Exploring the Interior of N=1 Field Spaces

Max Wiesner Harvard University

Based on: 2210.14238 + WIP

Deconstructing the Landscape a.k.a. "Landscapia" — Saclay November 29, 2023

String Theory (and its compactifications) come with a number of **scalar fields** whose vacuum expectation values determine the **properties of the effective theory**

 \rightarrow values of couplings, masses of states, value of the EFT cut-off \ldots

Families of EFTs from string theory parametrized by the values of the scalar fields

 \rightarrow scalar field space \mathscr{M}_{ϕ^i}

Structure of \mathcal{M}_{ϕ^i} gives information about general properties of the theory

 \rightarrow allowed values for ϕ^i , different perturbative descriptions, dualities

What do we know about the structure of \mathcal{M} ?

 \rightarrow comes equipped with a metric which can be computed in a perturbative limit of the theory

(e.g. perturbative string theory regime)

In case of perturbative, supersymmetric string theory:

 \rightarrow can match with expectation from gravity and obtain metric in perturbative Phase.

What do we know about the structure of \mathcal{M} ?

 \rightarrow comes equipped with a metric which can be computed in a perturbative limit of the theory

(e.g. perturbative string theory regime)

In case of perturbative, supersymmetric string theory:

 \rightarrow can match with expectation from gravity and obtain metric in perturbative Phase.

With enough supersymmetry, moduli space geometry exactly known!

 \rightarrow metric can be evaluated at any point in moduli space.

With less supersymmetry can sometimes rely on non-renormalization theorems to describe moduli space away from perturbative limits:

What do we know about the structure of \mathcal{M} ?

 \rightarrow comes equipped with a metric which can be computed in a perturbative limit of the theory

(e.g. perturbative string theory regime)

In case of perturbative, supersymmetric string theory:

 \rightarrow can match with expectation from gravity and obtain metric in perturbative Phase.

With enough supersymmetry, moduli space geometry exactly known!

 \rightarrow metric can be evaluated at any point in moduli space.

With less supersymmetry can sometimes rely on non-renormalization theorems to describe moduli space away from perturbative limits:

Example 4d N=2: Moduli space factorizes into vector- and hypermultiplet sector and only one factor contains the string coupling \rightarrow tree-level exact.

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Max Wiesner

Exploring the Interior of N=1 Field Spaces

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

- Moduli space spanned by:
- Type II dilaton + axionic partner

- (complexified) Kähler moduli of X_3

- Complex structure moduli of X_3 + axionic partners

vector multiplets

hypermultiplets

Max Wiesner

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

- Moduli space spanned by:
- Type II dilaton + axionic partner
- Complex structure moduli of X_3 + axionic partners
- hypermultiplets
- (complexified) Kähler moduli of X₃ vector multiplets
- N=2 supersymmetry ensures factorization $\mathcal{M} = \mathcal{M}_{HM} \times \mathcal{M}_{VM}$.
 - \rightarrow vector multiplet moduli space is tree-level exact.
 - \rightarrow can trust the structure derived from string CFT

 \leftrightarrow mirror symmetry to complex structure moduli of \tilde{X}_3

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

- Moduli space spanned by:
- Type II dilaton + axionic partner
- Complex structure moduli of X_3 + axionic partners
- (complexified) Kähler moduli of X_3
- N=2 supersymmetry ensures factorization $\mathcal{M} = \mathcal{M}_{HM} \times \mathcal{M}_{VM}$.
 - → vector multiplet moduli space is tree-level exact. → can trust the structure derived from string CFT \leftrightarrow mirror symmetry to complex structure moduli of \tilde{X}_3
- Thanks to factorization can describe small volume regime of $\mathcal{M}_{\rm VM}$
 - can infer singularity structure from mirror

hypermultiplets

vector multiplets

11/29/2023

Question: What about the more realistic cases in 4d with minimal (or no) supersymmetry?

Gather some intuition from 4d N=2 first — Specifically Type IIA Compactifications on CY 3-fold X_3

• Moduli space spanned by:

Max Wiesner

- Type II dilaton + axionic partner
- Complex structure moduli of X_3 + axionic partners
- (complexified) Kähler moduli of X_3

• N=2 supersymmetry ensures factorization $\mathcal{M} = \mathcal{M}_{HM} \times \mathcal{M}_{VM}$.

