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Description: Description:

https://academicjobsonline.org/ajo/jobs/25427
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IAIFI (ML + strings) postdoctoral research associate, 2 jobs, postdoctoral research associates,
with me and Fabian Ruehle. with Fabian Ruehle and Sarah Harrison.


https://academicjobsonline.org/ajo/jobs/25427
https://academicjobsonline.org/ajo/jobs/25670

Upcoming Meetings
-

MARK YOUR CAL DAR'

Mathematics and Machine Learning 2023
Dec 10-12, 2023, @ Caltech
https://mathml2023.caltech.edu/

DEC/10-13:
DEC:1'3-16%"

String Data 2023
Dec 13-15, 2023, @ Caltech

https://stringdata2023.caltech.edu/

Strings, Fields, and Deep Learning
January 14-19, 2023, @ Aspen Center for Physics
https://indico.cern.ch/event/1299185/

Jan 14-19, 2024
Aspen Center for Physics

come join us! send me an e-mail.


https://mathml2023.caltech.edu/
https://stringdata2023.caltech.edu/
https://indico.cern.ch/event/1299185/

String Theory,
QG are Hard.



Ask an Oracle

1. Complete non-pert. 2. All the vacua? 3. What is the 4. How to make
definition of M-theory? Decay rates, cosmo measure?  statistical predictions
channels? tractable?



Need Formal
Theory.




Need Smart
Computation.



Caveats and Comments from the Modern Era

e anumber string pheno folks working on ML
have interesting non-string-pheno
off-shoots. will cite some refs!

e using LLMs for research, ML or otherwise, is
cool! | won't talk about it, but feel free to ask
me questions anyways.

e to those working in this area:
my sincere apologies if | didn't adequately
cite / cover / present your work. Please
briefly raise your exciting results in Q&A.

stats language: “sampling”, “drawn from’, etc.
sounds gross, but if you've ever done a
compuation in an actual string compactification,
you yourself have sampled string data.
numerical techniques can be rigorous.

“rigor” is loaded. | don't mean statistical
convergence, | mean zero-error results,

applied ML or from ML theory.

see upcoming article with Gukov, Ruehle.



Outline:

ML Preliminaries

1) Neural Networks

2) Universal Approximation

3) Architectures

4) Famous Examples and Verbs

In-Depth Looks

1) Auto-diff everything: Flux Vacua
2) Flow: CY-metrics and NN theory

Cursory Glances

1) Prediction: Supervised Learning

2) Rigor: Conjecture Gen. + Theorems

3) Structure: Persistent Homology

4) Search: Reinforcement Learning,
Gen. Algs, Quantum Annealers

Dreams

1) Generative Models: Simulating
String Theory and Statistical Inference



Preliminaries

1. Neural Networks 2. Universal Approximation 3. Famous Examples
and Network Architectures and their Verbs



Neural Networks

A neural network is a parameterized function,
typically a “big” function composed out of many other
simpler functions, with many parameters.

Therefore, map from param space to function space.

Parameters 8 drawn 0 ~ P(0) at init.
Puts stats on NN function space,
defines a field theory, compute correlators, etc.

for FT, 2307 of [Demirtas, J.H., Maiti, Schwartz, Stoner] + refs therein

State of the art NNs have 500 billion parameters,
cost millions of dollars to train.

e.g. the perceptron, building block for deep FFNN.
f(CC) = W1 (O'(W()LU + bo)) . bl

bo, b1 ~ N (s, 02)

Wo ~ N(uw, oty /din)

Wi~ N(pw, oy /N)



Universal Approximation and Architectures

Universal Approximation Theorems:

Oy

Image Credit: “Geometric Deep Learning” book

Figure 1: Multilayer Perceptrons (Rosenblatt, 1958), the simplest feed-
forward neural networks, are universal approximators: with just one hidden
layer, they can represent combinations of step functions, allowing to approx-
imate any continuous function with arbitrary precision.

essence: approximation any function,
error O(1/N), N = width.

Many versions, see Wiki.

Architecture:
How you stitch simple functions into complex ones.
Architecture choice depends on data structure.

e.g. from before, FFNN. but there are others:

Transformer

Convolutional Net

4 4

_/
\ /;

language data, attention
mechanism, “T" in GPT.

knots app [Gukov, J.H, Ruehle, Sulkowski]

image data, identifies local
features with conv kernels.
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Predict: Supervised Learning, e.g. MNIST classification. Generate / Simulate: Generative Models,

i e.g. Text2lmg, GPT-4.
ABABARAR 3 vﬁﬁ'f | ChatGPT

;ﬁ‘f’@f?% o In Paris, threads weave,

String theory's vast landscape,

A I | mﬁmi Eiffel echoes deep.
BAK BAA g0
powwens e

: o8 i e.g. Text2Text. GPT-4.
Search / Play: Reinforcement Learning, e.g. AlphaZero. Prompt was iteration on strings and Paris.




Cursory
Glances




Prediction: Supervised Learni

e Data: a set of input-output pairs, (x,y) € XxY
e Parameterized Model: f: XY
e.g., lin. reg, neural net.

e Loss Function: L:YxY —R
measures quality of preds of f (x) rel. true labels y..
eg L= Z (y, - fi(x))?

e Optimize: change 6 to minimize L on data.
e.g. gradient descent.

