Searching for ultralight bosons using atomic clocks

Nathaniel Sherrill University of Sussex

axions++ 2023 Based on New J. Phys. 25, 093012 (2023) In collaboration with the National Physical Laboratory (NPL)

*ν*optical ∼ 100 THz *ν*microwave ∼ GHz *ν*molecular ∼ 10 THz

*ν*optical ∼ 100 THz *ν*microwave ∼ GHz *ν*molecular ∼ 10 THz

Inaccuracy = systematic uncertainty

 $=$ uncertainty of shift $\nu_{\text{output}} - \nu_0$

*ν*optical ∼ 100 THz *ν*microwave ∼ GHz *ν*molecular ∼ 10 THz

high-frequency transitions

Inaccuracy = systematic uncertainty

 $=$ uncertainty of shift $\nu_{\text{output}} - \nu_0$

Basic components Clock transition Measured* radiation

***Cannot measure absolute energies** *r*observable =

Basic components Clock transition Measured* radiation

***Cannot measure absolute energies** $r_{\text{observable}}$ *ν*1 ν ₂ **Different transitions of same system or distinct systems**

Common clock transitions

$$
\nu_{\text{optical}} = A \cdot (cR_{\infty}) \cdot F_{\text{opt}}(\alpha)
$$

$$
\nu_{\text{microwave}} = B \cdot (cR_{\infty}) \cdot \alpha^2 F_{\text{MW}}(\alpha) \cdot g_N \cdot \mu
$$

$$
\nu_{\text{molecular}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2} \quad \mu = m_e/m_p
$$

Basic components Clock transition Measured* radiation

***Cannot measure absolute energies** $r_{\text{observable}}$ *ν*1 ν ₂ **Different transitions of same system or distinct systems**

Common clock transitions

$$
\nu_{\text{optical}} = A \cdot (\mathcal{L}R_{\infty}) \cdot F_{\text{opt}}(\alpha)
$$

$$
\nu_{\text{microwave}} = B \cdot (\mathcal{L}R_{\infty}) \cdot \alpha^2 F_{\text{MW}}(\alpha) \cdot g_N \cdot \mu
$$

$$
\nu_{\text{molecular}} = C \cdot (\mathcal{L}R_{\infty}) \cdot \mu^{1/2} \quad \mu = m_e/m_p}
$$

Basic components Clock transition Measured* radiation

***Cannot measure absolute energies** $r_{\text{observable}}$ *ν*1 ν ₂ **Different transitions of same system or distinct systems**

Common clock transitions

$$
\nu_{\text{optical}} = A \cdot (\mathcal{L}R_{\infty}) \cdot F_{\text{opt}}(\alpha)
$$

$$
\nu_{\text{microwave}} = B \cdot (\mathcal{L}R_{\infty}) \cdot \alpha^2 F_{\text{MW}}(\alpha) \cdot g_N \cdot \mu
$$

$$
\nu_{\text{molecular}} = C \cdot (\mathcal{L}R_{\infty}) \cdot \mu^{1/2} \quad \mu = m_e/m_p}
$$

Atomic clocks are sensitive to "variations" **of fundamental constants**

Additional bosons can source variations $\mathscr{L}_{\text{int}, \phi} \supset -\frac{1}{4}$

 $\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$

Additional bosons can source variations $\mathscr{L}_{\text{int}, \phi} \supset -\frac{1}{4}$

1 $2Λ'$ $\phi F_{\mu\nu}F^{\mu\nu}$

E.g. "Bekenstein electrodynamics" $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\phi}{\lambda}$ **[J. D. Bekenstein, Phys. Rev. D 25, 1527 \(1982\)](https://www.worldscientific.com/doi/abs/10.1142/9789811203961_0027)**

$$
\mathcal{L} = \mathcal{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 +
$$

 $\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$

 Λ'

Additional bosons can source variations $\mathscr{L}_{\text{int}, \phi} \supset -\frac{1}{4}$

1 $2Λ'$ $\phi F_{\mu\nu}F^{\mu\nu}$

E.g. "Bekenstein electrodynamics" $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\phi}{\lambda}$ **[J. D. Bekenstein, Phys. Rev. D 25, 1527 \(1982\)](https://www.worldscientific.com/doi/abs/10.1142/9789811203961_0027)** Collider searches

$$
\mathcal{L} = \mathcal{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 +
$$

 $\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$

 Λ'

[U. Danielsson et al., PRD 100, 055028 \(2019\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.055028)

Additional bosons can source variations $\mathscr{L}_{\text{int}, \phi} \supset -\frac{1}{4}$

E.g. "Bekenstein electrodynamics" $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\phi}{\lambda}$ **[J. D. Bekenstein, Phys. Rev. D 25, 1527 \(1982\)](https://www.worldscientific.com/doi/abs/10.1142/9789811203961_0027)** $\qquad \qquad \Delta$ Collider searches

Theories with varying constants ⇔ **conventional physics + additional interactions**

$$
\mathcal{L} = \mathcal{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 +
$$

 $\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu} \Rightarrow \alpha \to \alpha(\phi)$

 Λ'

[U. Danielsson et al., PRD 100, 055028 \(2019\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.055028)

$$
-\left(\frac{\phi}{\Lambda}\right)^n \cdot \mathcal{O}_{\text{SM}}
$$

 $\mathscr{L}_{\text{int},\phi}$

Effective ϕ −SM interactions

$$
-\left(\frac{\phi}{\Lambda}\right)^n \cdot \mathscr{O}_{\text{SM}}
$$

$$
\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^{-1}
$$

$$
\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n
$$

(see, e.g.)