 \rightarrow vector multiplet moduli space is tree-level exact. \rightarrow can trust the structure derived from string CFT

 \leftrightarrow mirror symmetry to complex structure moduli of \tilde{X}_3

- Thanks to factorization can describe small volume regime of $\mathcal{M}_{\rm VM}$
 - can infer singularity structure from mirror
 - at small volume get phases different from CY phase, e.g. orbifold phases, Landau-Ginzburg or hybrid phases.

Exploring the Interior of N=1 Field Spaces

11/29/2023

hypermultiplets

Question: What remains of this in genuine N=1 theories?

Question: What remains of this in genuine N=1 theories?

- Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold $X_4 : T^2 \rightarrow B_3$
- Scalar field space spanned by [Grimm '10]
 - complex structure moduli of X_4
 - complexified volumes of divisors of B_3

$$T_i = \frac{1}{2} \int_{D_a} J \wedge J + i \int_{D_a} C_4$$

J: Kähler form on B_3 D_a : Generators of Eff¹(B_3) C_4 : Type IIB RR four-form

Question: What remains of this in genuine N=1 theories?

- Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold $X_4 : T^2 \rightarrow B_3$
- Scalar field space spanned by [Grimm '10]
 - complex structure moduli of X_4
 - complexified volumes of divisors of B_3

$$T_i = \frac{1}{2} \int_{D_a} J \wedge J + i \int_{D_a} C_4$$

- *J*: Kähler form on B_3 D_a : Generators of Eff¹(B_3) C_4 : Type IIB RR four-form
- In large volume regime $(\mathcal{V}_{B_3} \to \infty)$: supersymmetry breaking effects are diluted (... \mathcal{V}_{B_3} plays the role of 4d dilaton)
- In this limit the moduli space is described by $K = -\log \int_{X_4} \Omega \wedge \bar{\Omega} \log \int_{B_3} J_{B_3}^3$

Question: What remains of this in genuine N=1 theories?

- Take e.g. F-theory on elliptically fibered Calabi-Yau fourfold $X_4 : T^2 \rightarrow B_3$
- Scalar field space spanned by [Grimm '10]
 - complex structure moduli of X_4
 - complexified volumes of divisors of B_3

$$T_i = \frac{1}{2} \int_{D_a} J \wedge J + i \int_{D_a} C_4$$

- *J*: Kähler form on B_3 D_a : Generators of Eff¹(B_3) C_4 : Type IIB RR four-form
- In large volume regime $(\mathcal{V}_{B_3} \to \infty)$: supersymmetry breaking effects are diluted (... \mathcal{V}_{B_3} plays the role of 4d dilaton)
- In this limit the moduli space is described by $K = -\log \int_{X_4} \Omega \wedge \bar{\Omega} \log \int_{B_3} J_{B_3}^3$
- What happens away from the overall large volume limit? 1. small curve limit for some curves in B_3
 - 2. Mixing between c.s. and Kähler sector

Structure of Kähler field space

- Consider first small curve limits in B_3 .
- Naively might expect a similar pattern as in Type IIA → shrinking genus-0 curves also fall in three classes??

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(-1)$$

IIA on CY3:

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(0)$$

[Witten '96]

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-3) \oplus \mathcal{O}(1)$$

only curve shrinks \rightarrow can trust classical geometry

divisor shrinks to curve \rightarrow classical geometry trustable due to enhanced supersymmetry divisor shrinks to point \rightarrow orbifold phase

Structure of Kähler field space

- Consider first small curve limits in B_3 .
- Naively might expect a similar pattern as in Type IIA → shrinking genus-0 curves also fall in three classes??

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(-1)$$

IIA on CY3: [Witten '96]

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-3) \oplus \mathcal{O}(1)$$

- $\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(0)$

only curve shrinks \rightarrow can trust classical geometry

divisor shrinks to curve \rightarrow classical geometry trustable due to enhanced supersymmetry divisor shrinks to point \rightarrow orbifold phase

- For F-theory on $T^2 \to B_3$ can at best be true for curves not intersecting the anti-canonical divisor \bar{K}_{B_3} (curves that do not 'see' the breaking of supersymmetry " $\mathcal{N} = 2$ curves")
- Interesting case: what happens if we shrink a curve *C* such that $\overline{K} \cdot C > 0$?
 - \rightarrow can we trust the classical geometric picture and the Kähler potential derived from it?

