# Searching for ultralight bosons using atomic clocks

### Nathaniel Sherrill **University of Sussex**

axions++ 2023 Based on New J. Phys. 25, 093012 (2023) In collaboration with the National Physical Laboratory (NPL)









 $\nu_{\rm optical} \sim 100 \ {\rm THz}$  $\sim GHz$  $\nu_{\rm microwave}$  $\sim 10 \text{ THz}$  $\nu_{\rm molecular}$ 



 $\nu_{\text{optical}} \sim 100 \text{ THz}$   $\nu_{\text{microwave}} \sim \text{GHz}$  $\nu_{\text{molecular}} \sim 10 \text{ THz}$ 

**Inaccuracy = systematic uncertainty** 

= uncertainty of shift  $\nu_{output} - \nu_0$ 







**Inaccuracy = systematic uncertainty** 

= uncertainty of shift  $\nu_{output} - \nu_0$ 

**Smaller inaccuracies + high-frequency transitions** 



#### **Basic components**



#### **Clock transition**

**Measured\*** radiation







#### **Basic components**



### \*Cannot measure absolute energies *r*<sub>observable</sub>



#### **Basic components**



# \*Cannot measure absolute energies $r_{\text{observable}} = \frac{\nu_1}{\nu_2}$ Different transitions of same system or distinct systems

Common clock transitions

$$\nu_{\text{optical}} = A \cdot (cR_{\infty}) \cdot F_{\text{opt}}(\alpha)$$
  

$$\nu_{\text{microwave}} = B \cdot (cR_{\infty}) \cdot \alpha^{2} F_{\text{MW}}(\alpha) \cdot g_{N} \cdot \mu$$
  

$$\nu_{\text{molecular}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2} \qquad \mu = m_{e}/m_{p}$$

#### **Clock transition**

**Measured\*** radiation





#### **Basic components**



# \*Cannot measure absolute energies $r_{\text{observable}} = \frac{\nu_1}{\nu_2}$ Different transitions of same system or distinct systems

**Common clock transitions** 

$$\nu_{\text{optical}} = A \cdot (cR_{\infty}) \cdot F_{\text{opt}}(\alpha)$$
  

$$\nu_{\text{microwave}} = B \cdot (cR_{\infty}) \cdot \alpha^{2} F_{\text{MW}}(\alpha) \cdot g_{N} \cdot \mu$$
  

$$\nu_{\text{molecular}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2} \quad \mu = m_{e}/m_{p}$$

#### **Clock transition**

**Measured\*** radiation





#### **Basic components**



## \*Cannot measure absolute energies $r_{\text{observable}} = \frac{\nu_1}{\nu_2}$ Different transitions of same system or distinct systems

Common clock transitions

$$\nu_{\text{optical}} = A \cdot (cR_{\infty}) \cdot F_{\text{opt}}(\alpha)$$
  

$$\nu_{\text{microwave}} = B \cdot (cR_{\infty}) \cdot \alpha^{2} F_{\text{MW}}(\alpha) \cdot g_{N} \cdot \mu$$
  

$$\nu_{\text{molecular}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2} \quad \mu = m_{e}/m_{p}$$

#### **Clock transition**

**Measured\*** radiation



Atomic clocks are sensitive to "variations" of fundamental constants



Additional bosons can source variations  $\mathscr{L}_{int,\phi} \supset -\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$ 



E.g. "Bekenstein electrodynamics"  $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\phi}{\Lambda'}$ J. D. Bekenstein Phys. Rev. D 25, 1527 (1982) J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982)

$$\mathscr{L} = \mathscr{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac$$

Additional bosons can source variations  $\mathscr{L}_{int,\phi} \supset -\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$ 

 $+\frac{1}{2\Lambda'}\phi F_{\mu\nu}F^{\mu\nu}$ 



E.g. "Bekenstein electrodynamics" J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982)

$$\mathscr{L} = \mathscr{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac$$

Additional bosons can source variations  $\mathscr{L}_{int,\phi} \supset -\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$ 