Deep-Learning the Landscape

Yang-Hui He

! Department of Mathematics, City, University of London, EC1V OHE, UK
2 Merton College, University of Oford, 8
2 School of Physics, NanKai University, Tmn]m, 300071, P.R. China

hey@maths ox.ac.uk

Abstract

We propose a paradigm to deep-learn the ever-expanding databases which
have emerged in
as the statistics of string vacua or combinatorial and algebraic geometry. As
concrete examples, we establish multi-layer neural networks as both classifiers
and predictors and train them with a host of available data ranging from Calabi-

physics and particle as diverse

Evolving neural networks with genetic algorithms to study the

String Landscape

FABIAN RUEHLE!

Rudolf Peierls Centre for Theoretical Physics, Ozford University,
1 Keble Road, Ozford, OX1 3NP, UK

Abstract

We study possible applications of artificial neural networks to examine the string landscape.
Since the field of application is rather versatile, we propose to dynamically evolve these
networks via genetic algorithms. This means that we start from basic building blocks and
combine them such that the neural network performs best for the application we are interested
in. We study three areas in which neural networks can be applied: to classify models according
toa fixed set of (physically) appealing features, to find a concrete realization for a computation
for which the precise algorithm is known in principle but very tedious to actually implement,
and to predict or approximate the outcome of some involved mathematical computation
which performs too inefficient to apply it, e.g. in model scans within the string landscape.
We present simple examples that arise in string phenomenology for all three types of problems
and discuss how they can be addressed by evolving neural networks from genetic algorithms.

Yau manifolds and vector bundles, to quiver representations for gauge theories.
We find that even a relatively simple neural network can learn many significant
quantitics to astounding accuracy in a matter of minutes and can also predict
hithertofore unencountered res

This paradigm should prove a valuable tool

in various investigations in landscapes in physics as well as pure mathematics.

Machine Learning of Calabi-Yau Volumes

Daniel Krefl® and Rak-Kyeong Seong”
“ Theoretical Physics Department, CERN, Geneva 23, CH-1211 Suitzerland
¥ Department of Physics and Astronomy, Uppsala University, SE-751 08 Uppsala, Sweden

We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein
base manifolds of non-compact toric Calabi-Yau 3-folds. We find that the minimum volume can
be approximated via a second order multiple linear regression on standard topological quantities
obtained from the corresponding toric diagram. The approximation improves further after invoking
a convolutional neural network with the ful toric diagram of the Calabi-Yau 3-folds as the input.
We are thereby able to circumvent any minimization procedure that was previously necessary and
find an explicit mapping between the minimum volume and the topological quantities of the toric
diagram. Under the AdS/CFT correspondence, the minimum volumes of Sasaki-Einstein manifolds
correspond to central charges of a class of 4d A’ = 1 superconformal field theories. We therefore find
empirical evidence for a function that gives values of central charges without the usual extremization
procedure.

Machine Learning in the String Landscape

Jonathan Carifio,” James Halverson,* Dmitri Krioukov,*** and Brent D. Nelson®
“Department of Physics, Northeastern University,
Boston, MA 02115, USA
*Department of Mathematics, Northeastern University,
Boston, MA 02115, USA
“Department of Blectrical and Computer Engincering, Northeastern University,
Boston, MA 02115, USA

ABSTRACT:

We utilize machine learning to study the string landscape. Deep data dives and conjecture
generation are proposed as useful frameworks for utilizing machine learning in the landscape,
and examples of each are presented. A decision tree accurately predicts the number of weak

Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth
F-theory compactification, and linear regression generates a previously proven conjecture
for the gauge group rank in an ensemble of 3 x 2.96 x 107 F-theory compactifications.
Logistic regression generates a new conjecture for when Eg arises in the large ensemble of
F-theory compactifications, which is then rigorously proven. This result may be relevant for
the appearance of visible sectors in the ensemble. Through conjecture generation, machine
learning is useful not only for numerics, but also for rigorous results.

Early String / ML papers were usually supervised



Rigor: Conjecture Generation, My Path Into ML

[Submitted on 3 Jul 2017]
Machine Learning in the String Landscape The Idea:

Jonathan Carifio, James Halverson, Dmitri Krioukov, Brent D. Nelson

We utilize machine learning to study the string landscape. Deep data dives 1) use ML, e_g_ supervised, on interesting problem_
and conjecture generation are proposed as useful frameworks for utilizing
machine learning in the landscape, and examples of each are presented. A

decision tree accurately predicts the number of weak Fano toric threefolds “ ” . . . .

arising from reflexive polytopes, each of which determines a smooth F-theory 2) Open the bOX tO dlscover key deC|S|0n Varlables'
compactification, and linear regression generates a previously proven e_g_ deCiSion tree automatic

conjecture for the gauge group rank in an ensemble of % x2.96 x 107 F- . . ! . .

theory compactifications. Logistic regression generates a new conjecture for e.g. gradlent Sallency in NNs (See Deelend reSUltS)

when Eg arises in the large ensemble of F-theory compactifications, which is
then rigorously proven. This result may be relevant for the appearance of

visible sectors in the ensemble. Through conjecture generation, machine 3) bring human expert intO the ML I.OOp
learning is useful not only for numerics, but also for rigorous results. ’
think hard. conjecture. maybe iterate.

Theorem: related to prevalence of E, grand
unification in ensemble of 107>° string geometries. 4) prove theorem.

