PBH from domain wall networks Motivated by PTA signal

Yann Gouttenoire

Axion ++ conference in Annecy

27th September 2023

Postdoc in Tel Aviv U.

Azrieli International Postdoctoral Fellows

Supermassive PBH binaries

 $1 s \gtrsim t \gtrsim 10^{-5} s$

Supermassive PBH binaries

First-order phase transition

 $1 s \gtrsim t \gtrsim 10^{-5} s$

			Supermassive
			PBH binaries LSS and UV LF galaxy YG,Trifinopoulos,Valogiannis,Vanvlass
			elaer, 2307.01457 Except if clustering Depta, Schmidt-Hoberg, Schwaller Tasillo 2306.17836
			First-order phase transition
Supermassive black holes binaries			Large curvature perturbation
			Local cosmic string Not a good fit of NG15 NG15 collab. "New physics" Except if superstrings Ellis, Lewicki, Lin, Vaskonen 2306.1714
Gravitational Waves			Global cosmic strings BBN bound
			Domain walls
13.8 Gyr \gtrsim t \gtrsim 500 My	/r 1	$ s \gtrsim t \gtrsim 10^{-1}$	⁵ s

lass	
aller,	
>	
ngs 5	
7147	
S	

155	
ler,	
2019	
ngs	
<u>147</u>	
5	

ISS
ler,
-
2019
ngs
<u>147</u>
5

ISS
ler,
-
2019
ngs
<u>147</u>
5

Formation of Domain Wall

Scaling regime : $R \simeq t$

 $\rho_{\rm DW} \simeq \frac{\sigma}{\rm R} \simeq \frac{\sigma}{\rm t}$

DW-domination

Vilenkin and Shellard 2000, Cambridge University Press

"Observers will see the false vacuum regions bounded by the walls collapse to form black holes. Soon afterwards, the universe will become black-hole dominated"

 $t_{\rm dom}$

DW-domination

Vilenkin and Shellard 2000, Cambridge University Press

"Observers will see the false vacuum regions bounded by the walls collapse to form black holes. Soon afterwards, the universe will become black-hole dominated"

PBH-domination

 $t_{\rm dom}$

 $t_{\rm dom}$

GW from DW annihilation in Pulsar Timing arrays

GW from DW annihilation in Pulsar Timing arrays

GW from DW annihilation in Pulsar Timing arrays

*t*_{ann}

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Assumption: $R(t) \simeq t$

Energy density

R

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

R

2022: G. B. Gelmini, A. Simpson, and E. Vitagliano, 2207.07126, JCAP 02, 031,

2023: G. B. Gelmini, J. Hyman, A. Simpson, and E. Vitagliano, 2303.14107

2023: YG, E. Vitagliano, 2306.17841

Go back to basics:

Go back to basics:

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

$$R(t) = a(t)\chi(t)$$

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

R

$$R(t) = a(t)\chi(t)$$

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

R

 $R(t) = a(t)\chi(t)$

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

R

 $R(t) = a(t)\chi(t)$

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

R

 $R(t) = a(t)\chi(t)$

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

R

 $R(t) = a(t)\chi(t)$

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

R

 $R(t) = a(t)\chi(t)$

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

R

Assumption:
$$R(t) \simeq t$$

Go back to basics:

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

 $R(t) = a(t)\chi(t)$

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

R

Assumption:
$$R(t) \simeq t$$

Go back to basics:

$$\ddot{\chi} + (4 - 3a^2 \dot{\chi}^2) H \dot{\chi} + \frac{2}{a^2 \chi} (1 - a^2 \dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right) \frac{(1 - a^2 \dot{\chi}^2)^{3/2}}{a}$$

 $R(t) = a(t)\chi(t)$

Result:

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

t

Assumption:
$$R(t) \simeq t$$

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

Go back to basics:

$$\ddot{\chi} + (4 - 3a^2\dot{\chi}^2)H\dot{\chi} + \frac{2}{a^2\chi}(1 - a^2\dot{\chi}^2) = -\left(\frac{V_{\text{bias}}}{\sigma} + 6\pi\sigma\right)\frac{(1 - a^2\dot{\chi}^2)^{3/2}}{a} \qquad R_{\text{min}}$$

$$R(t) = a(t)\chi(t)$$
Result:

$$R(t) \propto \begin{cases} a(t), & \text{if } \mathbf{R} > t, \\ e^{-\Gamma t}, & \text{if } \mathbf{R} < t. \end{cases}$$

PBH abundance:

$$f_{\rm PBH} \simeq \mathscr{F} \times \left(\frac{T_{\rm dom}}{T_{\rm eq}}\right)$$

Vilenkin&Shellard 2000

Percolation theory on a lattice:

Percolation theory on a lattice:

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

Percolation theory on a lattice:

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

2) Site occupation probability : P = 0.5

Percolation theory on a lattice:

