sigmoids is reviewed and its main features and shortcomings are 
discussed. It has been observed recently that line bundle cohomology can 
be described by dividing the Picard lattice into certain regions in each of 
which the cohomology dimension is described by a polynomial formula. 
Based on this structure, we set up a network capable of identifying the 
regions and their associated polynomials, thereby effectively generating a 
conjecture for the correct cohomology formula. For complex surfaces, we 
also set up a network which learns certain rigid divisors which appear in a 
recently discovered master formula for cohomology dimensions.

Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory 
compactifications, we combine machine learning and algebraic geometry techniques to 
analyze line bundle cohomologies on families of holomorphic curves. To quantify 
jumps of these cohomologies, we first generate 1.8 million pairs of line bundles and 
curves embedded in dP3, for which we compute the cohomologies. A white-box 
machine learning approach trained on this data provides intuition for jumps due to 
curve splittings, which we use to construct additional vector-like Higgs-pairs in an 
F-Theory toy model. We also find that, in order to explain quantitatively the full dataset, 
further tools from algebraic geometry, in particular Brill--Noether theory, are required. 
Using these ingredients, we introduce a diagrammatic way to express cohomology 
jumps across the parameter space of each family of matter curves, which reflects a 
stratification of the F-theory complex structure moduli space in terms of the vector-like 
spectrum. Furthermore, these insights provide an algorithmically efficient way to 
estimate the possible cohomology dimensions across the entire parameter space.

More Conjecture Generation and Theorems in Strings

piecewise polynomials for LB Hodge numbers ML-inspired intuition for vector pairs.



● predict knot sig. from geom invariants.
● interpreted with “attribution” 

via gradient saliency.

● some features clearly correlated with sig. 
● given knowledge of crucial features, 

made conjecture and proved that:

Conjecture Generation in Knot Theory: DeepMind Results

[Davies et al] Nature 2021.  Also have representation theory results!



Structure: Persistent Homology
● Data manifold. M in ambient space A.

e.g. Calabi-Yau manifolds
e.g. stabilized vacua in moduli space.

● Structure. M has geometry, topology, e tc.

● Samples. Xs ~ P(M) yield point cloud in A.

● Question: topology of M from samples?

● Persistent Homology. 
A one-parameter family of simplicial 
complexes yields homology family Hk(Xs; δ).

● Vietoris-Rips Complex. To each k-point 
subset of Xs within δ-ball, a (k-1)-simplex.

e.g.

● Life and death. Cycles are born and die.
Real cycles persist, have δdeath>> δbirth.



Structure: Persistent Homology

Axiodilaton values, weak IIB on rigid CY, with flux cutoff.

Persistent homology detects topology,
birth and death of cycles.

also great  [Shiu et. al.] on TDA for CMB data!
see also: [Cirafici] for early TDA and strings



Search: Reinforcement Learning
● key idea: “winning the game” is an

exact solution to problem. Zero error.

● an agent interacts in an environment.
● it perceives a state from state space.
● its policy picks an action, given state.

● arrives in new state, receives reward.
● successive rewards accum. to return.

future rewards penalized by discount.

● state- and action-value functions.



Search: Reinforcement Learning

● IIA, intersecting D6.

● learning realizes punctuated equilibria in 
search of tadpole, K-theory, SUSY reward.

● learned filled brane strategy, 
but also a better one.

see also, [Gukov, J.H., Manolescu, Ruehle] studied knots,
 ruled out > 800 potential counterexamples to smooth 4d Poincare conjecture.



Search: Genetic Algorithms and Quantum Annealers
Genetic Algorithms:
Simulate natural selection by evolve solutions 
using mutation, crossover, selection.
Survival of the fittest.

Quantum Annealers: a.k.a. use DWave

exploit quantum superposition and tunneling for 
specific optimization problems.

different from general quantum computers.

Right: early literature in SUSY (2004)
and strings (2014).