Big Data: there, 107°° < # geomns < e,
[J.H., Long, Sung] [Di Cerbo, Svaldi]



More Conjecture Generation and Theorems in Strings

Machine Learning Line Bundle Cohomology Machine Learning and Algebraic Approaches

towards Complete Matter Spectra in 4d F-theory
Callum R. Brodie!, Andrei Constantin?, Rehan Deen', Andre Lukas!

arXiv: 1906.08730

We investigate different approaches to machine learning of line bundle
cohomology on complex surfaces as well as on Calabi-Yau three-folds.
Standard function learning based on simple fully connected networks with
logistic sigmoids is reviewed and its main features and shortcomings are
discussed. It has been observed recently that line bundle cohomology can
be described by dividing the Picard lattice into certain regions in each of
which the cohomology dimension is described by a polynomial formula.
Based on this structure, we set up a network capable of identifying the
regions and their associated polynomials, thereby effectively generating a
conjecture for the correct cohomology formula. For complex surfaces, we
also set up a network which learns certain rigid divisors which appear in a
recently discovered master formula for cohomology dimensions.

piecewise polynomials for LB Hodge numbers

Martin Bies!, Mirjam Cveti¢?34, Ron Donagi3?,
Ling Lin®, Muyang Liu?, Fabian Ruehle®%

arXiv: 2007.00009

Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory
compactifications, we combine machine learning and algebraic geometry techniques to
analyze line bundle cohomologies on families of holomorphic curves. To quantify
jumps of these cohomologies, we first generate 1.8 million pairs of line bundles and
curves embedded in dP3, for which we compute the cohomologies. A white-box
machine learning approach trained on this data provides intuition for jumps due to
curve splittings, which we use to construct additional vector-like Higgs-pairs in an
F-Theory toy model. We also find that, in order to explain quantitatively the full dataset,
further tools from algebraic geometry, in particular Brill--Noether theory, are required.
Using these ingredients, we introduce a diagrammatic way to express cohomology
jumps across the parameter space of each family of matter curves, which reflects a
stratification of the F-theory complex structure moduli space in terms of the vector-like
spectrum. Furthermore, these insights provide an algorithmically efficient way to
estimate the possible cohomology dimensions across the entire parameter space.

ML-inspired intuition for vector pairs.



Conjecture Generation in Knot Theory: DeepMind Results

z: Knot

X(2): Geometric invariants

Volume Chern-Simons Meridional translation

Y(z): Algebraic invariants
Signature Jones polynomial

&
&
&

2.0299 0 i

2.8281 -0.1532 0.7381 + 0.8831/

3.1640 0.1560 -0.7237 +1.0160i

0 2t 1-t+

-2 t-R2+28 -4 +15- 16
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X(z): Geometric invariants

Im(Meridional translation)
Longitudinal translation
Re(Meridional translation)
Im(Short geodesic)
Injectivity radius

Cusp volume

Symmetry group

Torsion degree

Re(Short geodesic)
Volume

Chern-Simons

Adjoint torsion degree

f T T T T
0O 02 04 06 08
Normalized attribution score

1.0

Signature

Meridional translation (real)

e predict knot sig. from geom invariants.
e interpreted with “attribution”
via gradient saliency.

0
importance of z; M

8xi

e some features clearly correlated with sig.
e given knowledge of crucial features,
made conjecture and proved that:

Theorem: There exists a constant csuch that, for any hyperbolicknot K,

[20(K) - slope(K)| < cvol(K)inj(K) ™ (2)

[Davies et al] Nature 2021. Also have representation theory results!



Structure: Persistent Homology

e Data manifold. M in ambient space A. e Persistent Homology.

e.g. Calabi-Yau manifolds A one-parameter family of simplicial

e.g. stabilized vacua in moduli space. complexes yields homology family H, (Xs; d).
e Structure. M has geometry, topology, e tc. e Vietoris-Rips Complex. To each k-point

subset of Xs within &-ball, a (k-1)-simplex.
e Samples. Xs ~ P(M) yield point cloud in A.

e.g.
e Question: topology of M from samples?

10 samples 50 samples 50 samples
15 15 15

1.0 1 1.0 o 1.0

@
0.5 05 ® oo '. 0.5

' <
0.0 : 0.0 o% y .o{. 0.0 1 ﬁ
051 e sy % --.:,s'- 051 e 7 e Life and death. Cycles are born and die.

Real cycles persist, have 8, _,>> 0

birth”

-1.5 T T T -15 T T T -1.5



SthCture: PerSiStent H0m0|ogy also great [Shiu et. al] on TDA for CMB datal!

see also: [Cirafici] for early TDA and strings

Topological Data Analysis for the String Landscape

Im

Vdeath
0.10] Alex Cole and Gary Shiu
0.08
acoled4@uisc.edu, shiu@physics.wisc.edu
0.06*
diod Department of Physics, University of Wisconsin, Madison, WI 53706, USA

Abstract

Re ¢
02 04 0.005 0010 0015 0.020 0.025 0.030 Persistent homology computes the multiscale topology of a data set by using a sequence

of discrete complexes. In this paper, we propose that persistent homology may be a

useful tool for studying the structure of the landscape of string vacua. As a scaled-

. . .. : down version of the program, we use persistent homology to characterize distributions
AXlOdllaton ValU eS, Weak ”B on I’Igld CY, Wlth ﬂUX CUtOff. of Type IIB flux vacua on moduli space for three examples: the rigid Calabi-Yau, a
hypersurface in weighted projective space, and the symmetric six-torus 7 = (72)3.

These examples suggest that persistence pairing and multiparameter persistence con-

. tain useful information for characterization of the landscape in addition to the usual

PerS|Ste nt homOlOgy deteCtS tOPOlOgy, information contained in standard persistent homology. We also study how restricting

to special vacua with phenomenologically interesting low-energy properties affects the

bll’th and death Of Cyc leS. topology of a distribution.