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

2) Site occupation probability : P = 0.5

3) Probability of a spherical false vacuum domain of size R:

Percolation theory on a lattice:

 $\mathscr{F}(R)\simeq P^s$

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

2) Site occupation probability : P = 0.5

3) Probability of a spherical false vacuum domain of size R:

Percolation theory on a lattice:

- $\mathscr{F}(R)\simeq P^s$

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

2) Site occupation probability : P = 0.5

3) Probability of a spherical false vacuum domain of size R:

s = number of sites in DW

Percolation theory on a lattice:

- $\mathscr{F}(R)\simeq P^s$
- s = numl

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

2) Site occupation probability : P = 0.5

3) Probability of a spherical false vacuum domain of size R:

ber of sites in DW
$$\simeq \frac{4\pi}{3} \left(\frac{R}{a}\right)^3$$

Percolation theory on a lattice:

- s = numl

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

2) Site occupation probability : P = 0.5

3) Probability of a spherical false vacuum domain of size R:

 $\mathcal{F}(R) \simeq P^s \simeq P^{4\pi(R/a)^3/3}$

ber of sites in DW
$$\simeq \frac{4\pi}{3} \left(\frac{R}{a}\right)^3$$

Percolation theory on a lattice:

- s = numl

1) Lattice spacing: $a = \xi \times t$ with $\xi = \mathcal{O}(1)$

P = 0.52) Site occupation probability :

3) Probability of a spherical false vacuum domain of size R:

 $\mathcal{F}(R) \simeq P^s \simeq P^{4\pi(R/a)^3/3}$

ber of sites in DW
$$\simeq \frac{4\pi}{3} \left(\frac{R}{a}\right)^3$$

1) $T_{\rm ann} \lesssim T_{\rm dom} \implies$

Efficient PBH production due to collapse of late-annihilators

1) $T_{ann} \leq T_{dom} \implies$ Efficient PBH production due to collapse of late-annihilators 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$

- **1)** $T_{ann} \leq T_{dom} \implies$ **Efficient PBH production due to collapse of late-annihilators**
- 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$
- 3) Abundance of late-annihilators can be calculated from percolation theory (NEW)

$$\mathcal{F}(R) \sim e^{-3(R/t)^3}$$

- 1) $T_{ann} \leq T_{dom} \implies$ Efficient PBH production due to collapse of late-annihilators
- 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$
- 3) Abundance of late-annihilators can be calculated from percolation theory (NEW)

$$\mathcal{F}(R) \sim e^{-3(R/t)^3}$$

- 1) $T_{ann} \leq T_{dom} \implies$ Efficient PBH production due to collapse of late-annihilators
- 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$
- 3) Abundance of late-annihilators can be calculated from percolation theory (NEW)

$$\mathcal{F}(R) \sim e^{-3(R/t)^3}$$

Can produce solar-mass PBH YG, 2307.04239, to appear in PRL

- **1)** $T_{ann} \leq T_{dom} \implies$ Efficient PBH production due to collapse of late-annihilators
- 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$
- 3) Abundance of late-annihilators can be calculated from percolation theory (NEW)

$$\mathcal{F}(R) \sim e^{-3(R/t)^3}$$

Can produce solar-mass PBH YG, 2307.04239, to appear in PRL

- **1)** $T_{ann} \lesssim T_{dom} \implies$ Efficient PBH production due to collapse of late-annihilators
- 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$
- 3) Abundance of late-annihilators can be calculated from percolation theory (NEW)

$$\mathscr{F}(R) \sim e^{-3(R/t)^3} \sim 10^{-35}$$

Can produce solar-mass PBH YG, 2307.04239, to appear in PRL

$$R/t \mid \simeq 3$$

NANOGrav 15

Might not produce observable PBH

- **1)** $T_{ann} \lesssim T_{dom} \implies$ Efficient PBH production due to collapse of late-annihilators
- 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$
- 3) Abundance of late-annihilators can be calculated from percolation theory (NEW)

$$\mathscr{F}(R) \sim e^{-3(R/t)^3} \sim 10^{-35}$$

Can produce solar-mass PBH YG, 2307.04239, to appear in PRL

$$R/t \mid \simeq 3$$
NANOGrav 15

(Except if GW from DW has been over-estimated)

- 1) $T_{ann} \leq T_{dom} \implies$ Efficient PBH production due to collapse of late-annihilators
- 2) $\langle R(t) \rangle \simeq t \implies \text{valid on average but wrong for individual DW (NEW)}$
- 3) Abundance of late-annihilators can be calculated from percolation theory (NEW)

$$\mathcal{F}(R) \sim e^{-3(R/t)^3} \sim 10^{-35}$$

Can produce solar-mass PBH YG, 2307.04239, to appear in PRL

Outlooks: Many applications beyond PTA

$$R/t \mid \simeq 3$$
NANOGrav 15

(Except if GW from DW has been over-estimated)