 $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\phi}{\Lambda'}$ 

Collider searches **U. Danielsson et al., PRD 100, 055028 (2019)** 

 $\frac{1}{2\Lambda'}\phi F_{\mu\nu}F^{\mu\nu}$ 







E.g. "Bekenstein electrodynamics" J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982)

$$\mathscr{L} = \mathscr{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac$$

Additional bosons can source variations  $\mathscr{L}_{int,\phi} \supset -\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$ 

 $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\varphi}{\Lambda'}$ 

Collider searches <u>U. Danielsson et al., PRD 100, 055028 (2019)</u>





#### Theories with varying constants $\Leftrightarrow$ conventional physics + additional interactions









### Effective $\phi$ -SM interactions

 $\mathcal{L}_{\text{int},\phi}$  > -

$$-\left(\frac{\phi}{\Lambda}\right)^{n}\cdot\mathcal{O}_{\rm SM}$$

 $\mathcal{L}_{\mathrm{int},\phi} \supset$ 

### Effective $\phi$ -SM interactions

### $\mathscr{L}_{\text{int},\phi} = \left(\kappa\phi\right)^n \left(\frac{d_{\gamma}^{(n)}}{4}F_{\mu\nu}F^{\mu\nu} - \frac{d_{m_e}^{(n)}}{m_e}m_e\bar{\psi}_e\psi_e\right)$

$$-\left(\frac{\phi}{\Lambda}\right)^{n}\cdot\mathcal{O}_{\rm SM}$$

+ ••• 
$$\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^{-1}$$
$$\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n$$

(see, e.g.)

P. W. Graham et al., PRD 93, 075029 (2016)



 $\mathscr{L}_{\mathrm{int},\phi} \supset -$ 

### Effective $\phi$ -SM interactions

 $\mathscr{L}_{\text{int},\phi} = \left(\kappa\phi\right)^n \left(\frac{d_{\gamma}^{(n)}}{4}F_{\mu\nu}F^{\mu\nu} - \frac{d_{m_e}^{(n)}}{m_e}m_e\bar{\psi}_e\psi_e\right) + C_{\mu\nu}^{(n)} + C_{\mu\nu}^{(n$ 

Shifts in fundamental constants

$$\begin{aligned} \alpha(\phi) &= \alpha \left( 1 + d_{\gamma}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \alpha}{\alpha} = d_{\gamma}^{(n)}(\kappa \phi)^n \\ m_j(\phi) &= m_j \left( 1 + d_{m_j}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta m_j}{m_j} = d_{m_j}^{(n)}(\kappa \phi)^n \quad (j = e, u, d) \\ \Lambda_{\text{QCD}}(\phi) &= \Lambda_{\text{QCD}} \left( 1 + d_g^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}} = d_g^{(n)}(\kappa \phi)^n \end{aligned}$$

$$-\left(\frac{\phi}{\Lambda}\right)^{n}\cdot\mathcal{O}_{\rm SM}$$

+ ··· 
$$\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^-$$
  
 $\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n$ 

(see, e.g.)

P. W. Graham et al., PRD 93, 075029 (2016)



 $\mathcal{L}_{\mathrm{int},\phi} \supset$ 

### Effective $\phi$ -SM interactions

 $\mathscr{L}_{\text{int},\phi} = \left(\kappa\phi\right)^n \left(\frac{d_{\gamma}^{(n)}}{4}F_{\mu\nu}F^{\mu\nu} - \frac{d_{m_e}^{(n)}}{m_e}m_e\bar{\psi}_e\psi_e\right) + C_{\mu\nu}^{(n)}F^{\mu\nu} - \frac{d_{m_e}^{(n)}}{m_e}m_e\bar{\psi}_e\psi_e$ 