Search: Reinforcement Learning

key idea: “winning the game” is an
exact solution to problem. Zero error.

an agent interacts in an environment.
it perceives a state from state space.
its policy picks an action, given state. 56

Gi = V" Riyrn

arrives in new state, receives reward. o

successive rewards accum. to return.
future rewards penalized by discount.

v(s) = |G| S = ]

state- and action-value functions. q(s,a) = E[G¢|S; = s, Ay = d



[ ] [ )
Search: Reinforcement Learning  «oosusammguone .

Branes with Brains: Exploring String Vacua Mean score for TCKS

with Deep Reinforcement Learning

Learning Filler Brane Strategy

10121
] QTCKS,Reward 100
109 ]
] o 80 ’P-'N———-
g 10°] = &
James Halverson,® Brent Nelson,® Fabian Ruehle* S 1 ° TC Reward = 60 » Brane Type
% Department of Physics, Northeastern University, 2 10° ] :E ° ; 3
Boston, MA 02115, USA g ] = 401 o C = Fillr
YCERN, CERN, Theoretical Physics Department = 1
1 Esplanade des Particules, Geneva 28, CH-1211, Switzerland _10' 20
¢Rudolf Peierls Centre for Theoretical Physics, Oxford University, ]
1 Keble Road, Ozford, OX1 8NP, UK —10*1 0.0 0.5 1.0
E-mail: j.halverson@northeastern.edu, b.nelson@northeastern.edu, —106 18 . . Steps x107
fabian.ruehle@cern.ch 0.0 0.5 1.0

Number of steps ~ x107
ABSTRACT: We propose deep reinforcement learning as a model-free method for exploring

the landscape of string vacua. As a concrete application, we utilize an artificial intelligence
agent known as an asynchronous advantage actor-critic to explore type IIA compactifica- Y ” A’ |nte rsectln g D6
tions with intersecting D6-branes. As different string background configurations are ex-
plored by changing D6-brane configurations, the agent receives rewards and punishments
related to string consistency conditions and proximity to Standard Model vacua. These

are in turn utilized to update the agent’s policy and value neural networks to improve its ® learnlng reallzes pu nctu ated eqUIlI brla |n
behavior. By reinforcement learning, the agent’s performance in both tasks is significantly

improved, and for some tasks it finds a factor of ©(200) more solutions than a random Search of tad pole’ K_theo ry’ SUSY reward
walker. In one case, we demonstrate that the agent learns a human-derived strategy for

finding consistent string models. In another case, where no human-derived strategy exists, P le arned fl lled brane Strategy

the agent learns a genuinely new strategy that achieves the same goal twice as efficiently !

per unit time. Our results demonstrate that the agent learns to solve various string theory but also a better one.

consistency conditions simultaneously, which are phrased in terms of non-linear, coupled
Diophantine equations.



Search: Genetic Algorithms and Quantum Annealers

. . Genetic Algorithms and Experimental
Genetic Algorithms: Discrimination of SUSY Models

Simulate natural selection by evolve solutions

B.C. Allanach
LAPTH, 9 chemin Bellevue, BP110, Annecy 74941, France

using mutation, crossover, selection. Bomail: bangamin. a11amachbcern.ch

D. Grellscheid

S u rvi va [ o f th e fltte st Physikalisches Institut der Universitit Bonn, Nussallee 12, 53115 Bonn,

Germany
E-mail: grelliGth.physik.uni-bonn.de

F. Quevedo
DAMTP, Centre for Mathematical Sciences University of Cambridge,
Cambridge, CB3 0WA, United Kingdom

Quantum Annealers: a.k.a. use DWave oy ek b

eXplOit quantum SuperpOSition and tunne“ng for Genetic Algorithms and the Search for Viable String
specific optimization problems. e

Steven Abel® and John Rizos'

different from general quantum computers.

# Physics Department, University of loannina, GR{5110, Greece

ABSTRACT: Genetic Algorithms are introduced as a search method for finding string vacua

with viable phenomenological properties. It is shown, by testing them against a class of

Ri ght: early ll te ratu re | N S U SY (2 O O 4) Free Fermionic models, that they are orders of magnitude more efficient than a randomised

search. As an example, three generation, exophobic, Pati-Salam models with a top Yukawa
d t H 2 O 1 1 occur once in every 10'° models, and yet a Genetic Algorithm can find them after construct-
an strin gs . ing only 105 examples. Such non-deterministic search methods may be the only means to

search for Standard Model string vacua with detailed phenomenological requirements.



Search: Genetic Algorithms and Quantum Annealers

Decoding Nature with Nature’s Tools:

Manifold h | | Range GA Scan|Found Explored Heterotic Line Bundle Models of Particle Physics with Genetic Algorithms and
Quantum Annealing

—10 " ’ ;
[' 7,8] 5 5 1 00% ].0 Steve A. Abel ®,12:* Andrei Constantin ©,% T Thomas R. Harvey ©,%  Andre Lukas ©,% ¥ and Luca A. Nutricati ®'- 9
LIPPP, Durham University, Durham, DH1 S8LE UK

7862 4
[—7,8] 30 31 97% ]_O— 10 Department of Mathematical Sciences, Durham University, Durham DH1 SLE, UK

2CERN, Theoretical Physics Department, CH 1211 Geneva 23 Switzerland

The string theory landscape may include a multitude of ultraviolet embeddings of the Standard
7447 5

techniques that can efficiently deal with the immensity of the string landscape, especially when