Search: Genetic Algorithms and Quantum Annealers

Heterotic E8 x E8 + physics constraints,
(anomaly cancellation, spectrum, poly-stability, etc).

realize most found via systematic scans,
searched a fraction of the space. 

GA vs RL, e.g.:



GA + Tadpoles: 
Our Gracious Hosts!

String Field Theory 
and ML

evidence that average-case is better than worst-case complexity here?



Deeper Looks
2. Flows: CY Metrics and 
Neural Network Theory

1. Autodiff Everything:
Flux Vacua

 at some recent progress.



Autodiff Everything:
A Slogan for Differentiable Science

A theme in ML, since differentiability opens up new algorithms, analyses.

Here: a pipeline for IIB flux vacua.



Autodiff Everything

Big idea: many more things are diff’able than you
think, e.g. certain complex simulations, deep NNs.
really any computational graph with diff’able comps

e.g. differentiate through numerical ODE solutions,
       with Diffrax, built on JAX.

JAX MD: differentiable molecular dynamics simuls.

Differentiable Cosmological Stasis: WIP with Pandya.



Autodiff IIB Flux Vacua with JAXVacua
JAX: a Google package, diff’able numpy,
NN library extensions sit on top.

A number of nice features (other libs too), including:

   - autodiff. what we’ve been talking about.

   - jit. just-in-time compilation, converts functions
        to machine code at run-time, gives speedups.

   - vmap, pmap. automatic vectorization allows for clean
      implementation across many CPU cores.

JAXVacua: pipeline for finding vacua with JAX.
[Dubey, Krippendorf, Schachner]



thanks @ Sven for sharing slides.



thanks @ Sven for sharing slides.



Ask me! 
I know way 

more than Jim.



Flows: Calabi-Yau Metrics and 
Neural Network Theory

we know zero (non-trivial) compact CY metrics.
modeling them with NNs gives SOTA.

Training corresponds to geometric flows 
and encompasses famous results in mathematical physics.

Similar apps. in cosmology!
[Krippendorf, Spannowsky]



Calabi-Yau Manifolds: A Fact We Don’t Advertise

CY manifold: solutions of string theory, low energy 
physics depends on geometry and topology.

Yau’s Miraculous Theorem: 
let X be a complex (Kahler) manifold,
then if certain topological feature holds (c1 = 0),
you get geometry, a unique Ricci-flat metric.

                                                        (Ricci curvature tensor)

Conditions often satisfied?
10755 < # elliptic CY 4-fold topological types < ∞.
10200? < # Kreuzer-Skarke CY3 <  ∞.

How many metrics are known?
The proof of metric existence is non-constructive.
For X compact, zero are known. Need approximation.



Neural Network Calabi-Yau Metrics
“Let the neural network be the metric!”
     - above authors.

Neural network depends on parameters 𝜃,
which provide a variational ansatz:

optimize parameters to minimize some objective,
e.g. to drive the metric towards Ricci-flatness.

See also: NN as variational ansatz for quantum 
many-body wavefunction! Minimize energy, e.g.

Why this is a good idea: NN’s are powerful,
universal approximation theorems, etc.

Evidence this is a good idea:

15 mins NN = 30 years w/ conventional techniques.

[Anderson, Gerdes, Krippendorf, Raghuram, Ruehle]
[Douglas, Lakshminarasimhan, Qi]
[Jejjala, Mayorga Pena, Mishra]

see also: [Ashmore, He, Ovrut]
[Larfors, Lukas, Ruehle, Schneider][Krippendorf, Gerdes]

[Carleo, Troyer] 2017            Infinite NN Context: [J.H., Luo]



Flows in Metric Space g0 as a NNg0 as a NN

g0 as a NN

gCY fixed point

g0

“NN metric flow”
via gradient of 
scalar functional L.

NN m
etric flow

NN metric flow

Hamilton, 1980s

Ricci Flow

Perelman, 2000s: “Ricci flow is a 
gradient of a scalar functional, and I’ll use 

it to prove the Poincare conjecture.” ?