Focus on curves with \overline{K} . C > 0:

• Possibilities genus 0 curve with $\overline{K} \cdot C = 1$

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$$

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

divisor shrinks to curve

divisor shrinks to point

• Take first case: Can the geometric description still be trusted?

 \rightarrow look at corrections to effective action

Focus on curves with \overline{K} . C > 0:

• Possibilities genus 0 curve $\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$ divisor shrinks to curve with \overline{K} . C = 1

$$\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$$

divisor shrinks to point

• Take first case: Can the geometric description still be trusted?

 \rightarrow look at corrections to effective action

• For a curve with normal bundle $\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$ there needs to exist a divisor $D \subset B_3$ such that

$$\mathcal{V}_D = t_C \left(t_{\tilde{C}} + \dots \right) \qquad t_C := \mathcal{V}_C$$

Focus on curves with \overline{K} . C > 0:

- Possibilities genus 0 curve with $\overline{K} \cdot C = 1$ $\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$ divisor shrinks to curve $\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$ divisor shrinks to point
- Take first case: Can the geometric description still be trusted?

 \rightarrow look at corrections to effective action

• For a curve with normal bundle $\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$ there needs to exist a divisor $D \subset B_3$ such that

$$\mathcal{V}_D = t_C \left(t_{\tilde{C}} + \dots \right) \qquad t_C := \mathcal{V}_C$$

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\mathcal{V}_{D}^{\text{corr.}} = \mathcal{V}_{D} \left[1 + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\mathcal{Z}}{\mathcal{V}_{B_{3}}} \right) \right] + \alpha^{2} \left(\tilde{\mathcal{Z}}_{i} \log \mathcal{V}_{B_{3}}^{(0)} + \kappa_{7} \mathcal{Z}_{D} \right) . \qquad \qquad \mathcal{Z}_{D} = \int_{X_{4}} c_{3}(X_{4}) \wedge \pi^{*}(D) dU_{B_{3}} + \kappa_{7} \mathcal{Z}_{D} \right) .$$

Focus on curves with \overline{K} . C > 0:

- Possibilities genus 0 curve with $\overline{K} \cdot C = 1$ $\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$ divisor shrinks to curve $\mathcal{N}_{C|B_3} = \mathcal{O}(-2) \oplus \mathcal{O}(1)$ divisor shrinks to point
- Take first case: Can the geometric description still be trusted?

 \rightarrow look at corrections to effective action

• For a curve with normal bundle $\mathcal{N}_{C|B_3} = \mathcal{O}(-1) \oplus \mathcal{O}(0)$ there needs to exist a divisor $D \subset B_3$ such that

$$\mathcal{V}_D = t_C \left(t_{\tilde{C}} + \dots \right) \qquad t_C := \mathcal{V}_C$$

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

$$\begin{aligned} & \mathcal{V}_{D}^{\text{corr.}} = \mathcal{V}_{D} \left[1 + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\mathcal{Z}}{\mathcal{V}_{B_{3}}} \right) \right] + \alpha^{2} \left(\tilde{\mathcal{Z}}_{i} \log \mathcal{V}_{B_{3}}^{(0)} + \kappa_{7} \mathcal{Z}_{D} \right) . \qquad \qquad \mathcal{Z}_{D} = \int_{X_{4}} c_{3}(X_{4}) \wedge \pi^{*}(D) \\ & \mathcal{V}_{D} \to 0 \\ & \text{for } t_{C} \to 0 \end{aligned}$$
 Suppressed at sufficiently large $\mathcal{V}_{B_{3}}$ Relevant correction

• Does \mathscr{Z}_D vanish for curve with $\overline{K} \cdot C = 1$?