[_ 7’8] 403 442 93% ]_ 0 —19 enhanced with input from quantum annealers. In this letter we focus on geometric compactifications

of the Es x Fy heterotic string theory compactified on smooth Calabi-Yau threefolds with Abelian

7 8 722 897 80(7 10— 19 bundles. We make use of analytic formulae for bundle-valued cohomology to impose the entire
=1 ,4,C Je (4] range of spectrum requirements, something that has not been possible so far. For manifolds with

[_7’8] 139 154 90% 10— 14 Model, but identifying these has proven difficult due to the enormous number of available string
5302 6

compactifications. Genetic Algorithms (GAs) represent a powerful class of discrete optimisation
5302 6

r
2
4
7447 5 2 [ 7 8] ‘;8 -38 100% 10— 14 3 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxzford OX1 3PU, UK
=5 < [
4
2
4

a relatively low number of Kéhler parameters we compare the GA search results with results from

, / Bt A s . < ! : e e
2 [_3’4] 1 1 ’937 N_./ A N”/ A 10 previous systematic scans, showing that GAs can find nearly all the viable solutions while visiting

only a tiny fraction of the solution space. Moreover, we carry out GA searches on manifolds with a

4071

\]

larger numbers of Kéhler parameters where systematic searches are not feasible.

Heterotic Eg x E, + physics constraints, GAvsRL, e.g.

(anomaly cancellation, spectrum, poly-stability, etc).

Evolving Heterotic Gauge Backgrounds: Probing the Structure of String Theory Vacua with
Genetic Algorithms versus Reinforcement Learning Genetic Algorithms and Reinforcement Learning

Steven Abel®!, Andrei Constantin®?, Thomas R. Harvey”?, Andre Lukas®

realize most found via systematic scans, T .-~ .

a.e.coletuva.nl LMU Munich

h d f - f h @JPPP, Durham University, Durham DH1 3LE, UK ven - hen. d

searc e a' raCtIo n o t e Space' b Rudolf Peierls Centre for Theoretical Physics, University of Ozford Ce"m"f:r"mf;‘:&“;’dmm Univensity .fr.\;/y: ;:r‘l‘s'mrMadim
Parks Road, Ozford OX1 3PU, UK University of Cambridge shiuGphysics.wisc.edu

2s26730can. ac.uk



GA + Tadpoles:
Our Gracious Hosts!

Algorithmically solving the Tadpole Problem

Tosif Bena®, Johan Blabick?, Mariana Grafia® and Severin Liist®¢
@ Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS
Orme des Merisiers
91191 Gif-sur-Yvette Cedez, France
b Dipartimento di Fisica, Universita di Roma “Tor Vergata” & INFN - Sezione di Roma2
Via della Ricerca Scientifica 1, 00183 Roma, Italy
¢ Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA
4 Centre de Physique Théorique, Ecole Polytechnique, CNRS
91128 Palaiseau Cedez, France

Abstract

The extensive computer-aided search applied in [1] to find the minimal charge sourced
by the fluxes that stabilize all the (flux-stabilizable) moduli of a smooth K3xK3 com-
pactification uses differential evolutionary algorithms supplemented by local searches. We
present these algorithms in detail and show that they can also solve our minimization prob-
lem for other lattices. Qur results support the Tadpole Conjecture: The minimal charge
grows linearly with the dimension of the lattice and, for K3xK3, this charge is larger than
allowed by tadpole cancelation.

Even if we are faced with an NP-hard lattice-reduction problem at every step in the
minimization process, we find that differential evolution is a good technique for identifying
the regions of the landscape where the fluxes with the lowest tadpole can be found. We
then design a “Spider Algorithm,” which is very efficient at exploring these regions and
producing large numbers of minimal-tadpole configurations.

evidence that average-case is better than worst-case complexity here?

String Field Theory
and ML

Characterizing 4-string contact interaction
using machine learning

Harold Erbin'?® and Atakan Hilmi Firat!?

1 Center for Theoretical Physics
Massachusetts Institute of Technology
Cambridge MA 02139, USA

2 NSF AI Institute for Artificial Intelligence and Fundamental Interactions

3 Université Paris Saclay, CEA, LIST
Gif-sur-Yvette, F-91191, France

erbin@mit.edu, firat@mit.edu

Abstract

The geometry of 4-string contact interaction of closed string field theory is characterized using
machine learning. We obtain Strebel quadratic differentials on 4-punctured spheres as a neural

network by performing unsupervised learning with a custom-built loss function. This allows us

to solve for local coordinates and compute their associated mapping radii numerically. We also
train a neural network distinguishing vertex from Feynman region. As a check, 4-tachyon contact

term in the tachyon potential is computed and a good agreement with the results in the literature
is observed. We argue that our algorithm is manifestly independent of number of punctures and
scaling it to characterize the geometry of n-string contact interaction is feasible.



Deeper Looks

at some recent progress.

1. Autodiff Everything: 2. Flows: CY Metrics and
Flux Vacua Neural Network Theory



Autodiff Everything:
A Slogan for Differentiable Science

A theme in ML, since differentiability opens up new algorithms, analyses.

Here: a pipeline for IIB flux vacua.