[P. W. Graham et al., PRD 93, 075029 \(2016\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029)

Bosonic interactions

 $\mathscr{L}_{\text{int},\phi}$

Effective ϕ −SM interactions

$\mathscr{L}_{\text{int},\phi} = (\kappa \phi)$ *n* (*d*(*n*) *γ* $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-d_{m_e}^{(n)}$ $\left(\frac{m}{m_e} m_e \bar{\psi}_e \psi_e\right)$ + …

^ℒint,*^ϕ* [⊃] [−] (

Effective ϕ −SM interactions

 $\mathscr{L}_{\text{int},\phi} = (\kappa \phi)$ *n* (*d*(*n*) *γ* $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-d_{m_e}^{(n)}$ $\left(\frac{m}{m_e} m_e \bar{\psi}_e \psi_e\right)$ + …

$$
-\left(\frac{\phi}{\Lambda}\right)^n \cdot \mathcal{O}_{\text{SM}}
$$

$$
\alpha(\phi) = \alpha \left(1 + d_{\gamma}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \alpha}{\alpha} = d_{\gamma}^{(n)}(\kappa \phi)^n
$$

$$
m_j(\phi) = m_j \left(1 + d_{m_j}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta m_j}{m_j} = d_{m_j}^{(n)}(\kappa \phi)^n \quad (j = e, u, d)
$$

$$
\Lambda_{\text{QCD}}(\phi) = \Lambda_{\text{QCD}} \left(1 + d_g^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}} = d_g^{(n)}(\kappa \phi)^n
$$

Shifts in fundamental constants

$$
\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^{-1}
$$

$$
\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n
$$

(see, e.g.)

[P. W. Graham et al., PRD 93, 075029 \(2016\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029)

$$
-\left(\frac{\phi}{\Lambda}\right)^n \cdot \mathcal{O}_{\text{SM}}
$$

$$
\alpha(\phi) = \alpha \left(1 + d_{\gamma}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \alpha}{\alpha} = d_{\gamma}^{(n)}(\kappa \phi)^n
$$

$$
m_j(\phi) = m_j \left(1 + d_{m_j}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta m_j}{m_j} = d_{m_j}^{(n)}(\kappa \phi)^n \quad (j = e, u, d)
$$

$$
\Lambda_{\text{QCD}}(\phi) = \Lambda_{\text{QCD}} \left(1 + d_g^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}} = d_g^{(n)}(\kappa \phi)^n
$$

Shifts in fundamental constants

$$
\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^{-1}
$$

$$
\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n
$$

$$
(\text{see, e.g.})
$$

[P. W. Graham et al., PRD 93, 075029 \(2016\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029)

Bosonic interactions

 $\mathscr{L}_{\text{int},\phi}$

Effective ϕ −SM interactions

 $\mathscr{L}_{\text{int},\phi} = (\kappa \phi)$ *n* (*d*(*n*) *γ* $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-d_{m_e}^{(n)}$ $\left(\frac{m}{m_e} m_e \bar{\psi}_e \psi_e\right)$ + …

Boson EOM controls character of variations

Damped oscillator covers many models of interest

Dark matter $\Gamma = 0$ \Box

…
……

 \Box

- Dark energy: $\Gamma = 3H(t)$ \Box
- Generic hidden sector: $\Gamma \neq 0$ \Box
- ·
,
小 *ϕ* + Γ .
h

Damped oscillator covers many models of interest

$$
\Gamma \to 0 \Rightarrow \phi(t) \approx \phi_0 \cos \left[m(1 + \frac{1}{2}v^2)t + \delta \right] \Rightarrow m \propto f \text{ main driver of oscillations}
$$

- Dark matter $\Gamma = 0$
- ·
,
小 .
h Dark energy: $\Gamma = 3H(t)$ \Box
- *ϕ* + Γ Generic hidden sector: $\Gamma \neq 0$ \Box \Box …

Illustrative case: stable, nonrelativistic limit

-
- Dark energy: $\Gamma = 3H(t)$
- \Box …

Illustrative case: stable, nonrelativistic limit

-
- Dark energy: $\Gamma = 3H(t)$ \Box
- \Box …

Illustrative case: stable, nonrelativistic limit

 \sim 2 weeks of measurements, roughly \Box every second with 75% uptime Observations made over same window \Box

NPL frequency ratios

N[ew J. Phys. 25, 093012 \(2023\)](https://iopscience.iop.org/article/10.1088/1367-2630/aceff6)