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

- Does \mathscr{Z}_D vanish for curve with $\overline{K} \cdot C = 1$?
- Consider smooth Weierstrass model over $B_3 : \mathbb{P}^1 \to B_2$ and curve $C \subset B_2$, then

$$\mathscr{Z}_D = c_3(X_4) \cdot_{X_4} \pi^*(D) = c_1(B_3)^2 \cdot_{B_3} D = \dots = 4 c_1(B_3) \cdot_{B_3} C$$

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

- Does \mathscr{Z}_D vanish for curve with $\overline{K} \cdot C = 1$?
- Consider smooth Weierstrass model over $B_3 : \mathbb{P}^1 \to B_2$ and curve $C \subset B_2$, then

$$\mathscr{Z}_D = c_3(X_4) \cdot_{X_4} \pi^*(D) = c_1(B_3)^2 \cdot_{B_3} D = \dots = 4 c_1(B_3) \cdot_{B_3} C$$

• For curve with $\overline{K} \cdot_{B_3} C \neq 0$ dominates \rightarrow cannot trust the classical field space geometry for $\mathcal{V}_C \rightarrow 0!$

• \mathcal{V}_D receives corrections at $\mathcal{O}(\alpha'^2)$: [Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher '13-'19]

- Does \mathscr{Z}_D vanish for curve with $\overline{K} \cdot C = 1$?
- Consider smooth Weierstrass model over $B_3 : \mathbb{P}^1 \to B_2$ and curve $C \subset B_2$, then

$$\mathscr{Z}_D = c_3(X_4) \cdot_{X_4} \pi^*(D) = c_1(B_3)^2 \cdot_{B_3} D = \dots = 4 c_1(B_3) \cdot_{B_3} C$$

- For curve with $\overline{K} \cdot_{B_3} C \neq 0$ dominates \rightarrow cannot trust the classical field space geometry for $\mathcal{V}_C \rightarrow 0!$
- Consistency check: for curve with $\mathcal{N} = \mathcal{O}(-2) \oplus \mathcal{O}(0)$ correction vanish and we can still trust the geometric picture.

Consider now $\overline{K}_{B_3} \cdot C = 2$ and $\mathcal{N}_{C|B_3} = \mathcal{O}(0) \oplus \mathcal{O}(0)$.

 \rightarrow *C* is fiber of rationally-fibered $B_3 : C \rightarrow B_2 \leftrightarrow$ theory dual to heterotic string on CY3.

[Morrison, Vafa '97; Lee, Lerche, Weigand '19]

Consider now $\overline{K}_{B_3} \cdot C = 2$ and $\mathcal{N}_{C|B_3} = \mathcal{O}(0) \oplus \mathcal{O}(0)$.

 \rightarrow *C* is fiber of rationally-fibered $B_3 : C \rightarrow B_2 \leftrightarrow$ theory dual to heterotic string on CY3.

[Morrison, Vafa '97; Lee, Lerche, Weigand '19]

What happens in the limit of small *C* at constant volume \mathcal{V}_{B_3} ?

• All divisor volumes receive corrections as

$$\mathcal{V}_{D}^{\text{corr.}} = \mathcal{V}_{D} \left[1 + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\mathcal{Z}}{\mathcal{V}_{B_{3}}} \right) \right] + \alpha^{2} \left(\tilde{\mathcal{Z}}_{i} \log \mathcal{V}_{B_{3}}^{(0)} + \kappa_{7} \mathcal{Z}_{D} \right) \,.$$

Diverges in the limit [Klaewer, Lee, Weigand, MW '20]

• Via duality can argue that (at least in simple cases) a strong coupling singularity is reached for gauge theory on $D = B_2$.

$$\mathcal{V}_{B_2}^{\text{corr.}} = \mathcal{V}_{B_2}^{(0)} \left(1 + \alpha^2(\ldots)\right) + \alpha^2 \tilde{Z}_0 \log \mathcal{V}_{B_3} + \alpha^2 \text{const.}$$

 \rightarrow vanishes along the singularity

Consider now $\overline{K}_{B_3} \cdot C = 2$ and $\mathcal{N}_{C|B_3} = \mathcal{O}(0) \oplus \mathcal{O}(0)$.

 \rightarrow *C* is fiber of rationally-fibered $B_3 : C \rightarrow B_2 \leftrightarrow$ theory dual to heterotic string on CY3.

[Morrison, Vafa '97; Lee, Lerche, Weigand '19]

What happens in the limit of small *C* at constant volume \mathcal{V}_{B_3} ?