Autodiff Everything

JAX, M.D.
Q You A Framework for Differentiable Physics
write me 2 sentences explaining the basics of the slogan "Autodiff everything" in the
context of differentiable science. be clear on why this is interesting and important. Samnd] S\ Sehoenholz T —
Google Research: Brain Team Google Research: Brain Team
schsam@google.com cubuk@google.com
ChatGPT
The slogan "Autodiff everything" in differentiable science advocates for the Abstract
widespread use of automatic differentiation, a method that computationally derives
We introduce JAX MD, a software package for performing differentiable physics
precise gradients of complex functions. This approach is crucial as it enables more simulations with a focus on molecular dynamics. JAX MD includes a number
of physics sxmulauoq environments, as well as interaction potcntl'fxl§ and neurall
efficient and accurate modeling in various scientific and engineering fields, networks that can be dntegrated into these environments withoyt writing any addi-

tional code. Since the simulations themselves are differentiable functions, entire
trajectories can be differentiated to perform meta-optimization. These features are
built on primitive operations, such as spatial partitioning, that allow simulations to
) . scale to hundreds-of-thousands of particles on a single GPU. These primitives are
anaIyS|s techn lques. flexible enough that they can be used to scale up workloads outside of molecular
dynamics. We present several examples that highlight the features of JAX MD
including: integration of graph neural networks into traditional simulations, meta-
optimization through minimization of particle packings, and a multi-agent flocking

significantly advancing research and development through improved optimization and

Big idea: many more thlngs are dlff’able than you simulation. JAX MD is available at www.github.com/google/jax-md.

think, e.g. certain complex simulations, deep NNs.

really any computational graph with diffable comps JAX MD: differentiable molecular dynamics simuls.
e.g. differentiate through numerical ODE solutions, Differentiable Cosmological Stasis: WIP with Pandya.

with Diffrax, built on JAX.



Autodiff IIB Flux Vacua with JAXVacua

JAX: a Google package, diff'able numpy, JAXVacua: pipeline for finding vacua with JAX.
NN library extensions sit on top. [Dubey, Krippendor, Schachner]
A number of nice features (other libs too), including: Model construction

CY orientifold data from
computational tools

v
EFT module

Auto-diff to construct SUGRA
equations from prepotential

- autodiff. what we've been talking about.

- jit. just-in-time compilation, converts functions i

Sampling module
Choice of initial guesses for
moduli and fluxes

to machine code at run-time, gives speedups.
. . . v
- vmap, pmap. automatic vectorization allows for clean e e e
. . Find minima by solving 9,V = 0
implementation across many CPU cores.

using scipy.optimize.root

v

Filter module

Check for vacua and consistent
LCS truncation




Model construction J Axvacua

CY orientifold data from

computational tools E FT m Od u Ie

EFT module » Flexible code (i.e. re-use for different CY data) for EFT properties with JAX
Auto-diff to construct SUGRA
equations from prepotential CY data Prepotential Periods EFT properties
Kijes Cpp G, =siias > UF ) awa ILKW) s V.00,V My, ..

Sampling module onlyll:;r:t?o“d

C“°‘°e<:;‘ ilf_““a'dgﬂ“esses e » Auto-diff: machine precision derivatives; easy to implement and adapt to
fer S e different properties.

Code example:

Optimisation module
Find minima by solving 9,V = 0
using scipy.optimize.root

prepot(moduli):

return np.einsum("ijk,i,j,k",kappa,moduli,moduli,moduli) + ...

gradient_prepot = jax.grad(prepot,holomorphic= ) (moduli)
Filter module

Check for vacua and consistent ) 1
LCS truncation . - i 7j 7k — j 7k
On paper: F__Zifk%,:zjz + ..., a.F_—E,.ijJZ + ...

(i

thanks @ Sven for sharing slides.
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Numerical results — 12 < 25

Scaling behaviour at larger /!

hb1 | h1:2 | Qps ’ success rate | fvacua
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Success rate decreases rapidly because
* high dimensionality means slower evaluation time
* harder to perform numerical optimisation
* phase of Kéhler cone becomes narrower
[Demirtas et al. 1808.01282]
Important to stress: sampling with N, < Op;
much harder than allowing Ny, — co.
We actually looked at examples with 22 > 100

and found solutions with Ny, > Opy;
Timing Minimisation:
h'2(X3)
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thanks @ Sven for sharing slides.



Ask me!

“more than Jim.




Flows: Calabi-Yau Metrics and
Neural Network Theory

we know zero (non-trivial) compact CY metrics.
modeling them with NNs gives SOTA.

Training corresponds to geometric flows
and encompasses famous results in mathematical physics.

Similar apps. in cosmology!
[Krippendorf, Spannowsky]



Calabi-Yau Manifolds: A Fact We Don't Advertise

Yau’s Miraculous Theorem: E 1
let X be a complex (Kahler) manifold,

then if certain topological feature holds (c, = O),
you get geometry, a unique Ricci-flat metric.

R. R — O (Ricci curvature tensor)
Y]

Conditions often satisfied?
107%° < # elliptic CY 4-fold topological types < <.
102007 « # Kreuzer-Skarke CY3 < o,

How many metrics are known?
CY manifold: solutions of string theory, low energy The proof of metric existence is non-constructive.

physics depends on geometry and topology. For X compact, zero are known. Need approximation.



Neural Network Calabi-Yau Metrics

“Let the neural network be the metric!”
- above authors.

Neural network depends on parameters 6,
which provide a variational ansatz:

9i5(x) — gij(x,0)

optimize parameters to minimize some objective,
e.g. to drive the metric towards Ricci-flatness.

See also: NN as variational ansatz for quantum

many-body wavefunction! Minimize energy, e.g.
[Carleo, Troyer] 2017 Infinite NN Context: [J.H., Luo]

[Anderson, Gerdes, Krippendorf, Raghuram, Ruehle]
[Douglas, Lakshminarasimhan, Qi]
[Jejjala, Mayorga Pena, Mishra]

see also: [Ashmore, He, Ovrut]
[Larfors, Lukas, Ruehle, Schneider][Krippendorf, Gerdes]

Why this is a good idea: NN’s are powerful,
universal approximation theorems, etc.