Shifts in fundamental constants

$$\begin{aligned} \alpha(\phi) &= \alpha \left( 1 + d_{\gamma}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \alpha}{\alpha} = d_{\gamma}^{(n)}(\kappa \phi)^n \\ m_j(\phi) &= m_j \left( 1 + d_{m_j}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta m_j}{m_j} = d_{m_j}^{(n)}(\kappa \phi)^n \quad (j = e, u, d) \\ \Lambda_{\text{QCD}}(\phi) &= \Lambda_{\text{QCD}} \left( 1 + d_g^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}} = d_g^{(n)}(\kappa \phi)^n \end{aligned}$$

$$-\left(\frac{\phi}{\Lambda}\right)^{n}\cdot\mathcal{O}_{\rm SM}$$

+ ••• 
$$\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^-$$
$$\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n$$

P. W. Graham et al., PRD 93, 075029 (2016)

**Boson EOM controls** character of variations





Damped oscillator covers many models of interest

- $\Box \quad \text{Dark matter } \Gamma = 0$
- $\Box \quad \text{Dark energy: } \Gamma = 3H(t)$
- $\Box \quad \text{Generic hidden sector: } \Gamma \neq 0$
- $\ddot{\phi} + \Gamma \dot{\phi} + m^2 \phi \approx 0$

□ ...





Damped oscillator covers many models of interest

- $\Box \quad \text{Dark matter } \Gamma = 0$
- Generic hidden sector:  $\Gamma \neq 0$   $\psi \top \psi \psi \top \psi$

Illustrative case: stable, nonrelativistic limit

$$\begin{array}{l} \Gamma \rightarrow 0 \\ v \ll c \end{array} \Rightarrow \phi(t) \approx \phi_0 \cos \left[ m(1 + \frac{1}{2}v) \right] \end{array}$$





- Dark matter  $\Gamma = 0$
- Dark energy:  $\Gamma = 3H(t)$
- • • •

Illustrative case: stable, nonrelativistic limit



- Dark matter  $\Gamma = 0$
- Dark energy:  $\Gamma = 3H(t)$
- • • •

Illustrative case: stable, nonrelativistic limit



# NPL frequency ratios



New J. Phys. 25, 093012 (2023)

 $\nu_i/\nu_j - R^*_{ij}$  $r_{[i/j]}$  $R^*_{ii}$ 

Yb<sup>+</sup>/Sr

δα

α

 $\sim$  2 weeks of measurements, roughly every second with 75% uptime Observations made over same window 

**Divide out HM** 



Sr/Cs  $\partial \alpha$  $\partial g_N$ δμ α  $g_N$ μ

















- Mean ratios not constant in time (standard variance not good measure of statistics)
- Instability = "Allan deviation" is standard choice among metrologists



Mean ratios not constant in time (standard variance not good measure of statistics)
 Instability = "Allan deviation" is standard choice among metrologists

Instability = statistical uncertainty  $\sigma_r^2(\tau) \sim \frac{1}{2} \langle (\bar{r}_{i+1} - \bar{r}_i)^2 \rangle$ 

measure of frequency ratio variations  $\stackrel{\partial r}{-}$ 



Mean ratios not constant in time (standard variance not good measure of statistics)
 Instability = "Allan deviation" is standard choice among metrologists

Instability = statistical uncertainty  $\sigma_r^2(\tau) \sim \frac{1}{2} \langle (\bar{r}_{i+1} - \bar{r}_i)^2 \rangle$ 

measure of frequency ratio variations —

r

Data characteristic of white noise ⇒ operating on atomic transition!

# Model-independent constraints



**Translate instabilities to bounds on shifts** 



 $\kappa^{n} | d_{\text{Sr/Cs}}^{(n)} | \sigma_{\phi^{n}}(\tau) \lesssim 1.6 \times 10^{-13} / \sqrt{\tau/s}$ 

 $\kappa^{n} | d_{\gamma}^{(n)} | \sigma_{\phi^{n}}(\tau) \lesssim 2.3 \times 10^{-16} / \sqrt{\tau/s}$ 







# Model-independent constraints

10<sup>5</sup>



**Translate instabilities to bounds on shifts** 

$$\frac{\delta r}{r} \propto \frac{\Delta g}{g} \sim \kappa^n d_g^{(n)} \phi^n(t)$$

