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r[i/j] =
νi/νj − R*ij

R*ij

01 July 2019 15 July 2019

~ 2 weeks of measurements, roughly 
every second with 75% uptime 
Observations made over same window

⇒

δα
α

δα
α

,
δμ
μ

,
δgN

gN

NPL frequency ratios

Yb+/Sr⇒ ⇒Sr/Cs

New J. Phys. 25, 093012 (2023)

Divide out HM⇒

https://iopscience.iop.org/article/10.1088/1367-2630/aceff6
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Data characteristic of white noise 
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κn |d(n)
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E.g. for two times separated by 1000 seconds 

≈ κn |d(n)
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ρlocal
DM ≈ 0.3 GeV/cm3

Can induce oscillations in nucleon 
mass and nuclear  factorg*see also 2307.14962, 2307.10362
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Atomic clocks are powerful probes of ultralight bosons

Sensitive to “variations” of fundamental dimensionless constants 
Variations may be attributed to presence of ultralight bosons 
Model-independent constraints from instabilities of , Sr, and Cs clocks 
New constraints on ALPs and scalar ultralight DM (see paper)

Yb+

Excellent future prospects

New clocks under construction, additional data-taking campaigns in progress 
New phenomenology connecting ultralight fields to atomic observables

Conclusions



“A network of clocks measuring the stability of 
fundamental constants”

Operational

Under 
construction

Kα Kμ

G. Barontini et. al. EPJ Quantum Technology 9, 12 (2022) 
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Oscillations Drifts Transients

https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00130-5