Evidence this is a good idea:

100 model
— mult
< — add
= A
Q —— matrix
— phi
— free
10t

0 20 40 60 80 100
epochs

15 mins NN = 30 years w/ conventional techniques.



Flows in Metric Space goasaNN  grasaNN

g,asaNN

“NN metric flow”
via gradient of
scalar functional L.

- &

Perelman, 2000s: “Ricci flow is a
gradient of a scalar functional, and I'll use
it to prove the Poincare conjecture”

Ricci Flow

dgij
= —2R;;
dt J

Hamilton, 1980s



Theory of Neural Network Metric Flows

[J.H., Ruehle] 2310.19870

Network Dynamics: Neural Tangent Kernel
[Jacot et. al.] 2018

Let f be a NN with parameters 6.

Train via gradient descent of scalar loss.

df (z) _ df; df (z)

dt dt db;

GD. Z df (z) df (') oL
d01 d@[ (5f(£13/)

data z’
oL
— @ ’ /
2 @5
/
Neural Tangent Kernel: 9(3:, ;1;’) — df(:c) df(x )

in infinite limit, becomes df;  do;
deterministic and t-independent, a fixed function.

Neural Network Metric Flows:

dgi;(x) / ) 2U)
T e Ot g

(continuous version. there is discrete, too)
995 () Ogm (2’
Metric-NTK: 00,  00;
non-local, t-dependent, mixes components.

@ijkl (ZI?, x') =

Perelman’s Formulation:
local, no component mixing. dgij o 5‘/?[(% 9]

F: Einstein-dilaton theory. dt 0Gi; (x)

Question: do some architectures yield Perelman?
must overcome these differences. Yes!



NN metric flow

Summary of
Theory
Results:

[J.H., Ruehle] 2310.19870

co-NN metric flow

Local Metric Flow
dgij(x) a ol(zx)

ZEUATS ()—

X State of the art

Calabi-Yau Metrics
good for a reason,
feature learning.

X Perelman’s Ricci Flow

. /
Oyjm(z, 2) == 99:(z) Ogu(’) O:;u difficult: stochastic, t-dependent, hard to compute.

90r 00 Oi;n easier: deterministic, t-indep, fixed function.

]\}1_{20 Oijii(z, 2") = Eglaiju(z, 2')] =: Oyri(z, 2") Q) easiest: deterministic, t-indep, local



Kernel Methods: Failing for Deep Reasons

We trained infinite NNs for CY-metrics. s

Results not great! Great on test, bad on train.

Gain Factor

Kernel Learning and CY-Theorem: .
- NNs in frozen-NTK regime don't learn features.

- therefore, different infinite NNs have different
metric updates, due to different fixed kernels.

- the plethora of kernels and updates
at odds with the uniqueness of the CY metric.

- key: finite-NNs have evolving kernels that
can in principle learn the right kernel for the job.
This idea is borne out in experiments.

Factor Gained in Loss vs. Geodesic Distance

10°
3 Kernel . —e— max
& Gaussian gosr b L | |- mean
® RelU '\ —e— min
# Delta I -\
N o
) § \.\ \.
. 5 . \.\
x g '\ °
¢ § o .\.\
* oo
1072
108 1077 10°° 10° 107¢ 107° 1072 107! 10° 10* 10° 108
Geodesic Distance Number of points
)
9i®) _ [ aua’) S y(e, o) 2
dt M gkl 5 il
X Gkl

Geodesic Distance vs. Number of Points



reams

come back to the oracle.
what might we really want?

how should we do
statistics in string theory?



Generative Models for String Theory

Random Matrix Theory for Strings:

Draws from random
matrix ensembles.

Toy ensembles
for string Lagrangians,
e.g. for ALP physics.

Pro: RMT universality results can be utilized.
Con: may make assumps not reflected by string data.

ML Perspective: an untrained generative model,
it generates samples, but wasn't trained on data.

A Global View on The Search for de-Sitter Vacua
in (Type IIA) String Theory

Xingang Chen!, Gary Shiu®?, Yoske Sumitomo®, and S.-H. Henry Tyett

! Center for Theoretical Cosmology, Department of Applied Mathematics and Theoretical

Physics, University of Cambridge, Cambridge, CB3 0WA, UK
2 Department of Physics, University of Wisconsin, Madison, WI 53706, USA

# Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong
# Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA

Abstract

The search for classically stable Type IIA de-Sitter vacua typically starts with an
ansatz that gives Anti-de-Sitter supersymmetric vacua and then raises the cosmo-
logical constant by modifying the
constant, the couplings typically destabilize the classically stable vacuum, so the
probability that this approach will lead to a classically stable de-Sitter vacuum is
Gaussianly suppressed. This suggests that classically stable de-Sitter vacua in string
theory (at least in the Type IIA region), especially those with relatively high cosmo-
logical constants, are very rare. The probability that a typical de-Sitter extremum
is classically stable (i.., tachyon-free) is argued to be Gaussianly suppressed as a

As one raises the

function of the number of moduli

The Wasteland of Random Supergravities

David Marsh, Liam McAllister, and Timm Wrase

Department of Physics, Cornell University, Ithaca, NY 14853

We show that in a general AV = 1 supergravity with N 3> 1 scalar fields, an exponentially small
fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kéhler
potential to be random functions, we construct a random matrix model for the Hessian matrix, which
is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the
eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in
typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-
Widom law governing fluctuations of extreme cigenvalues, we determine the probability P of a large
fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this
extremely unlikely: we find P o exp(—cN?), with ¢, p being constants. For generic critical points
we find p = 1.5, while for approximately-supersymmetric critical points, p ~ 1.3. Our results have
significant implications for the counting of de Sitter vacua in string theory, but the number of vacua
remains vast.