Theory of Neural Network Metric Flows
Network Dynamics: Neural Tangent Kernel

Let f be a NN with parameters θ.
Train via gradient descent of scalar loss.

Neural Tangent Kernel: 
in infinite limit, becomes 
deterministic and t-independent, a fixed function.

Neural Network Metric Flows:

        (continuous version. there is discrete, too)

Metric-NTK: 
non-local, t-dependent, mixes components.

Perelman’s Formulation: 
local, no component mixing.
F: Einstein-dilaton theory.

Question: do some architectures yield Perelman?
must overcome these differences. Yes!

[J.H., Ruehle] 2310.19870

[Jacot et. al.] 2018



NN metric flow

∞-NN metric flow

Local Metric Flow

X  Perelman’s Ricci Flow

difficult: stochastic, t-dependent, hard to compute.
easier: deterministic, t-indep, fixed function.
easiest: deterministic, t-indep, local

Summary of
Theory
Results:

X State of the art
 Calabi-Yau  Metrics
  good for a reason,
   feature learning.

[J.H., Ruehle] 2310.19870



Kernel Methods: Failing for Deep Reasons
We trained infinite NNs for CY-metrics.

Results not great! Great on test, bad on train.

Kernel Learning and CY-Theorem:
- NNs in frozen-NTK regime don’t learn features.
- therefore, different infinite NNs have different
   metric updates, due to different fixed kernels.

- the plethora of kernels and updates
   at odds with the uniqueness of the CY metric.

- key: finite-NNs have evolving kernels that
   can in principle learn the right kernel for the job.
   This idea is borne out in experiments.



Dreams
come back to the oracle.

what might we really want?

how should we do
statistics in string theory?



Generative Models for String Theory
Random Matrix Theory for Strings: 

Pro: RMT universality results can be utilized.
Con: may make assumps not reflected by string data.

ML Perspective: an untrained generative model,
it generates samples, but wasn’t trained on data.

Alternative Question: can we use string data to learn 
a generative model that simulates string theory?

Use those samples to understand statistical preds?

Draws from random
matrix ensembles.

Toy ensembles 
for string Lagrangians,

e.g. for ALP physics.



A Baby Step: Learning Random Matrices of String Data

● idea: stat predictions by simulating string 
theory, i.e. samples from generative models.

● data: ensembles of Kahler metrics of KS 
CY3s at tip of stretched Kahler cone.

● result: learned random matrix approximation 
of the string data, see converging spectrum.

● extrap / interp analysis to other h11.



Bayesian Inference: The Good, the Bad, and the Ugly
The method by which we use data to update our belief 
in a model has a name: statistical inference.

A Statistical Pipeline for Strings:
1) ML-based methods to draw from approximate 
distribution on string data (ideally cosmo measure . . .)
2) use string techniques to compute observables.
3) use so-called simulation-based inference
    to approximate the posterior conditioned on 
    all observed low energy data.

4) make predictions in the posterior.

see e.g. [James, Witten, Hastie, Tibshirani]

Concern: fundamental statistical learning 
theory constraint how much we can learn 
about UV data from IR experiments?

(akin to ML-stat pipelines in other fields)



ML Preliminaries Cursory Glances
1) Neural Networks
2) Universal Approximation
3) Architectures
4) Famous Examples and Verbs

1) Prediction: Supervised Learning 
2) Rigor: Conjecture Gen. + Theorems
3) Structure: Persistent Homology
4) Search: Reinforcement Learning,    
     Gen. Algs, Quantum Annealers

1) Flow: CY-metrics and NN theory
2) Auto-diff everything: Flux Vacua

In-Depth Looks
1) Generative Models: Simulating
    String Theory and Statistical Inference
     

Dreams

In Conclusion



String theory and quantum gravity are extremely hard.

If we get to a final answer,
we need formal theory, 
sophisticated compute,

and all of us.

New compute in this era: ML in the String Landscape.

In Conclusion



Thanks!
Questions?

Feel free to get in touch:
e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com

mailto:jhh@neu.edu
http://www.jhhalverson.com