Divide out HM

NPL clock instabilities

NPL clock instabilities

- Mean ratios not constant in time (standard variance not good measure of statistics)
- Instability $=$ "Allan deviation" is standard \Box choice among metrologists

NPL clock instabilities

Mean ratios not constant in time (standard variance not good measure of statistics) Instability $=$ "Allan deviation" is standard choice among metrologists

> σ_r^2 *^r* (*τ*) ∼ 1 2 $\langle (\bar{r}_{i+1} - \bar{r}_{i})$ 2 ⟩ **Instability = statistical uncertainty**

measure of frequency ratio variations *δr r*

Data characteristic of white noise ⇒ **operating on atomic transition!**

NPL clock instabilities

 σ_r^2 *^r* (*τ*) ∼ 1 2 $\langle (\bar{r}_{i+1} - \bar{r}_{i})$ 2 ⟩ **Instability = statistical uncertainty**

Mean ratios not constant in time (standard variance not good measure of statistics) Instability = "Allan deviation" is standard choice among metrologists

measure of frequency ratio variations *δr*

r

Translate instabilities to bounds on shifts

Model-independent constraints

 $\kappa^n | d_{\text{Sr/Cs}}^{(n)} | \sigma_{\phi^n}(\tau) \lesssim 1.6 \times 10^{-13} / \sqrt{\tau/s}$

κ^{*n*} | $d_{\gamma}^{(n)}$ | $\sigma_{\phi^n}(\tau) \lesssim 2.3 \times 10^{-16} / \sqrt{\tau/s}$

Translate instabilities to bounds on shifts

$$
\kappa^{n} |d_{\gamma}^{(n)}| \sigma_{\phi^{n}}(\tau) \lesssim 2.3 \times 10^{-16} / \sqrt{\tau/s}
$$

E.g. for two times separated by 1000 seconds

 $\approx \kappa^n |d_\gamma^{(n)}| [\phi^n(t+\tau) - \phi^n(t)] \lesssim 7 \times 10^{-18}$

No functional form of $\phi(t)$ **assumed**

Model-independent constraints

 $10⁵$

$$
\frac{\delta r}{r} \propto \frac{\Delta g}{g} \sim \kappa^n d_g^{(n)} \phi^n(t)
$$

 $\kappa^n | d_{\text{Sr/Cs}}^{(n)} | \sigma_{\phi^n}(\tau) \lesssim 1.6 \times 10^{-13} / \sqrt{\tau/s}$

$$
\mathcal{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G_{\mu\nu}^b \widetilde{G}^{b\mu\nu}
$$

Axion is coherently oscillating field

$$
\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{Sr/Cs}
$$

transmits to sensitivity from Sr/Cs **ratio**

ALP constraints

 -15

$$
a(t) \approx \frac{\sqrt{2\rho_{\rm DM}^{\rm local}}}{m} \cos(mt) \qquad \rho_{\rm DM}^{\rm local} \approx 0.3 \text{ Ge}
$$

[H. Kim and G. Perez, arXiv:2205.12988](https://inspirehep.net/literature/2087938)

Can induce oscillations in nucleon mass and nuclear *g* **factor**

$$
\mathcal{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G_{\mu\nu}^b \widetilde{G}^{b\mu\nu}
$$

Axion is coherently oscillating field

$$
\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{Sr/Cs}
$$

transmits to sensitivity from Sr/Cs **ratio**

ALP constraints

 -15

$$
a(t) \approx \frac{\sqrt{2\rho_{DM}^{local}}}{m} \cos(mt)
$$
 $\rho_{DM}^{local} \approx 0.3$ Ge

[H. Kim and G. Perez, arXiv:2205.12988](https://inspirehep.net/literature/2087938)

Can induce oscillations in nucleon mass and nuclear *g* **factor**

$$
\mathcal{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G_{\mu\nu}^b \widetilde{G}^{b\mu\nu}
$$

Axion is coherently oscillating field

$$
\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{Sr/Cs}
$$

transmits to sensitivity from Sr/Cs **ratio**

ALP constraints

 -15

$$
a(t) \approx \frac{\sqrt{2\rho_{\rm DM}^{\rm local}}}{m} \cos(mt) \qquad \rho_{\rm DM}^{\rm local} \approx 0.3 \text{ Ge}
$$

[H. Kim and G. Perez, arXiv:2205.12988](https://inspirehep.net/literature/2087938)

Can induce oscillations in nucleon

Atomic clocks are powerful probes of ultralight bosons

Sensitive to "variations" of fundamental dimensionless constants Variations may be attributed to presence of ultralight bosons New constraints on ALPs and scalar ultralight DM (see paper)

Excellent future prospects

New clocks under construction, additional data-taking campaigns in progress

New phenomenology connecting ultralight fields to atomic observables

Model-independent constraints from instabilities of Yb⁺, Sr, and Cs clocks

Conclusions

"A network of clocks measuring the stability of fundamental constants"

dional

[G. Barontini et. al. EPJ Quantum Technology 9, 12 \(2022\)](https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00130-5)

University of Birmingham

Imperial College London

University of Sussex

NPL