Alternative Question: can we use string data to learn
a generative model that simulates string theory?

Use those samples to understand statistical preds?



A Baby Step: Learning Random Matrices of String Data

i (hM, n., epoch) = (10,5,0) Distance = 0.94 i (h", n,epoch) = (10,5,15) Distance = 0.53
Statistical Predictions in String Theory and Deep Generative Models : ’
0.8 0.8
James Halverson and Cody Long
Department of Physics, Northeastern University 0% -
Boston, MA 02115-5000 USA ) :
(Dated: January 3, 2020)
0.4 04

Generative models in deep learning allow for sampling probability distributions that approximate
data distributions. We propose using generative models for making approximate statistical pre- 02 02
dictions in the string theory landscape. For vacua admitting a Lagrangian description this can be ’ ’

thought of as learning random tensor approximations of couplings. As a concrete proof-of-principle, 0.0 00
I 4

we demonstrate in a large ensemble of Calabi-Yau manifolds that Kahler metrics evaluated at points —6 —4 -2 2 — -2 0
in Kéhler moduli space are well-approximated by ensembles of matrices produced by a deep convo- log;(Eigenvalue) logy,(Eigenvalue)
lutional Wasserstein GAN. Accurate approximations of the Kahler metric eigenspectra are achieved T - i T i s G
with far fewer than h'' Gaussian draws. Accurate extrapolation to values of h'! outside the training 1.0 (", ns,epoch) = (10,5,25)  Distance = 0.43 1.0 (", ms,epoch) = (10,5, 180) _Distance = 014
set are achieved via a conditional GAN. Together, these results implicitly suggest the existence of
strong correlations in the data, as might be expected if Reid’s fantasy is correct. 0.8 0.8
0.6 0.6
e idea: stat predictions by simulating string " "
theory, i.e. samples from generative models. 02 02
0.0 0.0
—6 —4 —2 0 2 —6 —4 =2 0
log;o(Eigenvalue) log,o(Eigenvalue)
- 11 - o - [ stance — 11 - = 5 istance —
Py data: ensem bles Of I(ah ler metrlcs Of I(S o (R", n,epoch) = (10,5,400) Distance = 0.08 i (h", n, epoch) = (10,5,1000) Distance = 0.11
CY3s at tip of stretched Kahler cone. o v
. . . . 0.6 0.6
e result: learned random matrix approximation
0.4 0.4
of the string data, see converging spectrum.
0.2 0.2
. . 1‘]
e extrap /interp analysis to other h". 0 0
—6 —4 -2 0 2 —6 —4 —2 0

log;o(Eigenvalue) log;o(Eigenvalue)



Bayesian Inference: The Good, the Bad, and the Ugly

The method by which we use data to update our belief
in a model has a name: statistical inference.

see e.g. [James, Witten, Hastie, Tibshirani]

A Statistical Pipeline for Strings:  (akin to ML-stat pipelines in other fields)
1) ML-based methods to draw from approximate
distribution on string data (ideally cosmo measure.. .)
2) use string techniques to compute observables.
3) use so-called simulation-based inference

to approximate the posterior conditioned on

Statistical Inference and String Theory

Jonathan J. Heckman*

Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA

Abstract

In this note we expose some surprising connections between string theory and statistical
inference. We consider a large collective of agents sweeping out a family of nearby statistical
models for an M-dimensional manifold of statistical fitting parameters. When the agents
making nearby inferences align along a d-dimensional grid, we find that the pooled proba-
bility that the collective reaches a correct inference is the partition function of a non-linear
sigma model in d dimensions. Stability under perturbations to the original inference scheme
requires the agents of the collective to distribute along two dimensions. Conformal invari-
ance of the sigma model corresponds to the condition of a stable inference scheme, directly
leading to the Einstein field equations for classical gravity. By summing over all possible
arrangements of the agents in the collective, we reach a string theory. We also use this per-
spective to quantify how much an observer can hope to learn about the internal geometry

of a superstring compactification. Finally, we present some brief speculative remarks on
applications to the AdS/CFT correspondence and Lorentzian signature spacetimes.

all observed low energy data.

p(D|0) p(6) Concern: fundamental statistical learning
p(D) theory constraint how much we can learn
about UV data from IR experiments?

p(0|D) =

4) make predictions in the posterior.



In Conclusion

ML Preliminaries Cursory Glances
1) Neural Networks 1) Prediction: Supervised Learning
2) Universal Approximation 2) Rigor: Conjecture Gen. + Theorems
3) Architectures 3) Structure: Persistent Homology
4) Famous Examples and Verbs 4) Search: Reinforcement Learning,

Gen. Algs, Quantum Annealers

In-Depth Looks Dreams

1) Flow: CY-metrics and NN theory 1) Generative Models: Simulating
2) Auto-diff everything: Flux Vacua String Theory and Statistical Inference



In Conclusion

String theory and quantum gravity are extremely hard.

If we get to a final answer,
we need formal theory,
sophisticated compute,

and all of us.

New compute in this era: ML in the String Landscape.
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