• All divisor volumes receive corrections as

$$\mathcal{V}_{D}^{\text{corr.}} = \mathcal{V}_{D} \left[1 + \alpha^{2} \left((\kappa_{3} + \kappa_{5}) \frac{\mathcal{Z}}{\mathcal{V}_{B_{3}}} \right) \right] + \alpha^{2} \left(\tilde{\mathcal{Z}}_{i} \log \mathcal{V}_{B_{3}}^{(0)} + \kappa_{7} \mathcal{Z}_{D} \right) \,.$$

Diverges in the limit [Klaewer, Lee, Weigand, MW '20]

• Via duality can argue that (at least in simple cases) a strong coupling singularity is reached for gauge theory on $D = B_2$.

$$\mathcal{V}_{B_2}^{\text{corr.}} = \mathcal{V}_{B_2}^{(0)} \left(1 + \alpha^2(\ldots)\right) + \alpha^2 \tilde{Z}_0 \log \mathcal{V}_{B_3} + \alpha^2 \text{const.}$$

 \rightarrow vanishes along the singularity

• All other (vertical) divisors have minimal quantum volume:

$$\frac{1}{\alpha^2} \operatorname{Re} T_a \Big|_{\operatorname{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \operatorname{const.} \right) + \operatorname{Re} T_a^* \qquad \qquad \zeta : \operatorname{Complex structure parameter}_{\operatorname{of} X_4}$$

Exploring the Interior of N=1 Field Spaces

Shrinking of curve with $\mathcal{N} = \mathcal{O}(0) \oplus \mathcal{O}(0)$ is even worse than for $\overline{K} \cdot_{B_3} C = 1$.

- Get a strong coupling singularity at finite distance.
- Mixing between complex structure sector and Kähler sector $\rightarrow \mathcal{M} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{Kahler}$

$$\frac{1}{\alpha^2} \operatorname{Re} T_a \Big|_{\operatorname{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \operatorname{const.}\right) + \operatorname{Re} T_a^*$$

• $\mathcal{N} = 1$ theory behaves significantly different from $\mathcal{N} = 2$ counterpart

 \rightarrow Cannot view it as " $\mathcal{N} = 2 + \text{small corrections"}$

Shrinking of curve with $\mathcal{N} = \mathcal{O}(0) \oplus \mathcal{O}(0)$ is even worse than for $\overline{K} \cdot_{B_3} C = 1$.

- Get a strong coupling singularity at finite distance.
- Mixing between complex structure sector and Kähler sector $\rightarrow \mathcal{M} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{Kahler}$

$$\frac{1}{\alpha^2} \operatorname{Re} T_a \bigg|_{\operatorname{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \operatorname{const.} \right) + \operatorname{Re} T_a^*$$

• $\mathcal{N} = 1$ theory behaves significantly different from $\mathcal{N} = 2$ counterpart

 \rightarrow Cannot view it as " $\mathcal{N} = 2 + \text{small corrections"}$

In general: Field space geometry for small genuine $\mathcal{N} = 1$ curves not describable by classical geometry \rightarrow corrections are big and field space does not necessarily factorize anymore.

Shrinking of curve with $\mathcal{N} = \mathcal{O}(0) \oplus \mathcal{O}(0)$ is even worse than for $\overline{K} \cdot_{B_3} C = 1$.

- Get a strong coupling singularity at finite distance.
- Mixing between complex structure sector and Kähler sector $\rightarrow \mathcal{M} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{Kahler}$

$$\frac{1}{\alpha^2} \operatorname{Re} T_a \bigg|_{\operatorname{sing.}} = -\frac{\operatorname{Re} T_a^{(0)}}{\mathscr{V}_{B_2}^{(0)}} \left(\frac{b}{8\pi} \log \xi + \operatorname{const.}\right) + \operatorname{Re} T_a^*$$

• $\mathcal{N} = 1$ theory behaves significantly different from $\mathcal{N} = 2$ counterpart

 \rightarrow Cannot view it as " $\mathcal{N} = 2 + \text{small corrections"}$

In general: Field space geometry for small genuine $\mathcal{N} = 1$ curves not describable by classical geometry \rightarrow corrections are big and field space does not necessarily factorize anymore.

Question: Away from small curve limits can I still trust the classical field space structure?