 $\kappa^{n} | d_{Sr/Cs}^{(n)} | \sigma_{\phi^{n}}(\tau) \lesssim 1.6 \times 10^{-13} / \sqrt{\tau/s}$ 

• 
$$\kappa^n |d_{\gamma}^{(n)}| \sigma_{\phi^n}(\tau) \leq 2.3 \times 10^{-16} / \sqrt{\tau}$$

E.g. for two times separated by 1000 seconds

 $\approx \kappa^{n} |d_{\gamma}^{(n)}| [\phi^{n}(t+\tau) - \phi^{n}(t)] \lesssim 7 \times 10^{-18}$ 

No functional form of  $\phi(t)$  assumed













### ALP constraints



H. Kim and G. Perez, arXiv:2205.12988

$$\mathscr{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G^b_{\mu\nu} \widetilde{G}^{b\mu\nu}$$

#### **Axion is coherently oscillating field**

$$a(t) \approx rac{\sqrt{2
ho_{\rm DM}^{\rm local}}}{m} \cos(mt) \qquad 
ho_{\rm DM}^{\rm local} \approx 0.3 \ {
m Ge}$$

#### **Can induce oscillations in nucleon** mass and nuclear g factor

transmits to sensitivity from Sr/Cs ratio

$$\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{\text{Sr/Cs}}$$









### ALP constraints

-15



H. Kim and G. Perez, arXiv:2205.12988

$$\mathcal{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G^b_{\mu\nu} \widetilde{G}^{b\mu\nu}$$

#### **Axion is coherently oscillating field**

$$a(t) \approx rac{\sqrt{2
ho_{\rm DM}^{\rm local}}}{m} \cos(mt) \qquad 
ho_{\rm DM}^{\rm local} \approx 0.3 \ {
m Ge}$$

#### **Can induce oscillations in nucleon** mass and nuclear g factor

transmits to sensitivity from Sr/Cs ratio

$$\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{\text{Sr/Cs}}$$









### ALP constraints

-15



H. Kim and G. Perez, arXiv:2205.12988

$$\mathcal{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G^b_{\mu\nu} \widetilde{G}^{b\mu\nu}$$

#### **Axion is coherently oscillating field**

$$a(t) \approx rac{\sqrt{2
ho_{\rm DM}^{\rm local}}}{m} \cos(mt) \qquad 
ho_{\rm DM}^{\rm local} \approx 0.3 \ {
m Ge}$$

**Can induce oscillations in nucleon** mass and nuclear g factor

transmits to sensitivity from Sr/Cs ratio

$$\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{\text{Sr/Cs}}$$









### Conclusions

### **Atomic clocks are powerful probes of ultralight bosons**

Sensitive to "variations" of fundamental dimensionless constants Variations may be attributed to presence of ultralight bosons ✓ New constraints on ALPs and scalar ultralight DM (see paper)

### **Excellent future prospects**

☑ New phenomenology connecting ultralight fields to atomic observables

☑ Model-independent constraints from instabilities of Yb<sup>+</sup>, Sr, and Cs clocks

☑ New clocks under construction, additional data-taking campaigns in progress





### "A network of clocks measuring the stability of fundamental constants"



#### Oscillations



#### University of Birmingham



#### Imperial College London



#### University of Sussex





NPL

**G. Barontini et. al. EPJ Quantum Technology 9, 12 (2022)** 

| Clock                      | $K_{lpha}$ | $K_{\mu}$ |        |
|----------------------------|------------|-----------|--------|
| Yb <sup>+</sup> (467 nm)   | -5.95      | 0         |        |
| Sr (698 nm)                | 0.06       | 0         | Opera  |
| Cs (32.6 mm)               | 2.83       | 1         |        |
| CaF (17 μm)                | 0          | 0.5       |        |
| $N_2^+$ (2.31 $\mu m$ )    | 0          | 0.5       | Under  |
| Cf <sup>15+</sup> (618 nm) | 47         | 0         | constr |
| Cf <sup>17+</sup> (485 nm) | -43.5      | 0         |        |





tional