 \rightarrow does $\mathcal{M} \simeq \mathcal{M}_{c.s.} \times \mathcal{M}_{Kahler}$ only break down for very small volumes?

 \rightarrow or corrections important for large complex structure?

Mixing in the Complex Structure Sector

Might expect that the mixing between Kähler and complex structure sectors is sufficiently suppressed as long as divisor volumes $\mathcal{V}_D \gg 1$:

Mixing in the Complex Structure Sector

Might expect that the mixing between Kähler and complex structure sectors is sufficiently suppressed as long as divisor volumes $\mathcal{V}_D \gg 1$:

Motivated by viewing F-theory via IIB orientifolds:

- \rightarrow For Type IIB CY compactifications the complex structure is classically exact.
- \rightarrow Can evaluate periods of X_4 reliably to infer structure of $\mathcal{M}_{c.s.}$.
- \rightarrow Period integrals simplify close to boundaries of $\mathcal{M}_{c.s.} \Rightarrow$ good setting for e.g. searches for flux vacua.

Is this picture correct?

Exploring the Interior of N=1 Field Spaces

A simple Calabi – Yau fourfold

Consider a **very simple** elliptically-fibered Calabi-Yau fourfold

F-theory on X_4 leads to a four-dimensional theory with $\mathcal{N} = 2$ supersymmetry.

A simple Calabi – Yau fourfold

Consider a **very simple** elliptically-fibered Calabi-Yau fourfold

$$X_4 = (T^2 \rightarrow B_2) \times T^2 \implies B_3 = B_2 \times T^2$$

Elliptically-fibered Calabi-Yau

F-theory on X_4 leads to a four-dimensional theory with $\mathcal{N} = 2$ supersymmetry.

Question: Can we already see in this theory what to expect got the mixing between complex structure sector and \mathcal{V}_{B_3} ?

Therefore consider vector- and hypermultiplet sector of this F-theory comapctification:

- complex structure moduli of $(T^2 \rightarrow B_2)$ and overall hypermultiplets volume of B_2 + axionic partners

- (complexified) Kähler moduli of B_2 + moduli of T^2 vector multiplets

Hypermultiplet Corrections to CY3 x T2

Focus on hypermultiplet sector of F-theory on $(T^2 \rightarrow B_2) \times T^2$

 \rightarrow contains precisely the **volume modulus** and (part of) **the complex structure sector of** X_4 .

 \leftrightarrow

F-theory on $(T^2 \rightarrow B_2) \times T^2$ dual to Type IIA on $T^2 \rightarrow B_2$. \rightarrow hypermultiplet moduli spaces can be identified via

F-theory

IIA

complex structure moduli of $(T^2 \rightarrow B_2)$ overall volume modulus of B_2

complex structure moduli of $(T^2 \rightarrow B_2)$ 4d dilaton

Hypermultiplet Corrections to CY3 x T2

Focus on hypermultiplet sector of F-theory on $(T^2 \rightarrow B_2) \times T^2$

 \rightarrow contains precisely the **volume modulus** and (part of) **the complex structure sector of** X_4 .

F-theory on $(T^2 \rightarrow B_2) \times T^2$ dual to Type IIA on $T^2 \rightarrow B_2$.

 \rightarrow hypermultiplet moduli spaces can be identified via

F-theory

IIA

complex structure moduli of $(T^2 \rightarrow B_2)$ complex structure moduli of $(T^2 \rightarrow B_2)$ \leftrightarrow overall volume modulus of B_2 4d dilaton

- Type IIA hypermultiplet sector receives corrections due to D2-brane instantons
- D2-brane instanton contributions to moduli space metric have been computed in

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum \text{D2-instantons}$$

[Alexandrov, Banerjee '14]; see [Robes-Llana, M. Rocek, F. Saueressig, U. Theis, S. Vandoren, '06] for mirror dual Type IIB.

- effect on (mirror dual of) large complex structure limit moduli space has been investigated in [(Baume), Marchesano, MW '19]; see also [Alvarez-Garcia, Klaewer, Weigand '21]
 - \rightarrow effectively obstruct large complex structure limits!

- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4 : X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathscr{M}_{c.s.}(X_3) \subset \mathscr{M}_{c.s.}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - → asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D = B_2 \subset B_3$

- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4 : X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathscr{M}_{c.s.}(X_3) \subset \mathscr{M}_{c.s.}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - → asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D = B_2 \subset B_3$

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum \text{D2-instantons} \quad \longrightarrow \quad S_{D3|_{D=B_2}} = \mathcal{V}_{D=B_2} - f(z_{c.s.}) \int_{D=B_2} c_1 (B_3)^2$$

- $f(z_{c.s}) \to \infty$ close to borders of $\mathcal{M}_{c.s.}(X_4)$.
- Consequence: can never treat $\mathscr{M}_{c.s.}(X_4)$ as decoupled from Kähler sector \rightarrow apart from at $\mathscr{V}_{B_2} = \infty$.

- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4 : X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathscr{M}_{c.s.}(X_3) \subset \mathscr{M}_{c.s.}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - → asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D = B_2 \subset B_3$

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum \text{D2-instantons} \quad \longrightarrow \quad S_{D3|_{D=B_2}} = \mathcal{V}_{D=B_2} - f(z_{c.s.}) \int_{D=B_2} c_1 (B_3)^2$$

- $f(z_{c.s}) \to \infty$ close to borders of $\mathcal{M}_{c.s.}(X_4)$.
- Consequence: can never treat $\mathscr{M}_{c.s.}(X_4)$ as decoupled from Kähler sector \rightarrow apart from at $\mathscr{V}_{B_2} = \infty$. $\mathscr{V}_{B_2}^{-1} \blacktriangle$

- Can break supersymmetry to N=1 e.g. through non-trivial fibration $X_4 : X_3 \to \mathbb{P}^1$ $B_3 = B_2 \to \mathbb{P}^1$ \to classically $\mathscr{M}_{c.s.}(X_3) \subset \mathscr{M}_{c.s.}(X_4)$
- Expectation: corrections present in N=2 also correct N=1 theory
 - → asymptotic regimes in $\mathcal{M}_{c.s.}(X_4)$ also receive corrections at finite \mathcal{V}_{B_2} due to corrections to action of D3-brane instantons on $D = B_2 \subset B_3$

$$S_{4d}^{\text{corr.}} = S_{4d}^{(0)} + \sum \text{D2-instantons} \quad \longrightarrow \quad S_{D3|_{D=B_2}} = \mathcal{V}_{D=B_2} - f(z_{c.s.}) \int_{D=B_2} c_1 (B_3)^2$$

- $f(z_{c.s}) \to \infty$ close to borders of $\mathcal{M}_{c.s.}(X_4)$.
- Consequence: can never treat $\mathscr{M}_{c.s.}(X_4)$ as decoupled from Kähler sector \rightarrow apart from at $\mathscr{V}_{B_2} = \infty$. $\mathscr{V}_{B_2}^{-1}$ corrections relevant

• **Goal:** Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.

- **Goal:** Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.
- Can use N=2 intuition only if N=2 \rightarrow N=1 breaking effects are infinitely diluted!
 - \rightarrow otherwise N=1 breaking effects of O(1)!

- **Goal:** Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.
- Can use N=2 intuition only if N=2 \rightarrow N=1 breaking effects are infinitely diluted!
 - \rightarrow otherwise N=1 breaking effects of O(1)!
- Explicitly considered F-theory compactifications on four-folds

- **Goal:** Explore the interior of the N=1 field space \rightarrow focus on genuine N=1 effects.
- Can use N=2 intuition only if N=2 → N=1 breaking effects are infinitely diluted!
 → otherwise N=1 breaking effects of O(1)!
- Explicitly considered F-theory compactifications on four-folds
 - genuine N=1 effects become large if curves intersected by anti-canonical divisor become small
 → N=2 breaking not diluted.
 - Mixing between complex structure and Kähler sector becomes important away from $\mathcal{V}_D = \infty$.
 - asymptotic regions in c.s. sector only describable through classical geometry in double-scaling limit (where N=2 supersymmetry is restored...)

 \rightarrow similar effects to N=2 hypermultiplet sector at finite string coupling ...

• ... what happens in general N=1 cases?

Thank you!!

Max Wiesner

Exploring the Interior of N=1 Field Spaces

Landscapia — Saclay

11/29/2023